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1  |  INTRODUC TION

Hypomagnesemia is usually defined as a serum magnesium (Mg) level 
below 0.65 mmol/L (1.3 mEq/L; 1.5 mg/dl).1 Serum Mg exists in three 
forms: (1) free or ionized Mg, the physiologically active form that ac-
counts for 55%–70% of total serum Mg; (2) Mg complexed to anions, 
including bicarbonates, sulfates, phosphates, and citrates (5%–15%) 
and (3) Mg bound to serum proteins (primarily albumin), constitut-
ing the remaining approximately 30%.2 Similarly to hypocalcemia, 
hypoalbuminemia is also related to spurious hypomagnesemia.3 

Consequently, in hypoalbuminemic states (serum albumin <4  g/dl) 
corrected serum Mg should be calculated using the formula: cor-
rected Mg (mmol/L) = measured Mg(mmol/L) + 0.005 × (40 − albu-
min g/L).4 Correction of Mg for albumin levels is rarely performed in 
clinical practice, a strategy that should probably change.

The incidence of hypomagnesemia varies considerably from 
merely 2% among individuals in the community up to as high as 65% 
in patients hospitalized in intensive care units.5,6 Discrepancies in 
the reported incidences of hypomagnesemia are attributed to the 
fact that serum Mg is not routinely measured and that this ion is 
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Abstract
Magnesium (Mg) is commonly addressed as the “forgotten ion” in medicine. 
Nonetheless, hypomagnesemia should be suspected in clinical practice in patients 
with relevant symptomatology and also be considered a predisposing factor for the 
development of other electrolyte disturbances. Furthermore, chronic hypomagne-
semia has been associated with diabetes mellitus and cardiovascular disease. 
Hypomagnesemia as a consequence of drug therapy is relatively common, with the 
list of drugs inducing low serum Mg levels expanding. Culprit medications linked to 
hypomagnesemia include antibiotics (e.g. aminoglycosides, amphotericin B), diuretics, 
antineoplastic drugs (cisplatin and cetuximab), calcineurin inhibitors, and proton pump 
inhibitors. In recent years, the mechanisms of drug-induced hypomagnesemia have 
been unraveled through the discovery of key Mg transporters in the gut and kidney. 
This narrative review of available literature focuses on the pathogenetic mechanisms 
underlying drug-induced hypomagnesemia in order to increase the insight of clinicians 
toward early diagnosis and effective management.
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commonly “forgotten” in the initial evaluation of electrolytes in ei-
ther the outpatient or inpatient.7 This is undeserved, because the 
clinical importance of hypomagnesemia is underscored by poten-
tially severe symptoms (neuromuscular symptoms and cardiac ar-
rhythmias) and its association with other metabolic abnormalities 
(hypocalcemia, hypophosphatemia, and hypokalemia), as well as an 
increased in-hospital mortality rate8 (Table 1). Furthermore, chronic 
hypomagnesemia has been associated with an increased risk for the 
development of diabetes mellitus, hypertension, and cardiovascular 
disease overall.1,7

Among the various causes of hypomagnesemia, drugs feature 
prominently even in cases of extreme hypomagnesemia, defined as 
serum Mg concentration below 0.3 mmol/L (0.7 mg/dl)8,14 (Table 2). 
Here, our aim was to review the available literature regarding hypo-
magnesemia as a consequence of drug treatment and discuss the un-
derlying pathophysiological mechanisms which may aid the clinician 
towards early diagnosis and effective management.

2  |  MG METABOLISM

Following sodium, potassium, and calcium, Mg is the fourth most 
abundant cation in mammals and, similar to potassium, mainly 
stored intracellularly. Mg homeostasis is achieved by an interplay 
between dietary intake, exchange between intracellular and ex-
tracellular pools and excretion via gut and kidneys (Figure  1). Of 
note, Mg exchange between extracellular and intracellular stores is 
slow and therefore, ineffective against acute extracellular Mg loss. 

Surprisingly, serum concentrations of the other electrolytes, includ-
ing sodium, potassium and calcium, are tightly regulated by circu-
lating hormones, whereas no truly “magnesiotropic” hormones have 
been identified. Rare inherited disorders have been pivotal for the 
understanding of Mg physiology. For example, mutation analysis 
of patients with familial hypomagnesemia with secondary hypoc-
alcemia led to the discovery of two specialized Mg channels, the 
transient receptor melastatin (TRPM) channels TRPM6 and TRPM7 
that belong to the family of transient receptor potential channels.15 
TRPM6 is mainly expressed in the gut, blood vessels, and the kidney 
(distal convoluted tubules, DCT) playing a significant role in the epi-
thelial Mg transport. TRPM7 is expressed in virtually all tissues and 
is possibly involved in cellular Mg homeostasis.16,17

