TY - JOUR
T1 - Production of Recombinant Hepatitis B virus (HBV) and Detection of HBV in Infected Human Liver Organoids
AU - Hossain, T.
AU - Romal, S.
AU - Mahmoudi, T.
N1 - Publisher Copyright:
Copyright © 2022 Hossain et al.
PY - 2022/4/20
Y1 - 2022/4/20
N2 - The absence of long term, primary untransformed in vitro models that support hepatitis B virus (HBV) infection and replication have hampered HBV pre-clinical research, which was reflected in the absence of a curative therapy until recently. One of the limitations for in vitro HBV research has been the absence of high titer and pure recombinant HBV stocks, which, as we describe here, can be generated using simple, and reproducible protocols. In addition to infection of more conventional in vitro and in vivo liver model systems, recombinant high titer purified HBV stocks can also be used to efficiently infect differentiated human liver organoids, whose generation, maintenance, and infection is discussed in detail in a companion organoid protocol. Here, we also describe the protocols for the detection of specific viral read-outs, including HBV DNA in the supernatant of the cultures, covalently closed circular DNA (cccDNA) from intracellular DNA preparations, and HBV viral proteins and viral RNA, which can be detected within the cells, demonstrating the presence of a complete viral replication cycle in infected liver organoids. Although an evolving platform, the human liver organoid model system presents great potential as an exciting new tool to study HBV infection and progression to hepatocellular carcinoma (HCC) in primary cells, when combined with the use of high-titer and pure recombinant HBV stock for infection.
AB - The absence of long term, primary untransformed in vitro models that support hepatitis B virus (HBV) infection and replication have hampered HBV pre-clinical research, which was reflected in the absence of a curative therapy until recently. One of the limitations for in vitro HBV research has been the absence of high titer and pure recombinant HBV stocks, which, as we describe here, can be generated using simple, and reproducible protocols. In addition to infection of more conventional in vitro and in vivo liver model systems, recombinant high titer purified HBV stocks can also be used to efficiently infect differentiated human liver organoids, whose generation, maintenance, and infection is discussed in detail in a companion organoid protocol. Here, we also describe the protocols for the detection of specific viral read-outs, including HBV DNA in the supernatant of the cultures, covalently closed circular DNA (cccDNA) from intracellular DNA preparations, and HBV viral proteins and viral RNA, which can be detected within the cells, demonstrating the presence of a complete viral replication cycle in infected liver organoids. Although an evolving platform, the human liver organoid model system presents great potential as an exciting new tool to study HBV infection and progression to hepatocellular carcinoma (HCC) in primary cells, when combined with the use of high-titer and pure recombinant HBV stock for infection.
UR - http://www.scopus.com/inward/record.url?scp=85129284625&partnerID=8YFLogxK
U2 - 10.21769/BioProtoc.4392
DO - 10.21769/BioProtoc.4392
M3 - Article
C2 - 35800100
SN - 2331-8325
VL - 12
JO - Bio-protocol
JF - Bio-protocol
IS - 8
M1 - e4392
ER -