Abstract
Genome-wide association studies have identified 3p21.31 as the main risk locus for severe COVID-19, although underlying mechanisms remain elusive. We perform an epigenomic dissection of 3p21.31, identifying a CTCF-dependent tissue-specific 3D regulatory chromatin hub that controls the activity of several chemokine receptor genes. Risk SNPs colocalize with regulatory elements and are linked to increased expression of CCR1, CCR2 and CCR5 in monocytes and macrophages. As excessive organ infiltration of inflammatory monocytes and macrophages is a hallmark of severe COVID-19, our findings provide a rationale for the genetic association of 3p21.31 variants with elevated risk of hospitalization upon SARS-CoV-2 infection.
Original language | English |
---|---|
Article number | 96 |
Journal | Genome Biology |
Volume | 23 |
Issue number | 1 |
DOIs | |
Publication status | Published - 14 Apr 2022 |
Bibliographical note
Funding Information:B.S. and R.W.H. are supported by Dutch Lung Foundation grant 4.1.18.226. G.S. was supported by the ‘Fundación Científica de la Asociación Española Contra el Cáncer’. R.S. is supported by an Erasmus MC Fellowship, a Dutch Lung Foundation Junior Investigator grant (4.2.19.041JO) and a VIDI grant (09150172010068) from the Dutch Research Council (NWO). A.F.v.O. was supported by a postdoctoral fellowship from the Foundation Recherche Médicale. S.S. was supported by an Agence National pour la Recherche” grant (ANR-18-CE12-0019).
Publisher Copyright: © 2022, The Author(s).