The regulation of serum Mg concentrations is mainly achieved 
via regulated renal reabsorption. The proximal tubule and the thick 
ascending loop of Henle (TAL) reabsorb 15%–20% and 65%–75% of 
filtered Mg, respectively.20,21 This reabsorption is primarily achieved 
through paracellular pathways. Water reabsorption along the prox-
imal tubule results in an increased luminal Mg concentration and 
paracellular Mg reabsorption in this kidney segment.22 Moreover, 
Mg reabsorption in the TAL is mediated by the favorable electrical 
(lumen-positive) gradient. This lumen-positive voltage is established 
by sodium, potassium, and chloride reabsorption via sodium po-
tassium chloride (NKCC2) co-transporter coupled to potassium re-
entry into the lumen through the renal outer medullary K channels 
(ROMK).23

This process is facilitated by the tight junction proteins clau-
din-16 and claudin-19.21,24 In the DCT, Mg reabsorption takes place 
in an active transcellular manner in which the TRPM6 channels play 
a major role.15 Despite the fact that the DCT is responsible for only 
5%–10% of total Mg reabsorption, its contribution to Mg homeo-
stasis is of major importance given that there is no Mg reabsorption 
beyond this segment.25

A close link between Mg, potassium, calcium, and phosphorus 
concentrations has been demonstrated. For example, Mg defi-
ciency can induce renal phosphate wasting, but the reverse is also 
true.26 Hypomagnesemia may induce hypocalcemia and hypoka-
lemia; the proposed mechanisms for these disorders are shown in 
Figure 2.8,27,28 Clinically, decreased dietary Mg intake, a “shift” of Mg 
into cells or increased gastrointestinal or renal losses may contribute 
to or cause hypomagnesemia.

3  |  CLINIC AL SIGNIFIC ANCE OF 
HYPOMAGNESEMIA

Magnesium is essential for life as it is involved in numerous enzy-
matic reactions, including ATP use, cell membrane and mitochondrial 
function, as well as protein synthesis. Thus, diverse organ systems 
are affected by Mg depletion, while the most clinically significant 
consequences of hypomagnesemia are ascribed to alterations in the 
function of excitable membranes in nerves, muscles, and the cardiac 
conducting system. Consequently, hypomagnesemia may present 

TA B L E  1 Consequences of hypomagnesemia

Cardiovascular disorders9,10

Electrocardiographic changes: wide QRS complex, prolonged PR 
interval, inversion of T waves, U waves

Arrhythmias: ventricular arrhythmias, torsade de points, 
supraventricular tachycardia

Increased incidence of digitalis intoxication

Hypertension

Endocrine disorders11

Increased risk for the development of (post transplantation) 
diabetes mellitus

Impaired release of PTH and skeletal resistance to the action of 
PTH

Neuromuscular and neuropsychiatric disturbances12

Muscle cramps or weakness, carpopedal spasm, tetany, vertigo, 
ataxia, seizures, depression, psychosis

Bone disorders13

Osteoporosis and osteomalacia

Electrolyte disorders5

Hypokalemia

Hypocalcemia

Hypophosphatemia

Abbreviation: PTH, parathormone.
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with neuromuscular (e.g. muscle cramps or weakness, carpopedal 
spasm, tetany, vertigo, ataxia, seizures, depression, psychosis) and 
cardiovascular (e.g. ventricular arrhythmias, torsade de points, su-
praventricular tachycardia, sensitivity to digoxin) manifestations.12,29 
Furthermore, low serum Mg levels can secondarily induce hypoka-
lemia, hypocalcemia, and hypophosphatemia, potentially causing 
further derangements in neuromuscular and cardiovascular physi-
ology. Interestingly, the Atherosclerosis Risk in Communities study 
suggests that low levels of serum Mg may be an important predictor 
of sudden cardiac death.9 In addition, Mg deficit has been associated 
with carbohydrate intolerance and insulin resistance.29 Conversely, 
dietary Mg intake has been associated with a reduced risk of type 2 
diabetes.11 Therefore, hypomagnesemia should be sought and ap-
propriately managed in clinical practice.

4  |  DRUGS A SSOCIATED WITH 
HYPOMAGNESEMIA

4.1  |  Antibiotics

Several types of antibiotics are associated with hypomagne-
semia primarily because they cause renal loss of Mg (Table  2). 
These include aminoglycosides, amphotericin B, pentamidine, and 
foscarnet.

Hypomagnesemia from aminoglycosides is a class effect, as 
it has been reported with several agents of this class (gentamicin, 
amikacin, tobramycin, and capreomycin).30 The risk of hypomagne-
semia with aminoglycoside therapy appears to be related to both 
duration and dose; hypomagnesemia may develop and persist even 
after aminoglycoside therapy has been discontinued.31,32 In healthy 
volunteers, the administration of a single dose of gentamicin (5 mg/
kg) has been reported to result in a transient four-fold increase in 
fractional Mg excretion.33

Aminoglycosides are believed to cause hypomagnesemia by 
stimulating the calcium sensing receptor, which is located on the ba-
solateral membrane of the TAL. Stimulation of this receptor inhibits 
tubular transport by this segment as well as the paracellular trans-
port of Mg. In fact, complete inhibition of transport in the TAL can 
cause a Bartter-like syndrome, which, besides hypomagnesemia, is a 
constellation of renal sodium loss, hypokalemia, hypocalcemia, and 
low-normal blood pressure.34,35

