Abstract
Avian A/H5N1 influenza viruses pose a pandemic threat. As few as five amino acid substitutions, or four with reassortment, might be sufficient for mammal-to-mammal transmission through respiratory droplets. From surveillance data, we found that two of these substitutions are common in A/H5N1 viruses, and thus, some viruses might require only three additional substitutions to become transmissible via respiratory droplets between mammals. We used a mathematical model of within-host virus evolution to study factors that could increase and decrease the probability of the remaining substitutions evolving after the virus has infected a mammalian host. These factors, combined with the presence of some of these substitutions in circulating strains, make a virus evolving in nature a potentially serious threat. These results highlight critical areas in which more data are needed for assessing, and potentially averting, this threat.
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | 1541-1547 |
Number of pages | 7 |
Journal | Science |
Volume | 336 |
Issue number | 6088 |
DOIs | |
Publication status | Published - 2012 |