TY - JOUR
T1 - The forecast combination puzzle: A simple theoretical explanation
AU - Claeskens, G
AU - R Magnus, J
AU - Vasnev, A
AU - Wang, Wendun
PY - 2016
Y1 - 2016
N2 - This paper offers a theoretical explanation for the stylized fact that forecast combinations with estimated optimal weights often perform poorly in applications. The properties of the forecast combination are typically derived under the assumption that the weights are fixed, while in practice they need to be estimated. If the fact that the weights are random rather than fixed is taken into account during the optimality derivation, then the forecast combination will be biased (even when the original forecasts are unbiased), and its variance will be larger than in the fixed-weight case. In particular, there is no guarantee that the ‘optimal’ forecast combination will be better than the equal-weight case, or even improve on the original forecasts. We provide the underlying theory, some special cases, and a numerical illustration.
AB - This paper offers a theoretical explanation for the stylized fact that forecast combinations with estimated optimal weights often perform poorly in applications. The properties of the forecast combination are typically derived under the assumption that the weights are fixed, while in practice they need to be estimated. If the fact that the weights are random rather than fixed is taken into account during the optimality derivation, then the forecast combination will be biased (even when the original forecasts are unbiased), and its variance will be larger than in the fixed-weight case. In particular, there is no guarantee that the ‘optimal’ forecast combination will be better than the equal-weight case, or even improve on the original forecasts. We provide the underlying theory, some special cases, and a numerical illustration.
U2 - 10.1016/j.ijforecast.2015.12.005
DO - 10.1016/j.ijforecast.2015.12.005
M3 - Article
SN - 0169-2070
VL - 32
SP - 754
EP - 762
JO - International Journal of Forecasting
JF - International Journal of Forecasting
IS - 3
ER -