The renal toxicity of amphotericin B usually occurs more dis-
tally in the kidney, namely in the DCT. Although the general char-
acteristics of amphotericin B nephrotoxicity are known (increased 
tubular permeability, necrosis, arterial vasoconstriction), it remains 
unclear how this drug can specifically perturb renal Mg transport in 
this nephron segment.36,37 Hypomagnesemia occurs as frequently 
as 75% in patients treated with amphotericin B and is more com-
mon with the deoxycholate than with the lipid formulation.38,39 
Prolonged or high-dose therapy and the concurrent use of other 
drugs associated with hypomagnesemia also increase the risk of hy-
pomagnesemia following treatment with amphotericin B.40 Although 
hypomagnesemia due to amphotericin B is usually reversible, it may 
persist for weeks after discontinuation of the drug.41 It is important 
to emphasize that both aminoglycosides and amphotericin B have 
also been associated with acute kidney injury; however, hypomag-
nesemia may also develop with preserved glomerular filtration rate. 
Furthermore, both classes of drugs can also cause other renal tu-
bular disorders, including proximal and distal renal tubular acidosis 
and nephrogenic diabetes insipidus.36,37,42,43 With regard to other 
antifungal agents, posaconazole and isavuconazole have also been 
associated with hypomagnesemia.44 The exact mechanism has not 
been elucidated.

Several cases of severe and symptomatic hypomagnesemia 
have been reported after intravenous pentamidine therapy, and 
this has been ascribed to renal Mg wasting.45–47 Pentamidine 
may also cause acute pancreatitis, which could contribute 
to hypomagnesemia.48,49 The main underlying mechanism of 

TA B L E  2 Etiology of drug-induced hypomagnesemia

1. Shift of Mg into cells

Insulin therapy

Epinephrine, salbutamol, terbutaline, rimiterol, theophylline

Correction of metabolic acidosis with alkali therapy

Metformin

2. Gastrointestinal Mg loss

Laxative abuse, antibiotics, antineoplastic agents, metformin

Proton pump inhibitors

Patiromer

3. Increased urinary Mg excretion

Antineoplastics

Carboplatin, cisplatin

Monoclonal antibody epidermal growth factor receptor 
inhibitors (e.g. cetuximab, panitumumab)

Mammalian target of rapamycin inhibitors

Calcineurin inhibitors

Cyclosporine, tacrolimus

Antibiotics

Aminoglycosides

Amphotericin B

Pentamidine

Foscarnet

Diuretics

Thiazides

Furosemide

Digoxin

Theophylline

4. Miscellaneous

Alcohol

Massive transfusions, foscarnet

Teriparatide

Bisphosphonates

Denosumab

Abbreviation: Mg, magnesium.
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hypomagnesemia in acute pancreatitis is presumably similar to 
that of hypocalcemia: saponification of Mg and calcium in necrotic 
fat.49 Foscarnet, used to treat the complications of cytomegalo-
virus infection, has also been associated with hypomagnesemia. 
In a small cohort, nine out of 13 patients (69%) developed hypo-
magnesemia.50 Renal Mg losses have been implicated; in addition, 
foscarnet as a potent chelator of divalent ions provokes ionized 
hypomagnesemia.51,52

4.2  |  Diuretics

Both loop and thiazide diuretics can cause hypomagnesemia by in-
directly inhibiting renal Mg reabsorption.30,53 This is consistent with 
what is observed in patients with Bartter or Gitelman syndrome, in 
which the targets of loop and thiazide diuretics is inactivated geneti-
cally. The degree of hypomagnesemia seen with loop and thiazide 

F I G U R E  1 Metabolism of magnesium 
(Mg). Dietary Mg content normally ranges 
from 300 to 350 mg/day, of which 30%–
40% is absorbed, mainly in the jejunum 
and ileum. Fifty to 60% of total Mg is 
stored in bones, about 40% is intracellular 
(mainly in muscles) and only 1% is found 
in extracellular fluid.18 Mg balance is 
tightly regulated through intestinal and 
renal absorption and excretion as well 
as exchange with bone. About 2 g of Mg 
(8 mmol) is filtered daily by the kidney, 
of which approximately 100 mg (5%) is 
excreted in the urine matching the net 
intestinal absorption19

1

Food:

300 mg Mg/d

Intestinal reabsorption:

30-40% of ingested Mg (100 mg)

Intracellular fluid

Urinary excretion: 100 mg Mg/d

Extracellular fluid:

-2% of total body Mg
Soft tissues:

35% of total body Mg

Bone:

