Turnaround time prediction for clinical chemistry samples using machine learning

Eline R. Tsai, Derya Demirtas, Nick Hoogendijk, Andrei N. Tintu*, Richard J. Boucherie

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
3 Downloads (Pure)

Abstract

Objectives: Turnaround time (TAT) is an essential performance indicator of a medical diagnostic laboratory. Accurate TAT prediction is crucial for taking timely action in case of prolonged TAT and is important for efficient organization of healthcare. The objective was to develop a model to accurately predict TAT, focusing on the automated pre-analytical and analytical phase. Methods: A total of 90,543 clinical chemistry samples from Erasmus MC were included and 39 features were analyzed, including priority level and workload in the different stages upon sample arrival. PyCaret was used to evaluate and compare multiple regression models, including the Extra Trees (ET) Regressor, Ridge Regression and K Neighbors Regressor, to determine the best model for TAT prediction. The relative residual and SHAP (SHapley Additive exPlanations) values were plotted for model evaluation. Results: The regression-tree-based method ET Regressor performed best with an R2 of 0.63, a mean absolute error of 2.42 min and a mean absolute percentage error of 7.35%, where the average TAT was 30.09 min. Of the test set samples, 77% had a relative residual error of at most 10%. SHAP value analysis indicated that TAT was mainly influenced by the workload in pre-analysis upon sample arrival and the number of modules visited. Conclusions: Accurate TAT predictions were attained with the ET Regressor and features with the biggest impact on TAT were identified, enabling the laboratory to take timely action in case of prolonged TAT and helping healthcare providers to improve planning of scarce resources to increase healthcare efficiency.

Original languageEnglish
Pages (from-to)1902-1910
Number of pages9
JournalClinical Chemistry and Laboratory Medicine
Volume60
Issue number12
DOIs
Publication statusPublished - 1 Nov 2022

Bibliographical note

Publisher Copyright:
© 2022 the author(s), published by De Gruyter, Berlin/Boston.

Fingerprint

Dive into the research topics of 'Turnaround time prediction for clinical chemistry samples using machine learning'. Together they form a unique fingerprint.

Cite this