Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset

Rutger Heinen*, Martijn D. Steenwijk, TRACE-VCI Study Grp, Frederik Barkhof, J. Matthijs Biesbroek, Wiesje M. van der Flier, H. J. Kuijf, N. D. Prins, Hugo Vrenken, Geert Jan Biessels, Jeroen de Bresser, E. van den Berg, J. M. F. Boomsma, L. G. Exalto, D. A. Ferro, C. J. M. Frijns, O. N. Groeneveld, N. M. van Kalsbeek, J. H. Verwer, J. de BresserH. J. Kuijf, M. E. Emmelot-Vonk, H. L. Koek, M. R. Benedictus, J. Bremer, A. E. Leeuwis, J. Leijenaar, N. D. Prins, P. Scheltens, B. M. Tijms, M. P. Wattjes, C. E. Teunissen, T. Koene, J. M. F. Boomsma, H. C. Weinstein, M. Hamaker, R. Faaij, M. Pleizier, M. Prins, E. Vriens

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

36 Citations (Scopus)
15 Downloads (Pure)

Fingerprint

Dive into the research topics of 'Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset'. Together they form a unique fingerprint.

Medicine and Dentistry

Neuroscience

Immunology and Microbiology