60% of total body Mg

F I G U R E  2 Hypomagnesemia-induced hypocalcemia and hypokalemia. Potassium (K+) depletion is associated with increased urinary 
excretion of magnesium (Mg), while Mg depletion causes kaliuresis and hypokalemia. It appears that a decrease in intracellular Mg (not Mg 
deficiency alone), releasing the Mg-mediated inhibition of renal outer medulla K+ channels, can increase renal potassium excretion leading 
to potassium depletion.27 Hypocalcemia is the consequence of Mg-induced impairment in the release of PTH or skeletal resistance to PTH 
action. PTH, parathormone
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diuretics is usually mild possibly because the associated volume de-
pletion stimulates Mg reabsorption by the proximal tubule.30 Loop 
and thiazide diuretics cause magnesiuria indirectly; they inhibit so-
dium cotransporters in the kidney, subsequently inhibiting paracel-
lular or cellular Mg transport. In the case of loop diuretics, the direct 
inhibition of the NKCC2 co-transporter disrupts the positive epi-
thelial voltage that is present in this part of the nephron due to the 
recycling of potassium into the tubular lumen via the ROMK chan-
nels. The ensuing loss of voltage inhibits the paracellular transport 
of Mg and calcium and favors Mg and calcium excretion. Previously, 
hypomagnesemia following thiazide therapy was mainly attributed 
to secondary hyperaldosteronism or hypokalemia. More recent ex-
periments in mice, however, have suggested that thiazide inhibition 
of the sodium chloride co-transporter directly leads to a downregu-
lation of the Mg channel TRPM6.54 In humans, hypomagnesemia 
is a dose-dependent adverse effect of thiazides use that is more 
frequently observed in the elderly.55 In a general population-based 
study including 9280  subjects, thiazide use was associated with a 
two- to three-fold increased risk of hypomagnesemia (defined as a 
serum Mg ≤0.72 mmol/L; 1.8 mg/dl).56 In this study, loop diuretics 
did not increase the risk of hypomagnesemia. Paradoxically, a slightly 
higher serum Mg concentration was observed. It should be empha-
sized that the results of the aforementioned study were predomi-
nantly observed in individuals receiving diuretics for more than a 
year. These results may be explained by the upregulation of TRPM6 
in the DCT mediated by chronic loop diuretic therapy. Increased Mg 
reabsorption by the proximal tubule or increased TRPM6 activity 
through metabolic alkalosis may also play a role.57

Potassium-sparing diuretics (e.g. amiloride or spironolactone) 
have not been associated with hypomagnesemia. In fact, these di-
uretics tend to favor renal Mg reabsorption.56

4.3  |  Calcineurin inhibitors

Calcineurin inhibitors (CNIs; i.e. cyclosporine, tacrolimus) are among 
the most commonly used immunosuppressant drugs for the preven-
tion of graft rejection and sometimes also used in the treatment of 
autoimmune disease. Tacrolimus more often causes more severe 
hypomagnesemia than cyclosporine.58,59 For example, serum Mg 
concentrations were significantly lower in recipients of allogeneic 
hematopoietic stem cell transplantation who received tacrolimus 
compared with cyclosporine.60 It appears that kidney function plays 
an important role regarding the hypomagnesemic effect of CNIs, 
given that serum Mg levels demonstrate a negative correlation with 
creatinine clearance.61,62 CNIs cause inappropriate renal Mg loss, 
likely because they reduce the expression of TRPM6; a shift of Mg 
into cells may also contribute.59,63,64 Even though CNI-induced hy-
pomagnesemia is usually mild, severe neurological symptoms have 
been reported, including altered mental status, seizures, or focal 
neurological deficits.59,65,66

Hypomagnemia has been suggested to contribute to the neph-
rotoxic and blood pressure increasing effects of CNIs.67,68 It has also 

been linked to the emergence of post-transplantation diabetes mel-
litus (PTDM), a common metabolic complication after transplanta-
tion which unfavorably affects both patient and graft survival.69,70 
Indeed, in a retrospective study of 390 patients who underwent kid-
ney transplantation, CNI-induced hypomagnesemia during the first 
month post transplantation was associated with the development of 
PTDM.71 Similarly, in a series of 169 adults who received tacrolimus 
for liver transplantation, both pre- and early post-transplant hypo-
magnesemia was an independent predictor of PTDM.72 In more than 
20% of the kidney transplant patients, hypomagnesemia is present 
for many years after transplantation and has been associated with 
incident kidney disease and graft dysfunction.73,74

4.4  |  Antineoplastic drugs

Hypomagnesemia is frequently observed in cancer patients and is 
ascribed to several mechanisms including malnutrition, diarrhea, hy-
percalcemia as well as antineoplastic drug therapy.75,76

4.4.1  |  Platin-based anticancer drugs

Hypomagnesemia secondary to chemotherapy has long been rec-
ognized with the use of platinum-containing drugs (cisplatin, carbo-
platin, and oxaliplatin) that are used for a variety of solid cancers 
(e.g. lung cancer, head and neck cancer, and cervical cancer).77,78 It is 
most common with cisplatin, a drug that was approved by the Food 
and Drug Administration in 1978.

