TY - JOUR
T1 - Targeted therapies in bladder cancer: an overview of in vivo research
AU - van Kessel, Kim
AU - Zuiverloon, Tahlita
AU - Alberts, Arnout
AU - Boormans, Joost
AU - Zwarthoff, Ellen
PY - 2015
Y1 - 2015
N2 - Survival of patients with muscle-invasive bladder cancer is poor and new therapies are needed. Currently, none of the targeted agents that are approved for cancer therapy have been approved for the treatment of bladder cancer and the few clinical trials that have been performed had limited success, often owing to a lack of efficacy and toxic effects. However, many other novel targeted agents have been investigated in animal models of bladder cancer. EGFR, FGFR-3, VEGF, mTOR, STAT3, the androgen receptor and CD24 are molecular targets that could be efficiently inhibited, resulting in reduced tumour growth, and that have been investigated in multiple independent studies. Several other targets, for example COX-2, IL-12, Bcl-xL, livin and choline kinase a, have also been observed to inhibit tumour growth, but these findings have not been replicated to date. Limitations of several studies include the use of cell lines with mutations downstream of the target, providing resistance to the tested therapy. Furthermore, certain technologies, such as interfering RNAs, although effective in vitro, are not yet ready for clinical applications. Further preclinical research is needed to discover and evaluate other possible targets, but several validated targets are now available to be studied in clinical trials.
AB - Survival of patients with muscle-invasive bladder cancer is poor and new therapies are needed. Currently, none of the targeted agents that are approved for cancer therapy have been approved for the treatment of bladder cancer and the few clinical trials that have been performed had limited success, often owing to a lack of efficacy and toxic effects. However, many other novel targeted agents have been investigated in animal models of bladder cancer. EGFR, FGFR-3, VEGF, mTOR, STAT3, the androgen receptor and CD24 are molecular targets that could be efficiently inhibited, resulting in reduced tumour growth, and that have been investigated in multiple independent studies. Several other targets, for example COX-2, IL-12, Bcl-xL, livin and choline kinase a, have also been observed to inhibit tumour growth, but these findings have not been replicated to date. Limitations of several studies include the use of cell lines with mutations downstream of the target, providing resistance to the tested therapy. Furthermore, certain technologies, such as interfering RNAs, although effective in vitro, are not yet ready for clinical applications. Further preclinical research is needed to discover and evaluate other possible targets, but several validated targets are now available to be studied in clinical trials.
U2 - 10.1038/nrurol.2015.231
DO - 10.1038/nrurol.2015.231
M3 - Article
SN - 1759-4812
VL - 12
SP - 681
EP - 694
JO - Nature Reviews Urology
JF - Nature Reviews Urology
IS - 12
ER -