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Abstract
In a single item dynamic lot-sizing problem, we are given a time horizon and demand
for a single item in every timeperiod. The problem seeks a solution that determines how
much to produce and carry at each time period, so that wewill incur the least amount of
production and inventory cost.When the remanufacturing option is included, the input
comprises of number of returned products at each time period that can be potentially
remanufactured to satisfy the demands, where remanufacturing and inventory costs
are applicable. For this problem, we first show that it cannot have a fully polynomial
time approximation scheme. We then provide a polynomial time algorithm, when we
make certain realistic assumptions on the cost structure.

Keywords Lot-sizing · Remanufacturing · Complexity · Polynomial algorithms

1 Introduction

The classical lot-sizing problem is defined over a finite planning horizon with discrete
time periods. The demand for a single item in each time period is provided as an
input. The demand could be satisfied by either manufacturing the item or through the
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inventory carried from a previous period. There are no restrictions on howmuchwe can
manufacture in a given period. Items produced in excess of demand are carried over to
the next period in the inventory. The objective is to determine the least cost production
plan that satisfies the demands at every period. With the remanufacturing option,
the demands can be satisfied either by manufacturing new items or remanufacturing
returned items. The returns at every period are provided as an input to the problem. The
problem consists of separate inventory costs for carrying remanufactured items and
manufactured items (sometimes referred to as serviceable inventory), and there is also
a cost incurred for manufacturing or remanufacturing. Remanufacturing is the process
of recovering used products by repairing and replacing worn out components so that a
product is created at the same quality level as a newlymanufactured product. This saves
tonnes of landfill every year by providing an environmentally friendlier alternative
to classical manufacturing. It also offers industries the potential to significantly save
money by exploiting used product inventories and reusingmany precious rawmaterials
that are becoming increasingly scarcer. With this motivation, we study the single item
production planning problem over a finite horizon with the option of remanufacturing.

The classical lot-sizing problem was introduced in [18] by Wagner and Whitin,
where the manufacturing has an unrestricted capacity. They provided a dynamic pro-
gram that can solve this problem in polynomial time. Various variants of it have been
thoroughly studied over the last 6 decades, see [3] for a recent review. Later, the capac-
itated version was introduced and the problem was shown to be NP-hard, see [6]. A
dynamic programwas provided in [5] which runs in polynomial time for unary encod-
ing. A fully polynomial time approximation scheme (FPTAS) was provided in [9].
There are a number of variations to the classical lot sizing problem (see for instance
[1,11]). The most pertinent variation to this study with remanufacturing option was
first studied in [8] and proved as NP-hard in [15]. A dynamic program with poly-
nomial running time was provided for a special case of when the cost involved are
time invariant and there is a joint set-up cost involved for both manufacturing and
remanufacturing [14]. A polynomial time algorithm was provided when all costs are
linear by solving it as a flow problem [8]. Since then, little progress has been made for
polynomial special cases. The general variations of the problem have been shown to
be NP-hard [12]. In addition several tight formulations and their comparisons based
on their lower bounds were investigated in [4,12,13]. In [10], the authors exploit the
optimality structure to decompose the problem into polynomially solveable subprob-
lems. A heuristic procedure was then provided, where a polynomial subset of these
subproblems were then chosen and solved.

The remainder of the paper is organized as follows. We start with a formal problme
description in Sect. 2. Then we show in Sect. 3 that the general case of this problem
cannot have an FPTAS unless P = NP. We refer the reader to [7] for concepts about
NP-hardness and [17] for concepts about FPTAS. In Sect. 4 we develop a dynamic
programming algorithm that runs in polynomial time to solve a special case, where
the inventory cost of the returned items is at least as much as the inventory cost of
the manufactured items. In addition, we assume that the concave costs involved in
manufacturing has a fixed cost and variable cost component. We also assume that the
costs are time invariant.
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2 Problem description