Cisplatin causes hypomagnesemia in a dose-dependent fash-
ion and affects up to 90% of patients if no preventive measures 
are taken (see Section 5 below).79 The etiology of cisplatin-induced 
hypomagnesemia is not completely understood; renal Mg loss is 
the primary mechanism, but gastrointestinal losses have also been 
reported.80 Morphological studies in humans with cisplatin neph-
rotoxicity demonstrated necrosis of the terminal portion of the 
proximal tubule and apoptosis of the distal nephron.81 However, 
nephrotoxicity associated with cisplatin and the ensuing hypomag-
nesemia may be more complex implicating several mechanisms of 
injury, inflammation, repair, recovery, and cell death.81 It is known 
that epidermal growth factor (EGF) increases Mg reabsorption in the 
DCT through the TRPM6 channels. Cisplatin may cause hypomag-
nesemia by downregulating the TRPM6/EGF pathway. Of note, Mg 
co-administration mitigates both cisplatin-induced hypomagnese-
mia by protecting the downregulation of the TRPM6 channels and 
nephrotoxicity by regulating the expression of renal transporters. 
Specifically, in rats the Mg-mediated downregulation of the renal 
organic cation transporter 2 and the upregulation of the renal multi-
drug and toxin extrusion protein 1 were associated with a significant 
reduction in renal cisplatin accumulation.82

Laurent et al. showed a proliferative response throughout the 
nephron, indicating incomplete tissue repair, which potentially ex-
plains the chronicity of hypomagnesemia.80 The glomerular damage 
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linked to cisplatin has been shown to be at least partly reversible 
compared with tubular damage, which is often permanent. In fact, 
Schilsky and colleagues showed that 22 of 29 patients (76%) who re-
ceived cisplatin for non-seminomatous germ cell tumors developed 
acute hypomagnesemia; eleven (50%) remained hypomagnesemic 
for at least 3 years.83 This long-term effect has been corroborated 
by other investigators as well.84,85

In addition to isolated hypomagnesemia, cisplatin can also cause 
a Gitelman-like syndrome manifesting with renal sodium wasting, 
hypocalciuria, and hypokalemia. Remarkably, it has been reported 
that this Gitelman-like syndrome can persist for up to 20 years after 
treatment with cisplatin.86 These observations suggest that the DCT 
may be especially sensitive to cisplatin, although the reason for this 
predilection is unknown.87 Severe symptoms have been reported 
in patients with cisplatin and hypomagnesemia, including tetany, 
paralysis, seizures, cortical blindness, and arrhythmia, although it 
is difficult to verify in these cases if hypomagnesemia was the sole 
culprit.88–91

Carboplatin was introduced in oncology in the late 1980s, 
and was advocated as a less nephrotoxic counterpart of cisplatin. 
Hypomagnesemia also occurs with carboplatin with lower frequency 
compared with cisplatin (reported incidence ≤12.5%).92,93 However, 
hypomagnesmia may persist for months after completing a course 
of carboplatin-containing chemotherapy.94 Recent evidence shows 
that hypomagnesemia due to carboplatin is a strong predictor of 
shorter survival in patients with advanced ovarian cancer.95

4.4.2  | Monoclonal antibodies

A meta-analysis of 25 randomized controlled trials (16,400 patients) 
showed that treatment with anti-epidermal growth factor receptor 
(EGFR) monoclonal antibodies was associated with high incidence 
of hypomagnesemia (34%), hypocalcemia (16.8%), and hypokalemia 
(14.5%).96 Hypokalemia and hypocalcemia were predominantly 
hypomagnesemia-mediated.76 The incidence of hypomagnesemia 
and hypokalemia was increased with panitumumab compared with 
cetuximab or bevacizumab,96–98 whereas zalutumumab has been as-
sociated with low rates of hypomagnesemia (4%) and hypokalemia 
(6%).99 Certain characteristics of panitumumab, such as longer half-
life and higher affinity to human EGFR, may explain the differences 
regarding the frequency of hypomagnesemia among these drugs. 
The mechanism of hypomagnesemia induced by anti-EGFR mono-
clonal antibodies resembles an inherited disorder called isolated 
recessive hypomagnesemia, in which EGFR is inactivated. This in-
activation then leads to a downregulation of TRPM6 causing renal 
Mg loss.100

It has recently been implicated that concomitant administra-
tion of proton pump inhibitors (PPIs) or histamine H2 antagonists 
increases the rate and severity of cetuximab and panitumumab-
induced hypomagnesemia.101,102 Prolonged administration and con-
current platinum treatment are also risk factors for the emergence 
of anti-EGFR monoclonal antibodies-induced hypomagnesemia.103

Cetuximab-related hypomagnesemia can be symptomatic.104 It 
has also been associated with deterioration of peripheral sensory 
neurotoxicity caused by oxaliplatin.105 In patients with advanced 
colorectal cancer, the development of hypomagnesemia with cetux-
imab- or panitumumab-based chemotherapy has been associated 
with a later time to progression and a longer overall survival rate.106 
It is yet unknown if these positive outcomes are directly associated 
with hypomagnesemia (e.g. because intracellular Mg depletion halts 
tumor growth) or if hypomagnesemia is merely a reflection of effec-
tive tissue penetration of the drug.107 The reason for the opposite 
associations between the development of hypomagnesemia and the 
prognosis after cisplatin- and monoclonal antibody therapy is not 
clear.

