TY - JOUR
T1 - Performance evaluation of dynamic scheduling approaches in vehicle-based internal transport systems
AU - le Anh, T
AU - de Koster, Rene
AU - Yu, Y
PY - 2010
Y1 - 2010
N2 - This paper studies the performance of static and dynamic scheduling approaches in vehicle-based internal transport (VBIT) systems and is one of the first to systematically investigate under which circumstances, which scheduling method helps in improving performance. In practice, usually myopic dispatching heuristics are used, often using look-ahead information. We argue more advanced scheduling methods can help, depending on circumstances. We introduce three basic scheduling approaches (insertion, combined and column generation) for the static problem. We then extend these to a dynamic, real-time setting with rolling horizons. We propose two further real-time scheduling approaches: dynamic assignment with and without look-ahead. The performances of the above five scheduling approaches are compared with two of the best performing look-ahead dispatching rules known from the literature. The performance of the various approaches depends on the facility layout and work distribution. However, column generation, the combined heuristic, and the assignment approach with look-ahead consistently outperform dispatching rules. Column generation can require substantial calculation time but delivers very good performance if sufficient look-ahead information is available. For large scale systems, the combined heuristic and the dynamic assignment approach with look ahead are recommended and have acceptable calculation times.
AB - This paper studies the performance of static and dynamic scheduling approaches in vehicle-based internal transport (VBIT) systems and is one of the first to systematically investigate under which circumstances, which scheduling method helps in improving performance. In practice, usually myopic dispatching heuristics are used, often using look-ahead information. We argue more advanced scheduling methods can help, depending on circumstances. We introduce three basic scheduling approaches (insertion, combined and column generation) for the static problem. We then extend these to a dynamic, real-time setting with rolling horizons. We propose two further real-time scheduling approaches: dynamic assignment with and without look-ahead. The performances of the above five scheduling approaches are compared with two of the best performing look-ahead dispatching rules known from the literature. The performance of the various approaches depends on the facility layout and work distribution. However, column generation, the combined heuristic, and the assignment approach with look-ahead consistently outperform dispatching rules. Column generation can require substantial calculation time but delivers very good performance if sufficient look-ahead information is available. For large scale systems, the combined heuristic and the dynamic assignment approach with look ahead are recommended and have acceptable calculation times.
U2 - 10.1080/00207540903443279
DO - 10.1080/00207540903443279
M3 - Article
SN - 0020-7543
VL - 48
SP - 7219
EP - 7242
JO - International Journal of Production Research
JF - International Journal of Production Research
IS - 24
ER -