In the single item economic lot-sizing problem with remanufacturing option (ELSR),
we are given a time horizon T . Let [T ] := {1, . . . , T }. For each time period t ∈ [T ],
we are given a demand Dt , and the amount of returned products Rt that is available
for remanufacturing.W.l.o.g., we assume that manufacturing and remanufacturing can
be both completed for an item in a single period. We also define the following cost
functions for each time period t ∈ [T ]:
1. Manufacturing cost f mt : R≥0 → R≥0, for all t ∈ [T ],
2. Remanufacturing cost f rt : R≥0 → R≥0, for all t ∈ [T ]
3. Cost of holding manufactured items (we will refer to this as serviceable inventory

items) hmt : R≥0 → R≥0, for all t ∈ [T ] and
4. Cost of holding returned items (we will refer to this as return inventory items)

hrt : R≥0 → R≥0, for all t ∈ [T ].
We assume that costs are time dependent. However, our main results in Sect. 4

require that the costs are time invariant. Both inventory costs are linear. The concave
cost structure associated with remanufacturing and manufacturing involves in a fixed
cost and linear variable cost component , i.e., f it (x) = f it + lit x , when x > 0 and
0 otherwise, for i ∈ {r ,m}. f rt , f mt (lrt , l

m
t ) are the fixed costs (linear variable costs)

incurred in period t for remanufacturing and manufacturing respectively. We slightly
abuse the notation here to denote both the fixed cost component and the function by
the same notation, but this is easy to distinguish from the context. In each time period,
we have the option to remanufacture the returned item, manufacture the item new, or
use serviceable inventory from previous period to satisfy the demand. The problem
requires a production plan that details the amount of products to be manufactured xt ,
remanufactured yt , the returned items carried in inventory pt , and serviceable items
carried in the inventory qt , for each time period t ∈ [T ] such that the demand is met
in each time period and we minimize the total cost incurred. Excess returns from the
production plan at the end of the planning period will just be disposed at no extra
cost. We define the notation Di, j := ∑ j

t=i Dt (corr. Ri, j := ∑ j
t=i Rt ) to denote the

cumulative demands (corr. returns) between the periods i and j , for all 0 ≤ i ≤ j ≤ T .
We also define an interval of time periods [u, w] := {u, u + 1, . . . , w}. We now give
the formulation for this problem. Let

• yt (xt ): Amount of remanufactured (manufactured) item in time period t ,
• pt (qt ): Amount of return (serviceable) inventory carried at time t , and
• urt (u

m
t ): Binary variable indicating whether we remanufactured (manufactured) in

period t .

Then a formulation for the problem is as follows:

min
T∑

t=1

( f rt u
r
t + lrt yt + hrt pt + f mt umt + lmt xt + hmt qt ) (ELSR)

Rt + pt−1 = yt + pt , ∀t ∈ [T ]
qt−1 + yt + xt = Dt + qt , ∀t ∈ [T ]
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yt ≤ Murt , ∀t ∈ [T ]
xt ≤ Mumt , ∀t ∈ [T ]

x, y ∈ R
T≥0

p,q ∈ R
T≥0

u ∈ {0, 1}T

Assuming p0 and q0 are 0, we can rewrite the inventory levels in terms of manu-
factured quantities as below.

pt = R1,t −
t∑

i=1

yi

qt = D1,t −
t∑

i=1

yi −
t∑

i=1

xi

This would mean that we can accommodate the inventory cost by appropriately mod-
ifying the unit production costs (lrt and l

m
t ) as:

l̂rt := lrt −
T∑

t

hrt −
T∑

t

hmt

l̂mt := lmt −
T∑

t

hmt

Wecan then take the unit inventory costs to be 0 and add the constants
∑T

t=1 h
r
tR1,t and∑T

t=1 h
m
t D1,t to the objective function later. We also denote the modified remanufac-

turing cost (corr. manufacturing cost) by f̂ tr (x) := f rt + l̂rt x (corr. f̂
t
m(x) := f rt + l̂mt x)

if x > 0 and 0 otherwise. In Sect. 4, we apply the above modification, which signifi-
cantly simplifies the presentation of our results.

3 Complexity

The problem is known to be NP-hard in general [12,15]. We extend the reduction
provided in [15] to show the following theorem. Note that the following proof had
appeared in an unpublishedwork of the author [16] using a reduction from the partition
problem. We repeat the proof here in this work. The problem could be viewed as non-
time invariant or expected to have a zero outgoing return inventory at the end of the
planning period.

Theorem 1 ELSR does not have FPTAS unless P = NP.
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Fig. 1 Reduction from partition problem

Proof We will show this through a reduction from the partition problem, wherein
we are given n integers a1, a2, . . . , an . We want to determine if there exists a subset
S ⊂ {1, ..., n} of integers such that

∑
i∈S ai = A.

