Abstract
We have shown previously that isolated limb perfusion (ILP) in sarcoma-bearing rats results in high response rates when melphalan is used in combination with tumour necrosis factor alpha (TNF-α). This is in line with observations in patients. Here we show that ILP with doxorubicin in combination with TNF-α has comparable effects in two different rat sarcoma tumour models. The addition of TNF-α exhibits a synergistic anti-tumour effect, resulting in regression of the tumour in 54% and 100% of the cases for the BN175-fibrosarcoma and the ROS-1 osteosarcoma respectively. The combination is shown to be mandatory for optimal tumour response. The effect of high dose TNF-α on the activity of cytotoxic agents in ILP is still unclear. We investigated possible modes by which TNF-α could modulate the activity of doxorubicin. In both tumour models increased accumulation of doxorubicin in tumour tissue was found: 3.1-fold in the BN175 and 1.8-fold in the ROS-1 sarcoma after ILP with doxorubicin combined with TNF-α in comparison with an ILP with doxorubicin alone. This increase in local drug concentration may explain the synergistic anti-tumour responses after ILP with the combination. In vitro TNF-α fails to augment drug uptake in tumour cells or to increase cytotoxicity of the drug. These findings make it unlikely that TNF-α directly modulates the activity of doxorubicin in vivo. As TNF-α by itself has no or only minimal effect on tumour growth, an increase in local concentrations of chemotherapeutic drugs might well be the main mechanism for the synergistic anti-tumour effects. (C) 2000 Cancer Research Campaign.
Original language | English |
---|---|
Pages (from-to) | 973-980 |
Number of pages | 8 |
Journal | British Journal of Cancer |
Volume | 82 |
Issue number | 4 |
DOIs | |
Publication status | Published - 20 Jan 2000 |
Bibliographical note
© 2000 Cancer Research CampaignThis paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication