The Crosswise Model for Surveys on Sensitive Topics: A General Framework for Item Selection and Statistical Analysis

Marco Gregori*, Martijn G. De Jong, Rik Pieters

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

When surveys contain direct questions about sensitive topics, participants may not provide their true answers. Indirect question techniques incentivize truthful answers by concealing participants’ responses in various ways. The Crosswise Model aims to do this by pairing a sensitive target item with a non-sensitive baseline item, and only asking participants to indicate whether their responses to the two items are the same or different. Selection of the baseline item is crucial to guarantee participants’ perceived and actual privacy and to enable reliable estimates of the sensitive trait. This research makes the following contributions. First, it describes an integrated methodology to select the baseline item, based on conceptual and statistical considerations. The resulting methodology distinguishes four statistical models. Second, it proposes novel Bayesian estimation methods to implement these models. Third, it shows that the new models introduced here improve efficiency over common applications of the Crosswise Model and may relax the required statistical assumptions. These three contributions facilitate applying the methodology in a variety of settings. An empirical application on attitudes toward LGBT issues shows the potential of the Crosswise Model. An interactive app, Python and MATLAB codes support broader adoption of the model.

Original languageEnglish
Pages (from-to)1007-1033
Number of pages27
JournalPsychometrika
Volume89
Issue number3
DOIs
Publication statusPublished - Sept 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Fingerprint

Dive into the research topics of 'The Crosswise Model for Surveys on Sensitive Topics: A General Framework for Item Selection and Statistical Analysis'. Together they form a unique fingerprint.

Cite this