Abstract
We analyze an economic order quantity cost model with unit out-of-pocket holding costs, unit opportunity costs of holding, fixed ordering costs, and general purchase-transportation costs. We identify the set of purchasetransportation cost functions for which this model is easy to solve and related to solving a one-dimensional convex minimization problem. For the remaining purchase-transportation cost functions, when this problem becomes a global optimization problem, we propose a Lipschitz optimization procedure. In particular, we give an easy procedure which determines an upper bound on the optimal cycle length. Then, using this bound, we apply a well-known technique from global optimization. Also for the class of transportation functions related to full truckload (FTL) and less-than-truckload (LTL) shipments and the well-known carload discount schedule, we specialize these results and give fast and easy algorithms to calculate the optimal lot size and the corresponding optimal order-up-to-level.
On EOQ Cost Models with Arbitrary Purchase and Transportation Costs (PDF Download Available). Available from: https://www.researchgate.net/publication/265601733_On_EOQ_Cost_Models_with_Arbitrary_Purchase_and_Transportation_Costs [accessed Mar 4, 2016].
Original language | English |
---|---|
Pages (from-to) | 1211-1245 |
Number of pages | 35 |
Journal | Journal of Industrial and Management Optimization |
Volume | 11 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2015 |
Research programs
- EUR ESE 32