Phosphorothioate 2 ' Deoxyribose Oligomers as Microbicides That Inhibit Human Immunodeficiency Virus Type 1 (HIV-1) Infection and Block Toll-Like Receptor 7 (TLR7) and TLR9 Triggering by HIV-1

Joseph A. Fraietta, Yvonne M. Mueller, Duc H. Do, Veronica M. Holmes, Mary K. Howett, Mark G. Lewis, Alina C. Boesteanu, Sefik S. Alkan, Peter D. Katsikis*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

26 Citations (Scopus)

Abstract

Topical microbicides may prove to be an important strategy for preventing human immunodeficiency virus type 1 (HIV-1) transmission. We examined the safety and efficacy of sequence-nonspecific phosphorothioate 2' deoxyribose oligomers as potential novel microbicides. A short, 13-mer poly(T) phosphorothioate oligodeoxynucleotide (OPB-T) significantly inhibited infection of primary peripheral blood mononuclear cells (PBMC) by high-titer HIV-1(Ba-L) and simian immunodeficiency virus mac251 (SIV(mac251)). Continuous exposure of human vaginal and foreskin tissue explants to OPB-T showed no toxicity. An abasic 14-mer phosphorothioate 2' deoxyribose backbone (PDB) demonstrated enhanced anti-HIV-1 activity relative to OPB-T and other homo-oligodeoxynucleotide analogs. When PDB was used to pretreat HIV-1, PDB was effective against R5 and X4 isolates at a half-maximal inhibitory concentration (IC(50)) of < 1 mu M in both PBMC and P4-R5 MAGI cell infections. PDB also reduced HIV-1 infectivity following the binding of virus to target cells. This novel topical microbicide candidate exhibited an excellent in vitro safety profile in human PBMC and endocervical epithelial cells. PDB also retained activity in hydroxyethylcellulose gel at pH 4.4 and after transition to a neutral pH and was stable in this formulation for 30 days at room temperature. Furthermore, the compound displayed potent antiviral activity following incubation with a Lactobacillus strain derived from normal vaginal flora. Most importantly, PDB can inhibit HIV-1-induced alpha interferon production. Phosphorothioate 2' deoxyribose oligomers may therefore be promising microbicide candidates that inhibit HIV-1 infection and also dampen the inflammation which is critical for the initial spread of the virus.
Original languageEnglish
Pages (from-to)4064-4073
Number of pages10
JournalAntimicrobial Agents and Chemotherapy
Volume54
Issue number10
DOIs
Publication statusPublished - 1 Oct 2010
Externally publishedYes

Fingerprint

Dive into the research topics of 'Phosphorothioate 2 ' Deoxyribose Oligomers as Microbicides That Inhibit Human Immunodeficiency Virus Type 1 (HIV-1) Infection and Block Toll-Like Receptor 7 (TLR7) and TLR9 Triggering by HIV-1'. Together they form a unique fingerprint.

Cite this