STK19 drives transcription-coupled repair by stimulating repair complex stability, RNA Pol II ubiquitylation, and TFIIH recruitment

Anisha R. Ramadhin, Shun Hsiao Lee, Di Zhou, Anita Salmazo, Camila Gonzalo-Hansen, Marjolein van Sluis, Cindy M.A. Blom, Roel C. Janssens, Anja Raams, Dick Dekkers, Karel Bezstarosti, Dea Slade, Wim Vermeulen, Alex Pines, Jeroen A.A. Demmers, Carrie Bernecky, Titia K. Sixma*, Jurgen A. Marteijn*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

5 Citations (Scopus)
2 Downloads (Pure)

Abstract

Transcription-coupled nucleotide excision repair (TC-NER) efficiently eliminates DNA damage that impedes gene transcription by RNA polymerase II (RNA Pol II). TC-NER is initiated by the recognition of lesion-stalled RNA Pol II by CSB, which recruits the CRL4CSA ubiquitin ligase and UVSSA. RNA Pol II ubiquitylation at RPB1-K1268 by CRL4CSA serves as a critical TC-NER checkpoint, governing RNA Pol II stability and initiating DNA damage excision by TFIIH recruitment. However, the precise regulatory mechanisms of CRL4CSA activity and TFIIH recruitment remain elusive. Here, we reveal human serine/threonine-protein kinase 19 (STK19) as a TC-NER factor, which is essential for correct DNA damage removal and subsequent transcription restart. Cryogenic electron microscopy (cryo-EM) studies demonstrate that STK19 is an integral part of the RNA Pol II-TC-NER complex, bridging CSA, UVSSA, RNA Pol II, and downstream DNA. STK19 stimulates TC-NER complex stability and CRL4CSA activity, resulting in efficient RNA Pol II ubiquitylation and correct UVSSA and TFIIH binding. These findings underscore the crucial role of STK19 as a core TC-NER component.

Original languageEnglish
Pages (from-to)4740-4757.e12
JournalMolecular Cell
Volume84
Issue number24
DOIs
Publication statusPublished - 19 Dec 2024

Bibliographical note

Publisher Copyright: © 2024 The Authors

Fingerprint

Dive into the research topics of 'STK19 drives transcription-coupled repair by stimulating repair complex stability, RNA Pol II ubiquitylation, and TFIIH recruitment'. Together they form a unique fingerprint.

Cite this