TY - JOUR
T1 - Procoagulant changes in fibrin clot structure in patients with cirrhosis are associated with oxidative modifications of fibrinogen
AU - Hugenholtz, G. C.G.
AU - Macrae, F.
AU - Adelmeijer, J.
AU - Dulfer, S.
AU - Porte, R. J.
AU - Lisman, T.
AU - Ariëns, R. A.S.
N1 - Publisher Copyright:
© 2016 International Society on Thrombosis and Haemostasis.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Patients with cirrhosis have hemostatic changes, which may contribute to a risk of thrombosis. This in vitro study compares clot formation and structure between patients and healthy subjects. Clot formation is delayed in patients; ultimately, however, clot permeability is decreased. The thrombogenic structure of fibrin clots may contribute to the thrombotic risk in cirrhosis. Background and Objectives: Patients with cirrhosis can be at risk of thrombotic complications due to an imbalance between hemostatic components. However, little is known on how the disease affects clot generation or how alterations in the structure of fibrin clots may affect the hemostatic function of these patients. Methods: We investigated the formation and structure of clots generated with plasma and purified fibrinogen of 42 patients with cirrhosis. Clots generated with plasma and fibrinogen of 29 healthy volunteers were studied for comparison. Clot formation and structure were assessed by turbidity, permeation studies, confocal laser and scanning electron microscopy (SEM). The extent of fibrinogen oxidation was assessed by measuring the carbonyl content of purified fibrinogen samples. Results: Tissue factor and thrombin-induced clotting of plasma was delayed in patients. The clotting rate was also decreased, but change in turbidity, fibrin density and fiber thickness were largely comparable to healthy volunteers. Conversely, clot permeability was significantly decreased in patients. When clots were generated with purified fibrinogen, differences in clot formation and structure similar to those in plasma were found. The carbonyl content was increased in patient fibrinogen and correlated with disease severity and clot permeability. Conclusions: Delayed clot formation in cirrhosis ultimately results in decreased clot permeability. Similar alterations in clots generated with purified fibrinogen suggest that modifications of the molecule are (partly) responsible. Taken together, these findings are indicative of hypercoagulable features of clots of patients with cirrhosis, which may explain the increased risk of thrombosis associated with this condition.
AB - Patients with cirrhosis have hemostatic changes, which may contribute to a risk of thrombosis. This in vitro study compares clot formation and structure between patients and healthy subjects. Clot formation is delayed in patients; ultimately, however, clot permeability is decreased. The thrombogenic structure of fibrin clots may contribute to the thrombotic risk in cirrhosis. Background and Objectives: Patients with cirrhosis can be at risk of thrombotic complications due to an imbalance between hemostatic components. However, little is known on how the disease affects clot generation or how alterations in the structure of fibrin clots may affect the hemostatic function of these patients. Methods: We investigated the formation and structure of clots generated with plasma and purified fibrinogen of 42 patients with cirrhosis. Clots generated with plasma and fibrinogen of 29 healthy volunteers were studied for comparison. Clot formation and structure were assessed by turbidity, permeation studies, confocal laser and scanning electron microscopy (SEM). The extent of fibrinogen oxidation was assessed by measuring the carbonyl content of purified fibrinogen samples. Results: Tissue factor and thrombin-induced clotting of plasma was delayed in patients. The clotting rate was also decreased, but change in turbidity, fibrin density and fiber thickness were largely comparable to healthy volunteers. Conversely, clot permeability was significantly decreased in patients. When clots were generated with purified fibrinogen, differences in clot formation and structure similar to those in plasma were found. The carbonyl content was increased in patient fibrinogen and correlated with disease severity and clot permeability. Conclusions: Delayed clot formation in cirrhosis ultimately results in decreased clot permeability. Similar alterations in clots generated with purified fibrinogen suggest that modifications of the molecule are (partly) responsible. Taken together, these findings are indicative of hypercoagulable features of clots of patients with cirrhosis, which may explain the increased risk of thrombosis associated with this condition.
UR - http://www.scopus.com/inward/record.url?scp=84960158618&partnerID=8YFLogxK
U2 - 10.1111/jth.13278
DO - 10.1111/jth.13278
M3 - Article
C2 - 26833718
AN - SCOPUS:84960158618
SN - 1538-7933
VL - 14
SP - 1054
EP - 1066
JO - Journal of Thrombosis and Haemostasis
JF - Journal of Thrombosis and Haemostasis
IS - 5
ER -