TY - JOUR
T1 - TF:FVIIa-specific activation of CREB upregulates proapoptotic proteins via protease-activated receptor-2
AU - Versteeg, Henri H.
AU - Borensztajn, K. S.
AU - Kerver, M. E.
AU - Ruf, W.
AU - Reitsma, P. H.
AU - Spek, C. A.
AU - Peppelenbosch, M. P.
PY - 2008
Y1 - 2008
N2 - Background: Tissue factor (TF) and factor (F) VIIa are the primary initiators of the coagulation cascade, but also promote non-hemostatic events, such as angiogenesis and tumor growth, via activation of protease activated receptor-2 (PAR2). Our previous findings indicated that the TF:FVIIa complex activates signal transducer and activator of transcription (STAT) signaling, leading to cell survival in TF-transfected baby hamster kidney (BHK) cells. Methods: Using BHK TF, keratinocytes (HaCaT) and human umbilical vein endothelial cells (HUVEC), FVIIa-induced phosphorylation and activation of the transcription factor cyclic AMP-responsive binding protein (CREB) were tested and compared to that elicited by thrombin and FXa. In addition, the effect of these factors on cell survival and expression of apoptosis-associated proteins was monitored. Results: Factor VIIa led to a TF-dependent, but TF cytoplasmic domain-independent phosphorylation and activation of CREB in BHK TF, HaCaT and HUVEC. CREB activation was sensitive to blockade of the extracellular-signal regulated kinase 1/2 pathway and PAR2. Surprisingly, FVIIa decreased cell survival in HaCaT cells but not other cell types and upregulated the pro-apoptotic proteins Bak and Puma in a CREB-dependent manner. Factor Xa, but not FIIa, induced phosphorylation of CREB, but did not have an effect on apoptosis. Conclusion: TF:FVIIa induces CREB phosphorylation and activation in several cell types, but TF:FVIIa induces pro-apoptotic proteins and apoptosis only in selected cell types.
AB - Background: Tissue factor (TF) and factor (F) VIIa are the primary initiators of the coagulation cascade, but also promote non-hemostatic events, such as angiogenesis and tumor growth, via activation of protease activated receptor-2 (PAR2). Our previous findings indicated that the TF:FVIIa complex activates signal transducer and activator of transcription (STAT) signaling, leading to cell survival in TF-transfected baby hamster kidney (BHK) cells. Methods: Using BHK TF, keratinocytes (HaCaT) and human umbilical vein endothelial cells (HUVEC), FVIIa-induced phosphorylation and activation of the transcription factor cyclic AMP-responsive binding protein (CREB) were tested and compared to that elicited by thrombin and FXa. In addition, the effect of these factors on cell survival and expression of apoptosis-associated proteins was monitored. Results: Factor VIIa led to a TF-dependent, but TF cytoplasmic domain-independent phosphorylation and activation of CREB in BHK TF, HaCaT and HUVEC. CREB activation was sensitive to blockade of the extracellular-signal regulated kinase 1/2 pathway and PAR2. Surprisingly, FVIIa decreased cell survival in HaCaT cells but not other cell types and upregulated the pro-apoptotic proteins Bak and Puma in a CREB-dependent manner. Factor Xa, but not FIIa, induced phosphorylation of CREB, but did not have an effect on apoptosis. Conclusion: TF:FVIIa induces CREB phosphorylation and activation in several cell types, but TF:FVIIa induces pro-apoptotic proteins and apoptosis only in selected cell types.
UR - http://www.scopus.com/inward/record.url?scp=49849100339&partnerID=8YFLogxK
U2 - 10.1111/j.1538-7836.2008.03091.x
DO - 10.1111/j.1538-7836.2008.03091.x
M3 - Article
C2 - 18647225
AN - SCOPUS:49849100339
SN - 1538-7933
VL - 6
SP - 1550
EP - 1557
JO - Journal of Thrombosis and Haemostasis
JF - Journal of Thrombosis and Haemostasis
IS - 9
ER -