Virtual extensions improve perception-based instrument alignment using optical see-through devices

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)

Abstract

Instrument alignment is a common task in various surgical interventions using navigation. The goal of the task is to position and orient an instrument as it has been planned preoperatively. To this end, surgeons rely on patient-specific data visualized on screens alongside preplanned trajectories. The purpose of this manuscript is to investigate the effect of instrument visualization/non visualization on alignment tasks, and to compare it with virtual extensions approach which augments the realistic representation of the instrument with simple 3D objects. 18 volunteers performed six alignment tasks under each of the following conditions: no visualization on the instrument; realistic visualization of the instrument; realistic visualization extended with virtual elements (Virtual extensions). The first condition represents an egocentric-based alignment while the two other conditions additionally make use of exocentric depth estimation to perform the alignment. The device used was a see-through device (Microsoft HoloLens 2). The positions of the head and the instrument were acquired during the experiment. Additionally, the users were asked to fill NASA-TLX and SUS forms for each condition. The results show that instrument visualization is essential for a good alignment using see-through devices. Moreover, virtual extensions helped achieve the best performance compared to the other conditions with medians of 2 mm and 2° positional and angular error respectively. Furthermore, the virtual extensions decreased the average head velocity while similarly reducing the frustration levels. Therefore, making use of virtual extensions could facilitate alignment tasks in augmented and virtual reality (AR/VR) environments, specifically in AR navigated surgical procedures when using optical see-through devices.

Original languageEnglish
Pages (from-to)4332-4341
Number of pages10
JournalIEEE Transactions on Visualization and Computer Graphics
Volume27
Issue number11
DOIs
Publication statusPublished - 1 Nov 2021

Bibliographical note

Publisher Copyright:
© 1995-2012 IEEE.

Fingerprint

Dive into the research topics of 'Virtual extensions improve perception-based instrument alignment using optical see-through devices'. Together they form a unique fingerprint.

Cite this