TY - JOUR
T1 - The Crosswise Model for Surveys on Sensitive Topics
T2 - A General Framework for Item Selection and Statistical Analysis
AU - Gregori, Marco
AU - De Jong, Martijn G.
AU - Pieters, Rik
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/9
Y1 - 2024/9
N2 - When surveys contain direct questions about sensitive topics, participants may not provide their true answers. Indirect question techniques incentivize truthful answers by concealing participants’ responses in various ways. The Crosswise Model aims to do this by pairing a sensitive target item with a non-sensitive baseline item, and only asking participants to indicate whether their responses to the two items are the same or different. Selection of the baseline item is crucial to guarantee participants’ perceived and actual privacy and to enable reliable estimates of the sensitive trait. This research makes the following contributions. First, it describes an integrated methodology to select the baseline item, based on conceptual and statistical considerations. The resulting methodology distinguishes four statistical models. Second, it proposes novel Bayesian estimation methods to implement these models. Third, it shows that the new models introduced here improve efficiency over common applications of the Crosswise Model and may relax the required statistical assumptions. These three contributions facilitate applying the methodology in a variety of settings. An empirical application on attitudes toward LGBT issues shows the potential of the Crosswise Model. An interactive app, Python and MATLAB codes support broader adoption of the model.
AB - When surveys contain direct questions about sensitive topics, participants may not provide their true answers. Indirect question techniques incentivize truthful answers by concealing participants’ responses in various ways. The Crosswise Model aims to do this by pairing a sensitive target item with a non-sensitive baseline item, and only asking participants to indicate whether their responses to the two items are the same or different. Selection of the baseline item is crucial to guarantee participants’ perceived and actual privacy and to enable reliable estimates of the sensitive trait. This research makes the following contributions. First, it describes an integrated methodology to select the baseline item, based on conceptual and statistical considerations. The resulting methodology distinguishes four statistical models. Second, it proposes novel Bayesian estimation methods to implement these models. Third, it shows that the new models introduced here improve efficiency over common applications of the Crosswise Model and may relax the required statistical assumptions. These three contributions facilitate applying the methodology in a variety of settings. An empirical application on attitudes toward LGBT issues shows the potential of the Crosswise Model. An interactive app, Python and MATLAB codes support broader adoption of the model.
UR - http://www.scopus.com/inward/record.url?scp=85194886842&partnerID=8YFLogxK
U2 - 10.1007/s11336-024-09976-3
DO - 10.1007/s11336-024-09976-3
M3 - Article
C2 - 38806852
AN - SCOPUS:85194886842
SN - 0033-3123
VL - 89
SP - 1007
EP - 1033
JO - Psychometrika
JF - Psychometrika
IS - 3
ER -