In our reduction (see Fig. 1),wefirst take the time horizon T = n+1 and the demand
for each time period i = 1, . . . , T − 1 = n as ai . The demand is zero for the last time
period. We incur a fixed cost of 1 for both manufacturing and remanufacturing. The
serviceable inventory cost is n for all time periods and returned inventory cost is 0 for
the first n periods and it is n for the last period. The amount of returns in period 1 is
R1 = A and there are no returns for all other time periods, Ri = 0, i = 2, . . . , n + 1.
If there is a solution to the partition problem, i.e, YES instance, then the optimal
solution to ELSR is less than n. We will use the returns A to satisfy the set of items
adding up to A and the remaining items (which also add up to A) are satisfied by
remanufacturing, each period resulting in manufacturing or remanufacturing cost (but
not both). If the partition problem is a NO instance, i.e., then there are no subsets
adding up to A, then we either need to manufacture and remanufacture at least in 1
period in addition to either manufacturing and remanufacturing in every other period
or we would incur a serviceable inventory cost or the return inventory cost in the last
period, resulting in a cost of at least n + 1. This also rules out an FPTAS for the
problem, since we can choose an ε < 1

n , say ε = 1
2n . Now, an algorithm that runs in

O( f (n, 1
ε
)), with f (n, 1

ε
) = f (n, 2n) being a polynomial function in n, provides an

(1 + ε)-approximation for the ELSR that can distinguish YES and NO instances of
the partition problem in polynomial time as follows. We can transform a PARTITION
instance into our ELSR instance. Then we can apply this approximation algorithm.
If the output of this algorithm is at most n, then we can conclude the PARTITION
instance as YES instance, since the approximation guarantee imply its solution has an
objective value at most n(1 + ε) < n(1 + 1

n ) = n + 1 and we can only have integer
solutions. Else we can conclude that the PARTITION instance is a NO instance.

�	
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4 Dynamic program for the special case: return inventory cost is
higher than serviceable inventory cost

4.1 Characterization of an optimal solution

We now investigate the special case where hr (p) ≥ hm(p), for all p ∈ R≥0. Gen-
erally, the serviceable inventory costs tend to be higher as the value of the products
carried in the serviceable inventory is higher. In the special case, for instance, where
the value of the returned products depreciate faster than a newlymanufactured product
or when there is no difference between a returned or a manufactured product, the prob-
lem has its applications. Note that we also omitted the time index as we are assuming
the costs are time invariant. In the sequel, we present a couple of optimality properties
which we exploit to design a dynamic program that runs in polynomial time.

Lemma 1 Let t∗ be the last period of remanufacturing. Then there exists an optimal
solution where in any remanufacturing period t with t < t∗ it holds pt = 0.

Proof Consider a remanufacturing period t in an optimal solution where the property
does not hold. Hence, some intermediate return stock of 0 < a < R̂t is carried. Since
t < t∗ by definition, there exists a time period after t in the optimal solution where
we remanufacture. Let t̃ be the first time period after t , when we remanufacture in
the optimal solution. We are also carrying a non-zero return inventory until this time
period. If we remanufacture at least a in time t̃ , then we could have remanufactured
this a in time t and carried a units of manufactured inventory until time t̃ without
increasing the cost, since return inventory cost is higher than manufactured inventory
cost. If we produced less than a in time t̃ , say ã, then we could have produced ã in time
t and produced nothing in time t̃ and continue with our argument (with a − ã being
the new a and the next time period of remanufacturing being the new t̃). If t̃ = t∗ and
ã < a, then we would have a new optimal solution with t being the last time period
of remanufacturing. �	

In otherwords, the lemmashows that in a remanufacturingperiod,we always reman-
ufacture as many returns as available (unless for probably the last remanufacturing
period). To illustrate the lemma, Fig. 2 shows how we can reroute the remanufactured
items to an earlier time period and get a new production plan with better or same cost.

