TY - JOUR
T1 - Self-adaptive deep learning-based segmentation for universal and functional clinical and preclinical CT image analysis
AU - Zwijnen, Anne Wietje
AU - Watzema, Leon
AU - Ridwan, Yanto
AU - van Der Pluijm, Ingrid
AU - Smal, Ihor
AU - Essers, Jeroen
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/9
Y1 - 2024/9
N2 - Background: Methods to monitor cardiac functioning non-invasively can accelerate preclinical and clinical research into novel treatment options for heart failure. However, manual image analysis of cardiac substructures is resource-intensive and error-prone. While automated methods exist for clinical CT images, translating these to preclinical μCT data is challenging. We employed deep learning to automate the extraction of quantitative data from both CT and μCT images. Methods: We collected a public dataset of cardiac CT images of human patients, as well as acquired μCT images of wild-type and accelerated aging mice. The left ventricle, myocardium, and right ventricle were manually segmented in the μCT training set. After template-based heart detection, two separate segmentation neural networks were trained using the nnU-Net framework. Results: The mean Dice score of the CT segmentation results (0.925 ± 0.019, n = 40) was superior to those achieved by state-of-the-art algorithms. Automated and manual segmentations of the μCT training set were nearly identical. The estimated median Dice score (0.940) of the test set results was comparable to existing methods. The automated volume metrics were similar to manual expert observations. In aging mice, ejection fractions had significantly decreased, and myocardial volume increased by age 24 weeks. Conclusions: With further optimization, automated data extraction expands the application of (μ)CT imaging, while reducing subjectivity and workload. The proposed method efficiently measures the left and right ventricular ejection fraction and myocardial mass. With uniform translation between image types, cardiac functioning in diastolic and systolic phases can be monitored in both animals and humans.
AB - Background: Methods to monitor cardiac functioning non-invasively can accelerate preclinical and clinical research into novel treatment options for heart failure. However, manual image analysis of cardiac substructures is resource-intensive and error-prone. While automated methods exist for clinical CT images, translating these to preclinical μCT data is challenging. We employed deep learning to automate the extraction of quantitative data from both CT and μCT images. Methods: We collected a public dataset of cardiac CT images of human patients, as well as acquired μCT images of wild-type and accelerated aging mice. The left ventricle, myocardium, and right ventricle were manually segmented in the μCT training set. After template-based heart detection, two separate segmentation neural networks were trained using the nnU-Net framework. Results: The mean Dice score of the CT segmentation results (0.925 ± 0.019, n = 40) was superior to those achieved by state-of-the-art algorithms. Automated and manual segmentations of the μCT training set were nearly identical. The estimated median Dice score (0.940) of the test set results was comparable to existing methods. The automated volume metrics were similar to manual expert observations. In aging mice, ejection fractions had significantly decreased, and myocardial volume increased by age 24 weeks. Conclusions: With further optimization, automated data extraction expands the application of (μ)CT imaging, while reducing subjectivity and workload. The proposed method efficiently measures the left and right ventricular ejection fraction and myocardial mass. With uniform translation between image types, cardiac functioning in diastolic and systolic phases can be monitored in both animals and humans.
UR - http://www.scopus.com/inward/record.url?scp=85198239762&partnerID=8YFLogxK
U2 - 10.1016/j.compbiomed.2024.108853
DO - 10.1016/j.compbiomed.2024.108853
M3 - Article
C2 - 39013341
AN - SCOPUS:85198239762
SN - 0010-4825
VL - 179
JO - Computers in Biology and Medicine
JF - Computers in Biology and Medicine
M1 - 108853
ER -