OTTERS: a powerful TWAS framework leveraging summary-level reference data

Qile Dai, Geyu Zhou, eQTLgen Consortium, Hongyu Zhao, Urmo Võsa, Lude Franke, Alexis Battle, Alexander Teumer, Terho Lehtimäki, Olli T. Raitakari, Tõnu Esko, Mawussé Agbessi, Habibul Ahsan, Isabel Alves, Anand Kumar Andiappan, Wibowo Arindrarto, Philip Awadalla, Alexis Battle, Frank Beutner, Marc Jan BonderDorret I. Boomsma, Mark W. Christiansen, Annique Claringbould, Patrick Deelen, Marie Julie Favé, Timothy Frayling, Sina A. Gharib, Greg Gibson, Bastiaan T. Heijmans, Gibran Hemani, Rick Jansen, Mika Kähönen, Anette Kalnapenkis, Silva Kasela, Johannes Kettunen, Yungil Kim, Holger Kirsten, Peter Kovacs, Knut Krohn, Jaanika Kronberg, Viktorija Kukushkina, Zoltan Kutalik, Bernett Lee, Markus Loeffler, Urko M. Marigorta, Hailang Mei, Markus Scholz, Joyce van Meurs, Joost Verlouw, Jian Yang, Jingjing Yang*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)
52 Downloads (Pure)

Abstract

Most existing TWAS tools require individual-level eQTL reference data and thus are not applicable to summary-level reference eQTL datasets. The development of TWAS methods that can harness summary-level reference data is valuable to enable TWAS in broader settings and enhance power due to increased reference sample size. Thus, we develop a TWAS framework called OTTERS (Omnibus Transcriptome Test using Expression Reference Summary data) that adapts multiple polygenic risk score (PRS) methods to estimate eQTL weights from summary-level eQTL reference data and conducts an omnibus TWAS. We show that OTTERS is a practical and powerful TWAS tool by both simulations and application studies.

Original languageEnglish
Article number1271
JournalNature Communications
Volume14
Issue number1
DOIs
Publication statusPublished - 7 Mar 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

Fingerprint

Dive into the research topics of 'OTTERS: a powerful TWAS framework leveraging summary-level reference data'. Together they form a unique fingerprint.

Cite this