Fig. 2 Rerouting the returns
remanufactured at t̃ to time
period t

t
R̂ t

t̃

t
D t

t̃
D t̃

a
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Fig. 3 Illustration of a typical subplan [t, u, v, w]. [i, j, k, �] and [p, q, r , s] are the subplans that precede
and succeed [t, u, v, w]. [i, j, k, �] is a subplan without a manufacturing period. Note in the above, we will
have t = k + 1, u = � + 1, p = v + 1 and q = w + 1

Lemma 2 There exists an optimal solution in which between two successive manu-
facturing periods (say t and t + j ), the serviceable inventory falls to zero, i.e., the
outgoing serviceable inventory is zero for at least one period between t and t + j − 1.

Proof Let x be the smallest inventory level between the periods t and t + j and y be
the amount of manufactured items in time t . We now reduce the inventory level of all
time periods between t and t + j by min(x, y) and decrease the manufactured items
in time t by min(x, y) and increase the manufactured item in time t + j by min(x, y).
If we reduced the manufactured items in t to zero, then we repeat the argument with
t + j and the period before t when we manufactured. Note that this procedure results
in a new solution with lower holding cost for serviceables (note that production cost
will not decrease because they are time invariant) and with at least one time period
with zero serviceable inventory between two successive manufacturing periods. �	

Lemmas 1 and2 suggest to decompose an optimal solution into so-called “subplans”
according to the following definition.

Definition 1 We refer to a quadruple of time periods [t, u, v, w], such that t ≤ u ≤
v ≤ w, as a subplan of a production plan, if the following conditions are true

1. Incoming serviceable inventory of u is zero
2. Outgoing serviceable inventory of w is zero or w = T
3. Outgoing serviceable inventory of every period in the interval [u, w−1] is non-zero
4. The last remanufacturing period within the interval [u, w] happens at period v

5. The last remanufacturing before period u was at time t − 1 (t = 1 implies reman-
ufacturing never happened till period u)

A graphical illustration of a subplan, illustrated by the arcs in the network with
positive flow, is given in Fig. 3. Lemma 1 suggests that the last subplan in an optimal
solution may be different from intermediate ones, as the serviceable inventory may be
positive. Indeed, the following lemma shows what the structure of such a subplan is
in case no manufacturing takes place.

Lemma 3 Let t̂ be the last period of remanufacturing and assume that no manufactur-
ing takes place. Then there exists an optimal solution (p∗,q∗) where either (i) p∗

t̂
= 0

or (ii) q∗
T = 0.
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Proof As the problem can be modelled as an uncapacitated concave cost network flow
problem, an optimal solution can be found among the extreme flows. Every flow can
be decomposed into paths and cycles and extreme flows do not contain a cycle (see
[2]). If we have a solution not satisfying the property, hence p∗

t̂
> 0 and q∗

T > 0, then
we end up with a cycle in the flow based solution. This is because p∗

t̂
> 0 implies that

p∗
T > 0 and both the arcs corresponding to p∗

T and q∗
T both end in the same ‘super’

sink node. �	
Note that in case (i) of Lemma 3 we may end up with positive serviceable inven-

tory in an optimal solution. This case cannot be excluded because we assume that
return inventory cost are at least equal to the serviceable inventory cost. Hence, one
could save on return inventory cost by remanufacturing all available returns in the last
remanufacturing period.

4.2 Dynamic programming algorithm

For a quadruple [t, u, v, w] that specifies a subplan, let φ(t, u, v, w) be the least cost
incurred in order to satisfy the demands in the interval [u, w], Du,w, by remanufac-
turing the return items, Rt,v , in the interval [u, v], and manufacturing the remaining
demand, Du,w − Rt,v , in some period in the interval [u, w]. Note that we need a
non-trivial procedure to determine a least cost subplan which informs us when to
remanufacture in the interval [u, v] and manufacture in the interval [u, w]. We pro-
vide such a procedure in Sect. 4.3 to compute φ(t, u, v, w). We call two subplans
[t, u, v, w] and [p, q, r , s] as consecutive non-overlapping subplans if p = v + 1
and q = w + 1 (see Fig. 3). From this, we have that an optimal production plan is a
sequence of consecutive non-overlapping subplans and the cost of such a solution is
simply obtained by summing the least cost value,φ(.), of each subplan in the sequence.
We formalise this in the sequel.