4.4.3  | Mammalian target of rapamycin inhibitors

Mammalian target of rapamycin (mTOR) inhibitors can cause hy-
pomagnesemia via renal Mg wasting, although the exact underlying 
mechanisms are not well defined.1 The hypomagnesemic and man-
gesiuric effect of mTOR inhibitors is milder than with CNIs. In a ret-
rospective study including 138 renal transplant patients who were 
converted from CNIs to mTOR inhibitors over a 6-month period, 
serum Mg concentration significantly increased along with a reduc-
tion in the fractional excretion of Mg.108 It has been proposed that 
rapamycin (sirolimus) leads to magnesiuria by reducing TRPM6 ex-
pression in the DCT due to a decrease in TRPM6 mRNA stability.109 
Contrary to these results, however, sirolimus-induced hypomagne-
semia accompanied by increased renal expression of TRPM6 has also 
been reported. It is not entirely clear whether this upregulation of 
TRPM6 represents a direct stimulatory effect of sirolimus or—more 
likely—a compensatory response aiming to limit renal Mg loss due 
to mTOR-mediated downregulation of NKCC2 protein expression 
which results in magnesiuria.109 Of interest, sirolimus-related renal 
tubular defects are ameliorated by rosiglitazone (a thiazolidinedione 
with known renal sodium- and water-reabsorptive properties) po-
tentially via NKCC2 upregulation.110

4.5  |  Proton pump inhibitors

In 2006, the first two cases of hypomagnesemia associated with the 
use of PPIs were reported.111 Since then, numerous case reports and 
series have confirmed this association,112,113 and PPI use has now 
also been associated with hypomagnesemia in the general popula-
tion.114 PPI-induced hypomagnesemia seems to be a class effect 
caused by omeprazole, esomeprazole, pantoprazole, and rabepra-
zole and resolves with cessation of therapy.115

A very recent meta-analysis of all observational studies 
(N = 16; 131,507 patients) investigated the association between 
PPIs and the development of hypomagnesemia; this meta-analysis 
demonstrated that PPI use was significantly associated with hy-
pomagnesemia, with a pooled unadjusted odds ratio (OR) of 1.83 
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(95% CI [1.26, 2.67]; p = .002) and a pooled adjusted OR of 1.71 
(95% CI [1.33, 2.19]; p  <  .001). Interestingly, high-dose PPI use 
was associated with higher odds for hypomagnesemia relative to 
low-dose PPI use (pooled adjusted OR 2.13; 95% CI [1.26, 3.59]; 
p = .005).116

Nevertheless, PPI-induced hypomagnesemia prevalence var-
ies among studies (up to 12.5%) and appears to typically occur 
in elderly people on long-term treatment.114,117–119 In contrast, 
in critically ill patients, even short-term PPI use may cause hypo-
magnesemia.120 This probably occurs because hypomagnesemia 
is already very common in ICU patients and, in this context, PPIs 
may further decrease Mg levels. Co-administration with diuretics 
and the presence of Mg lowering comorbidities, such as diabetes 
mellitus or acute diarrheal states, are risk factors for PPI-induced 
hypomagnesemia.119 Diminished active Mg transport in the colon, 
which is primarily mediated via the ion channels TRPM6 and 
TRPM7, has been proposed as the main explanation of PPIs-related 
hypomagnesemia.121 Although confirmative studies are lacking, 
changes in intestinal pH or a heterozygous carrier state for TRPM6 
and TRPM7 have been implicated.122 It has recently been reported 
that both low gut microbiota diversity and dietary Mg intake are 
related with the development of PPIs-induced  hypomagnese-
mia.123 Omeprazole treatment for 4  weeks significantly reduced 
serum Mg levels in mice on a low-Mg diet compared with mice 
under normal dietary Mg availability. In fact, omeprazole induced a 
shift in microbial composition, specifically a 3- and 2-fold increase 
in Lactobacillus and Bifidobacterium abundance, respectively. The 
findings of this study imply that both omeprazole and low dietary 
Mg intake alter the gut internal milieu and probably pose a risk for 
Mg malabsorption in the colon.123

It has also been suggested that a constant low-grade renal Mg 
leak, possibly due to heterozygous mutations of genes involved in 
the regulation of distal Mg reabsorption, may play a contributory 
role in the emergence of hypomagnesemia due to PPIs.124 However, 
taking into consideration that urinary Mg excretion is appropriately 
low in patients with PPIs-induced hypomagnesemia, the contribu-
tion of renal Mg losses seems limited.125,126 A significant association 
between PPIs use and hypomagnesemia has been found in patients 
with chronic kidney disease at any stage, indicating that PPIs coun-
terbalance the anticipated increase in serum Mg with declining esti-
mated glomerular filtration rate.127,128

Proton pump inhibitors-related hypomagnesemia can cause se-
rious clinical manifestations (e.g. life-threatening arrhythmias) that 
may occur suddenly after a long asymptomatic interval.112,129

