TY - JOUR
T1 - Predicting adverse long-term neurocognitive outcomes after pediatric intensive care unit admission
AU - Nakano, Felipe Kenji
AU - Dulfer, Karolijn
AU - Vanhorebeek, Ilse
AU - Wouters, Pieter J.
AU - Verbruggen, Sascha C.
AU - Joosten, Koen F.
AU - Güiza Grandas, Fabian
AU - Vens, Celine
AU - Van den Berghe, Greet
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/6
Y1 - 2024/6
N2 - Background and objective: Critically ill children may suffer from impaired neurocognitive functions years after ICU (intensive care unit) discharge. To assess neurocognitive functions, these children are subjected to a fixed sequence of tests. Undergoing all tests is, however, arduous for former pediatric ICU patients, resulting in interrupted evaluations where several neurocognitive deficiencies remain undetected. As a solution, we propose using machine learning to predict the optimal order of tests for each child, reducing the number of tests required to identify the most severe neurocognitive deficiencies. Methods: We have compared the current clinical approach against several machine learning methods, mainly multi-target regression and label ranking methods. We have also proposed a new method that builds several multi-target predictive models and combines the outputs into a ranking that prioritizes the worse neurocognitive outcomes. We used data available at discharge, from children who participated in the PEPaNIC-RCT trial (ClinicalTrials.gov-NCT01536275), as well as data from a 2-year follow-up study. The institutional review boards at each participating site have also approved this follow-up study (ML8052; NL49708.078; Pro00038098). Results: Our proposed method managed to outperform other machine learning methods and also the current clinical practice. Precisely, our method reaches approximately 80% precision when considering top-4 outcomes, in comparison to 65% and 78% obtained by the current clinical practice and the state-of-the-art method in label ranking, respectively. Conclusions: Our experiments demonstrated that machine learning can be competitive or even superior to the current testing order employed in clinical practice, suggesting that our model can be used to severely reduce the number of tests necessary for each child. Moreover, the results indicate that possible long-term adverse outcomes are already predictable as early as at ICU discharge. Thus, our work can be seen as the first step to allow more personalized follow-up after ICU discharge leading to preventive care rather than curative.
AB - Background and objective: Critically ill children may suffer from impaired neurocognitive functions years after ICU (intensive care unit) discharge. To assess neurocognitive functions, these children are subjected to a fixed sequence of tests. Undergoing all tests is, however, arduous for former pediatric ICU patients, resulting in interrupted evaluations where several neurocognitive deficiencies remain undetected. As a solution, we propose using machine learning to predict the optimal order of tests for each child, reducing the number of tests required to identify the most severe neurocognitive deficiencies. Methods: We have compared the current clinical approach against several machine learning methods, mainly multi-target regression and label ranking methods. We have also proposed a new method that builds several multi-target predictive models and combines the outputs into a ranking that prioritizes the worse neurocognitive outcomes. We used data available at discharge, from children who participated in the PEPaNIC-RCT trial (ClinicalTrials.gov-NCT01536275), as well as data from a 2-year follow-up study. The institutional review boards at each participating site have also approved this follow-up study (ML8052; NL49708.078; Pro00038098). Results: Our proposed method managed to outperform other machine learning methods and also the current clinical practice. Precisely, our method reaches approximately 80% precision when considering top-4 outcomes, in comparison to 65% and 78% obtained by the current clinical practice and the state-of-the-art method in label ranking, respectively. Conclusions: Our experiments demonstrated that machine learning can be competitive or even superior to the current testing order employed in clinical practice, suggesting that our model can be used to severely reduce the number of tests necessary for each child. Moreover, the results indicate that possible long-term adverse outcomes are already predictable as early as at ICU discharge. Thus, our work can be seen as the first step to allow more personalized follow-up after ICU discharge leading to preventive care rather than curative.
UR - http://www.scopus.com/inward/record.url?scp=85189941395&partnerID=8YFLogxK
U2 - 10.1016/j.cmpb.2024.108166
DO - 10.1016/j.cmpb.2024.108166
M3 - Article
C2 - 38614026
AN - SCOPUS:85189941395
SN - 0169-2607
VL - 250
JO - Computer Methods and Programs in Biomedicine
JF - Computer Methods and Programs in Biomedicine
M1 - 108166
ER -