We first create a dummy time period T + 1 after the time horizon T with 0 return
and demand. We define F(t, u) be the cost incurred by a production plan that satisfies
demands, Du,T+1, in the interval [u, T + 1], given the last remanfacturing before
period u happend in time period t − 1 in that production plan. When we set t = 1
in the definition of F(t, u), we mean that remanufacturing has not happened in the
interval [1, u]. We now define a backward recursion to compute F(t, u) for all pairs
of t, u, such that 1 ≤ t ≤ u ≤ T + 1.

F(t, u) = min
(v,w):t≤v≤w≤T

{φ(t, u, v, w) + F(v,w + 1)} (1)

The recursion is initialised by F(t, T + 1) = 0 for all t = 1, . . . , T + 1.

Lemma 4 F(t, u) calculated according to (1) is the least cost incurred to satisfy
demands, Du,T , in the interval [u, T ] when the last remanfacturing before period u
happend in time period t − 1.

Proof We show this through induction. Clearly F(t, T + 1) = 0 for all t is correct as
no demands need to be satisfied. Let us assume F(t, k + 1) be the optimal solution
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Fig. 4 Shortest path network

for some k and t and if F(t, k) is not the least cost incurred to satify demands Dk,T ,
then we either violate the recursion Eq. (1) or the induction hypothesis. �	
We now have the following corollaries due to Lemma 4.

Corollary 1 F(1, 1) calculated according to (1) is the optimal cost of a production
plan to ELSR.

Corollary 2 Thedynamic program following the recursiveEq. (1) takesO(C(φ(.))T 4),
where C(φ(.)) is the time taken to compute φ(.).

4.3 Subplan cost computation using shortest path problem

For a given quadruple [t, u, v, w] that specifies a subplan, we now give a procedure
that computes φ(t, u, v, w) (the last subplan will be treated later). We will set up a
shortest path problem on a directed acyclic graph with O(T 2) nodes and arcs (see
Fig. 4). Each node of the graph is represented by (i, Xi ), for all i = u, u + 1, . . . , w.
This indicates that at time period i , a total of Xi amount of items have been either
remanufactured in the time periods {t, . . . , i} or manufactured in some time period in
{u, . . . , i}. An arc from (i, Xi ) to (i + 1, Xi+1) captures the state change of whether
remanufacturing or manufacturing happened at time period i and i +1, which we will
formalise shortly. We will have one dummy source node A with outgoing arcs to all
nodes (u, Xu) and one dummy sink node B that accepts incoming arcs from all nodes
(w, Xw).

We first determine the possible values Xi can take on if no manufacturing takes
place or has taken place yet in the subplan. From Lemma 1, we know that for any
i ∈ {u, . . . , v − 1}, the total amount of returns remanufactured in the periods between
u and i will be in the set{Rt,u,Rt,u+1, . . . ,Rt,i } and Xi will take a value in this
set, if manufacturing did not take place in any time period between u and i . From
the definition of a subplan, we have v as the last remanufacturing period in that
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subplan. Thus total amount of remanufactured items between the periods u and i , for all
i ∈ {v, v +1, . . . , w}will be exactlyRt,v . So Xi will be in the set {Rt,v,Du,w} for all
i ≥ v if manufacturing does not take place in the subplan. Note Du,w is only possible
if we are in the last subplan. For the last subplan, we could either manufacture all
of the available returns and carry over excess serviceable inventory past the planning
period T or we remanufacture exactly the demands in the subplan [t, u, v, w] and
the remaining returns Rt,v − Du,w will be carried as excess return inventory past
the planning period T . Other remanufacturing levels are not possible for the reasons
mentioned in the proof of Lemma 3.

We now consider the possible values of Xi when the additional manufacturing
period occurs. By definition of a subplan, the incoming (corr. outgoing service-
able) inventory of time u (corr. time w) is zero. Thus we will manufacture exactly
Mt,u,v,w := Du,w − Rt,v if we have to satisfy all demands in the period between u
and w. For compactness, we will not use the indices to refer to the subplan [t, u, v, w]
and just use the notation M. From Lemma 2, if manufacturing happens, it will hap-
pen exactly once in a subplan. Thus we will manufacture these M items in some
time period between u and w. If manufacturing happened in some period between
u and i , then the set of possible values that Xi can take will then be in the set
{M,Rt,u + M,Rt,u+1 + M, . . . ,Rt,i + M}. Clearly, there are only O(T ) many
possible values for i and thus for Xi . So we have at most O(T 2) nodes in the graph.

