Selection of Personalized Patient Therapy through the Use of Knowledge-Based Computational Models That Identify Tumor-Driving Signal Transduction Pathways

W Verhaegh, H van Ooijen, MA Inda, P Hatzis, R Versteeg, Marcel Smid, John Martens, John Foekens, P van de Wiel, H Clevers, A Stolpe

Research output: Contribution to journalArticleAcademicpeer-review

64 Citations (Scopus)


Increasing knowledge about signal transduction pathways as drivers of cancer growth has elicited the development of "targeted drugs," which inhibit aberrant signaling pathways. They require a companion diagnostic test that identifies the tumor-driving pathway; however, currently available tests like estrogen receptor (ER) protein expression for hormonal treatment of breast cancer do not reliably predict therapy response, at least in part because they do not adequately assess functional pathway activity. We describe a novel approach to predict signaling pathway activity based on knowledge-based Bayesian computational models, which interpret quantitative transcriptome data as the functional output of an active signaling pathway, by using expression levels of transcriptional target genes. Following calibration on only a small number of cell lines or cohorts of patient data, they provide a reliable assessment of signaling pathway activity in tumors of different tissue origin. As proof of principle, models for the canonical Wnt and ER pathways are presented, including initial clinical validation on independent datasets from various cancer types.
Original languageUndefined/Unknown
Pages (from-to)2936-2945
Number of pages10
JournalCancer Research
Issue number11
Publication statusPublished - 2014

Research programs

  • EMC MM-03-86-01

Cite this