TY - UNPB
T1 - Targeted proteomics as a tool to detect SARS-CoV-2 proteins in clinical specimens
AU - Bezstarosti, Karel
AU - Lamers, Mart
AU - Kampen, Jeroen
AU - Haagmans, Bart
AU - Demmers, Jeroen
PY - 2020
Y1 - 2020
N2 - The rapid, sensitive and specific detection of SARS-CoV-2 is critical in responding to the current COVID-19 outbreak. Here, we explore the potential of targeted mass spectrometry based proteomics for the detection of SARS-CoV-2 proteins in both research and clinical samples. First, we assessed the limit of detection for several SARS-CoV-2 proteins by parallel reaction monitoring (PRM) mass spectrometry. For Nucleocapsid the limit of detection was found to be in the mid-attomole range (0.9 x 10?12 g). Next, we apply this PRM assay to the detection of viral proteins in in vitro mucus substitutes, as well as in various clinical specimens such as nasopharyngeal swabs and sputum. In this proof-of-concept study SARS-CoV-2 proteins could unambiguously be detected in clinical samples, suggesting that the sensitivity of this technology may be sufficiently high to further explore its potential role in diagnostics.
AB - The rapid, sensitive and specific detection of SARS-CoV-2 is critical in responding to the current COVID-19 outbreak. Here, we explore the potential of targeted mass spectrometry based proteomics for the detection of SARS-CoV-2 proteins in both research and clinical samples. First, we assessed the limit of detection for several SARS-CoV-2 proteins by parallel reaction monitoring (PRM) mass spectrometry. For Nucleocapsid the limit of detection was found to be in the mid-attomole range (0.9 x 10?12 g). Next, we apply this PRM assay to the detection of viral proteins in in vitro mucus substitutes, as well as in various clinical specimens such as nasopharyngeal swabs and sputum. In this proof-of-concept study SARS-CoV-2 proteins could unambiguously be detected in clinical samples, suggesting that the sensitivity of this technology may be sufficiently high to further explore its potential role in diagnostics.
U2 - 10.1101/2020.04.23.057810
DO - 10.1101/2020.04.23.057810
M3 - Preprint
BT - Targeted proteomics as a tool to detect SARS-CoV-2 proteins in clinical specimens
ER -