4.6  |  Digoxin

Digoxin reduces serum Mg concentration via increased urinary Mg 
excretion. It has been proposed that a missense mutation in the γ 
subunit (FXYD2) of Na+/K+-ATPase, which is the pharmacological 
target of digoxin, might be involved in this process.130 It appears that 
FXYD2 is a positive regulator of Na,K-ATPase in the DCT.131

4.7  |  Miscellaneous

The majority of aforementioned drugs cause hypomagnesemia due 
to renal Mg loss (Table 2). In addition, any medication that can cause 
relatively serious diarrhea (e.g. laxatives, antibiotics, and antineo-
plastic drugs) may be directly associated with the development of 
hypomagnesemia. Even Mg-containing laxatives can lead to exces-
sive intestinal Mg loss and hypomagnesemia.132

Patiromer is a non-absorbed potassium-binding polymer that ex-
changes calcium for potassium in the gastrointestinal tract and was 
recently approved for the treatment of hyperkalemia in adults. A 
meta-analysis of phase II and III clinical trials showed that hypomag-
nesemia occurred in approximately 7% of patients on patiromer, un-
derlining that it is not completely selective for the potassium ion.133

A number of drugs can also produce a “shift” of Mg into cells, in-
cluding beta-adrenergic drugs and insulin.30 These drugs also cause 
a shift of potassium or phosphate into cells.134 It has been reported 
that intravenous administration of epinephrine in twelve normal 
volunteers caused a modest but significant reduction in serum Mg 
concentrations (0.77  ±  0.02 to 0.67  ±  0.02  mmol/L; 1.86  ±  0.04 
to 1.63  ±  0.05  mg/dl).135 The involvement of beta-adregenergic 
mechanisms was suggested since propranolol given simultaneously 
prevented the hypomagnesemic effect of epinephrine infusion.136 
Other sympathomimetic drugs have also been associated with hypo-
magnesemia, including theophylline, where a renal effect may also 
play a role.137

Insulin can also promote a shift of Mg from the extracellular to 
the intracellular compartment and lead to hypomagnesemia.138 The 
increased secretion of epinephrine due to insulin-induced hypogly-
cemia may contribute to this process. The risk of hypomagnesemia is 
especially high in poorly controlled diabetics due to increased renal 
Mg loss by osmotic diuresis in the hyperglycemic state.139

The use of teriparatide, a recombinant form of parathormone 
which is used for osteoporosis treatment, has been associated with 
hypomagnesemia. In a retrospective study of 53 patients treated for 
severe osteoporosis with teriparatide for 6–24 months, the cumula-
tive incidence of hypomagnesemia (serum Mg <0.7 mmol/L; 1.7 mg/
dl) was as high as 35.9%. Old age and lower baseline serum Mg con-
centration were significantly associated with teriparatide-induced 
hypomagnesemia.140 Although the underlying mechanisms are not 
known, deposition of Mg into bones due to increased bone metab-
olism and renal Mg losses due to transient hypercalcemia may play 
a role.140

Hypomagnesemia also occurs with bisphosphonates and denos-
umab due to their binding to Mg cations.77,141,142

Hypomagnesemia has been reported in patients treated with 
metformin.143 Although the underlying mechanisms have not been 
fully elucidated, increased Mg concentration in erythrocytes and 
hepatocytes is probably involved.144 Symptomatic hypomagnesemia 
(serum Mg concentration of 0.33 mmol/L; 0.8 mg/dl) has also been 
reported following metformin-induced diarrhea.145

A number of therapies can cause hypomagnesemia owing to 
chelation of Mg (e.g. massive transfusions) or redistribution of Mg 
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into bone and soft tissue (during alkali therapy and total parenteral 
nutrition).146,147

4.8  |  Alcohol

Although alcohol is not a medication, in the sense that it is not used 
as a remedy, it is considered a drug which frequently causes addic-
tion. In this context, we thought it would be prudent to include alco-
hol as a cause of hypomagnesemia in this review. Hypomagnesemia 
is the most common electrolyte abnormality related to chronic al-
cohol abuse and affects as many as 30% of alcohol-dependent pa-
tients.148,149 Alcohol-induced hypomagnesemia may be profound; 
specifically Mg levels as low as 0.6 mg/dl (0.24 mmol/dl) have been 
reported.150 In a study of 380 patients presenting with alcohol with-
drawal syndrome, Mg deficiency (<0.75 mmol/L; 1.8 mg/dl) was as-
sociated with significant higher 1-year mortality rate.151 It has been 
proposed that ionized Mg concentration in erythrocytes and plasma 
is more reliable than total Mg in the assessment of Mg homeosta-
sis in alcoholic patients.152 Decreased Mg intake in malnourished 
patients, increased gastrointestinal Mg losses in patients suffering 
from chronic diarrhea, as well as increased Mg entry into cells due 
to both respiratory alkalosis and excessive catecholamine release 
in alcohol withdrawal syndrome comprise the major pathogenetic 
mechanisms.28,153 In addition, hypomagnesemia in patients with 
chronic alcoholism is associated with inappropriate magnesiuria due 
to alcohol-induced tubular damage.148 Increased urinary Mg excre-
tion after acute alcohol ingestion has been demonstrated even in 
non-alcoholic subjects.1 Finally, in the course of alcohol abuse, 
hypomagnesemia can also result from alcohol-related metabolic 
acidosis, concurrent electrolyte disorders (hypophosphatemia, hy-
pokalemia, hypocalcemia) and acute pancreatitis.49,149,153

