Using machine learning to improve the diagnostic accuracy of the modified Duke/ESC 2015 criteria in patients with suspected prosthetic valve endocarditis - a proof of concept study
D. ten Hove*, R. H. J. A. Slart, A. W. J. M. Glaudemans, D. F. Postma, A. Gomes, L. E. Swart, W. Tanis, P. P. van Geel, G. Mecozzi, R. P. J. Budde, K. Mouridsen, B. Sinha
Research output: Contribution to journal › Article › Academic › peer-review
2Citations
(Scopus)
3Downloads
(Pure)
Fingerprint
Dive into the research topics of 'Using machine learning to improve the diagnostic accuracy of the modified Duke/ESC 2015 criteria in patients with suspected prosthetic valve endocarditis - a proof of concept study'. Together they form a unique fingerprint.