After having defined the graph, we will now focus on computing the arc costs.
The cost of an arc (i, Xi ) to (i + 1, Xi+1) will incorporate the cost of manufacturing
and remanufacturing at time period i + 1. The cost of arcs from the source node
A to (u, Xu) will depend on whether manufacturing or remanufacturing took place
at u. Xu can take a value of 0,M,Rt,u or Rt,u + M. The associated costs would
then be 0, f̂ m(M), f̂ r (Rt,u) or f̂ r (Rt,u) + f̂ m(M) respectively. The outgoing arcs
from nodes (w, Xw) to the sink node B will have zero costs. There are at most four
possible options for Xi+1 to take for the arc, (i, Xi ) → (i + 1, Xi+1) depending on
Xi . We now provide these options and explain its associated cost structure. Any arc
with Du,i+1 − Xi+1 > 0 is an infeasible arc and will not be included in the graph.
This indicates that the total amount produced till i + 1 is not sufficient to satisfy the
demands till i + 1. Otherwise, we have the following cases with corresponding cost:

1. Neither manufacturing nor remanufacturing happens at i + 1, Xi+1 = Xi :
f̂ r (0) + f̂ m(0)

2. Remanufacturing alone happens at i + 1, Xi+1 = Rt,i+1 (or Rt,i+1 + M) :
f̂ r (Xi+1 − Xi ) + f̂ m(0)

3. Manufacturing alone happens at i + 1, Xi+1 = Xi + M:
f̂ r (0) + f̂ m(M).

4. Both manufacturing and remanufacturing happen at i + 1, Xi+1 = Rt,i+1 + M:
f̂ r (Xi+1 − Xi ) + f̂ m(M)

Note that for i = v, remanufacturing has to take place for the subplan and we will
not have the option to not remanufacture as an arc choice for Xi+1. Since v is the last
time period of remanufacturing, for i ∈ {v + 1, . . . , w}, we will not have an option to
remanufacture in the above arc choices. If v is also the last period of remanufacturing
in the production plan, then Xv can take one additional value ofRt,v − Du,w and we
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can only have incoming arcs from nodes (v −1, Xv−1) with Xv−1 ∈ {0,Rt,v−1}. The
cost of this arc will be f̂ r (Xv − Xv−1). Since every node has at most 4 outgoing arcs,
the number arcs in the graph is alsoO(T 2). Note that since we always have arcs from
nodes of type (i, Xi ) to (i + 1, Xi+1), we have an acyclic graph.

Lemma 5 The shortest path from A to B in the directed acyclic graph correspond to
the optimal production plan for the subplan [t, u, v, w].
Proof A production plan for the subplan, (S, k), can be specified by the subset S of
time periods in the interval {t, . . . , v} when remanufacturing took place and a time
period k ∈ {u, . . . , w} when manufacturing took place (k = 0 if manufacturing did
not happen in the subplan). There is a one-to-one correspondence between a path
from A to B in the constructed graph and any such feasible production plan. Let
S(i) be the earliest time period on or before time i that is present in set S. The path
corresponding to a production plan (S, k) would then beA → (u,Rt,S(u)) → · · · →
(k,Rt,S(k)+MIk �=0) → · · · → (w,Rt,v)+MIk �=0) → B, where Ik �=0 is an indicator
variable with value 1 if k �= 0 and 0 otherwise. �	
The above lemma immediately gives us the corollary.

Corollary 3 φ(t, u, v, w) can be computed in O(T 2).

The following theorem follows directly from Corollaries 2 and 3.

Theorem 2 The overall dynamic program procedure given by the recursive Eq. (1)
takes O(T 6) time.

5 Conclusion and open problems

In this work, we studied the ELSR problem. We first provided a hardness proof that
rules out FPTAS for this problem in the general case. Then we showed how to design
a polynomial running time algorithm, when we make some assumptions on the cost
structure. A number of open problems still remain to be solved. Although we have
ruled out a possibility of FPTAS for the general case, we have no proofs for APX-
hardness (see [17]) or lack of FPTAS for the time invariant case. The polynomial time
algorithm presented only works for fixed cost structure. For general concave costs,
we do not yet know the complexity. The algorithm itself may not be practical for
large instances but knowing that it is tractable would give incentives to look for linear
programming representations and extended formulations for these problems.
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