Validation of Interventional Fiber Optic Spectroscopy With MR Spectroscopy, MAS-NMR Spectroscopy, High-Performance Thin-Layer Chromatography, and Histopathology for Accurate Hepatic Fat Quantification

Rami Nachabe, JWA van der Hoorn, R van de Molengraaf, R Lamerichs, J Pikkemaat, CF Sio, BHW Hendriks, Dick Sterenborg

Research output: Contribution to journalArticleAcademicpeer-review

23 Citations (Scopus)

Abstract

Objectives: To validate near-infrared (NIR)-based optical spectroscopy measurements of hepatic fat content using a minimally invasive needle-like probe with integrated optical fibers, enabling real-time feedback during percutaneous interventions. The results were compared with magnetic resonance spectroscopy (MRS) as validation and with histopathology, being the clinical gold standard. Additionally, ex vivo magic angle spinning nuclear magnetic resonance spectroscopy and high-performance thin-layer chromatography were performed for comparison. Materials and Methods: Ten mice were used for the study, of which half received a regular chow diet and the other half received a high-fat diet to induce obesity and hepatosteatosis. The mice were imaged with a clinical 3-Tesla MR to select a region of interest within the right and left lobes of the liver, where MRS measurements were acquired in vivo. Subsequently, optical spectra were measured ex vivo at the surface of the liver at 6 different positions immediately after resection. Additionally Results: For both the mice groups, the estimated fat fractions by the various techniques were significantly similar (P = 0.072 and 0.627 for chow diet and high-fat diet group, respectively). The Pearson correlation value between NIR and the other techniques for fat determination showed the same strong linear correlation (P above 0.990; P < 0.001), whereas for histopathologic analyses, which is a rather qualitative measure, the Pearson correlation value was slightly lower (P = 0.925, P < 0.001). Conclusions: NIR spectroscopy measurements from a needle-like probe with integrated optical fibers for sensing at the tip of the needle can quickly and accurately determine hepatic fat content during an interventional procedure and might therefore be a promising novel diagnosing tool in the clinic.
Original languageUndefined/Unknown
Pages (from-to)209-216
Number of pages8
JournalInvestigative Radiology
Volume47
Issue number4
DOIs
Publication statusPublished - 2012

Research programs

  • EMC MM-03-32-09

Cite this