5  |  SCREENING , DIAGNOSIS ,  AND 
TRE ATMENT OF DRUG -INDUCED 
HYPOMAGNESEMIA

Should serum Mg be determined in all patients who receive a drug 
that has been associated with hypomagnesemia (Table 3)? This ques-
tion is relevant, because serum Mg is usually not a routine labora-
tory measurement in hospitalized patients, except for the intensive 
care setting. Recommendations may vary by drug. Monitoring of 
serum Mg is justified during therapy with cisplatin or cetuximab/
panitumumab, because of the direct relationship and the possibil-
ity of developing severe hypomagnesemia. Most oncology services 
now routinely measure serum Mg or even supplement Mg pro-
phylactically during therapy with platin-based chemotherapy and 
cetuximab/panitumumab.154,155

Conversely, the value of measuring serum Mg is uncertain during 
treatment with commonly prescribed drugs such as antibiotics, di-
uretics, CNIs, and PPIs. So when should serum Mg be determined in 
the course of treatment with one of these agents? The most obvious 

recommendation would be to rely on the presence of signs or symp-
toms associated with hypomagnesemia, for example, neuromus-
cular symptoms and cardiac arrhythmias, or with other electrolyte 
disorders (e.g. hypocalcemia and hypokalemia). If these symptoms 
are not present, we would recommend measuring serum Mg when 
a patient receives a drug known to induce hypomagnesemia and 
manifests another potential cause of hypomagnesemia such as di-
arrhea, malnutrition, and diabetes mellitus.8 Supplementation of Mg 
will depend on the degree of hypomagnesemia and the presence of 
symptoms. Severe (0.4 mmol/dl; 1 mg/dl) and/or symptomatic hy-
pomagnesemia should be treated by administration of 25 mmol Mg 
sulfate intravenously over 12–24  h. In cases of seizures or severe 
cardiac arrhythmias (e.g. torsade de pointes) an intravenous load of 
4–8 mmol Mg sulfate in 100 ml of D5W over 5–10 min, followed by 
25 mmol/day, should be administered. Intravenous therapy may also 
be indicated in patients with poor intestinal Mg absorption due to 
gastrointestinal disease or in those who experience gastrointestinal 
side effects with oral Mg preparations. Mild, asymptomatic hypo-
magnesemia may be treated with oral Mg salts (e.g. Mg oxide, Mg 
lactate or Mg chloride) in divided doses totaling 15–20 mmol/day. 
Mg-oxide should probably not be the first choice because of high 
frequency of diarrhea. Mg gluconate, sulfate, or aspartate could be 
alternative options.156

Special attention should be paid to patients with chronic kidney 
disease to avoid hypermagnesemia: a 50% dose reduction and more 
frequent monitoring is recommended.157 Of note, a high prevalence 
of hypomagnesemia has been observed in this population, mainly 
due to proteinuria-associated tubular injuries leading to renal Mg 
wasting.158 Potassium-sparing diuretics (amiloride or spironolac-
tone) may be substituted for patients with hypomagnesemia related 
to thiazide or loop diuretics.159 Amiloride may also blunt renal Mg 
losses associated with amphotericin B therapy.160 Finally, the need 
for concurrent restoration of calcium, potassium and phosphate 

TA B L E  3 Diagnosis and treatment of drug-induced 
hypomagnesemia

Screening for hypomagnesemia

Unexplained hypocalcemia or hypokalemia

Ventricular arrhythmia

Administration of drugs with a high likelihood of hypomagnesemia

Administration of drugs associated with hypomagnesemia in 
combination with another potential cause of hypomagnesemia

Treatment of hypomagnesemia

Withdrawal of drugs involved in the development of 
hypomagnesemia, if possible

Administration of oral Mg salts in mild, asymptomatic 
hypomagnesemia

Administration of Mg sulfate intravenously in severe and/or 
symptomatic hypomagnesemia, as well as in patients with 
poor intestinal Mg reabsorption due to gastrointestinal 
disease or in patients who experience gastrointestinal side 
effects from oral Mg preparations

Abbreviation: Mg, magnesium.
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should be considered in patients with hypomagnesemia and con-
comitant electrolyte disturbances.

6  |  CONCLUSION

Hypomagnesemia is a frequent electrolyte disturbance and occurs 
with medications used in everyday clinical practice. It should not be 
disregarded as it may cause serious neuromuscular symptoms and 
cardiac arrhythmias and impair overall prognosis. Awareness and 
clinical suspicion are warranted in the course of therapy with certain 
drugs. Restoration of Mg and concurrent metabolic abnormalities is 
recommended, while alternative therapeutic regimens are advised 
if applicable.
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