Origin and evolution of X chromosome inactivation

Joost Gribnau, Anton Grootegoed

Research output: Contribution to journalArticleAcademicpeer-review

32 Citations (Scopus)

Abstract

Evolution of the mammalian sex chromosomes heavily impacts on the expression of X-encoded genes, both in marsupials and placental mammals. The loss of genes from the Y chromosome forced a two-fold upregulation of dose sensitive X-linked homologues. As a corollary, female cells would experience a lethal dose of X-linked genes, if this upregulation was not counteracted by evolution of X chromosome inactivation (XCI) that allows for only one active X chromosome per diploid genome. Marsupials rely on imprinted XCI, which inactivates always the paternally inherited X chromosome. In placental mammals, random XCI (rXCI) is the predominant form, inactivating either the maternal or paternal X. In this review, we discuss recent new insights in the regulation of XCI. Based on these findings, we propose an X inactivation center (Xic), composed of a cis-Xic and trans-Xic that encompass all elements and factors acting to control rXCI either in cis or in trans. We also highlight that XCI may have evolved from a very small nucleation site on the X chromosome in the vicinity of the Sox3 gene. Finally, we discuss the possible evolutionary road maps that resulted in imprinted XCI and rXCI as observed in present day mammals.
Original languageUndefined/Unknown
Pages (from-to)397-404
Number of pages8
JournalCurrent Opinion in Cell Biology
Volume24
Issue number3
DOIs
Publication statusPublished - 2012

Research programs

  • EMC MGC-02-82-01

Cite this