Curative criteria for endoscopic treatment of oesophageal adenocarcinoma

Annemijn D.I. Maana,b, Prateek Sharmab, Arjun D. Kocha

a Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
b Department of Gastroenterology and Hepatology, University of Kansas and VA Medical Centre, 4801 E Linwood Blvd, Kansas City, USA

1. Introduction

Over the past decades, the incidence of oesophageal adenocarcinoma (AC) has been increasing rapidly. Whereas squamous cell carcinoma (SCC) was the most common type of oesophageal cancer worldwide, in some Western countries such as the United States, the Netherlands and New Zealand adenocarcinoma has surpassed this\cite{1,2}. One of the main risk factors for developing AC in the oesophagus is reflux disease\cite{3}. Longstanding reflux disease can cause metaplasia from the squamous cell mucosa to columnar epithelium (Barrett’s Oesophagus) which can progress to dysplasia and eventually adenocarcinoma\cite{3}.

Until not so long ago, the treatment of early cancer was a fiery point of debate between surgeons and endoscopists. Oesophagectomy was considered the only treatment option and therefore the gold standard for years, minimally invasive endoscopic interventions have been developed and replaced oesophagectomy as the cornerstone of therapy\cite{4-6}. Endoscopic resection is safe, effective and less invasive than oesophagectomy. With the rise of the incidence of oesophageal adenocarcinoma, research on the best way to manage this disease is of great importance and has changed treatment modalities over the last decades. The gold standard for superficial adenocarcinoma has shifted from surgical to endoscopic management when certain criteria are met. This review will discuss the different curative criteria for endoscopic treatment of oesophageal adenocarcinoma.

2. Criteria for endoscopic treatment of adenocarcinoma

2.1. EMR and ESD

As the ESGE and ASGE guidelines recommend, EMR can be used for removing visible BO-associated lesions ≤ 20 mm with a low probability of deep submucosal invasion and for larger or multifocal benign (dysplastic) lesions\cite{10}. The most commonly used EMR techniques in the oesophagus are cap-, and ligation-assisted EMR\cite{12}. After marking the target area, cap-assisted EMR uses a snare to lift the lesion away from the muscle layer. Then suction is applied to capture the lesion into an oblique cap that is placed on the tip of the scope to retract the mucosa\cite{12,13}. The current European Society for Gastrointestinal Endoscopy (ESGE) and American Society for Gastrointestinal Endoscopy (ASGE) guidelines divide the endoscopic treatment for resection of BO-associated lesions into two different groups: endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD)\cite{10,11}. To determine whether a patient is eligible for one of these procedures several criteria concerning the extent of the disease and the risk to develop lymph node metastases have to be met. In this review we will discuss the curative criteria for the endoscopic treatment of oesophageal AC.

Abbreviations: AC, adenocarcinoma; SCC, squamous cell carcinoma; BO, Barrett’s Oesophagus; ESGE, European Society for Gastrointestinal Endoscopy; ASGE, American Society for Gastrointestinal Endoscopy; EMR, Endoscopic Mucosal Resection; ESD, Endoscopic Submucosal Dissection; MBM, Multiband Mucosectomy; EUS, Endoscopic Ultrasound; AI, Artificial Intelligence; LVI, Lymphovascular Invasion; LNM, Lymph Node Metastasis.

E-mail addresses: a.maan@erasmusmc.nl (A.D.I. Maan), PSHARMA@kumc.edu (P. Sharma), a.d.koch@erasmusmc.nl (A.D. Koch).

https://doi.org/10.1016/j.bpg.2024.101886

Received 28 August 2023; Accepted 23 January 2024

Available online 30 January 2024

1521-6918/2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
lesion (this can be done with or without lifting of the lesion first using submucosal injection). Next, the lesion is retracted into the banding cap using suction and a band is deployed to capture the lesion, creating a mucosal bridge. This mucosal bridge is then transected using endoscopic cautery snaring. Data comparing both EMR techniques are scarce, -procedures are performed under sedation and local anesthesia, with the patient in the supine position.

A.D.I. Maan et al.

descending in colorectal lesions [30,31]. Lesions in mucosa or submucosa, surface patterns are closely inspected with not only white light endoscopy, but also with other techniques. For example, for BO-associated lesions acidetaic acid can be used to stain the lesion into a red color compared to its non-dysplastic/cancerous surroundings [33,34]. Additionally, optical chromoendoscopy has become available. This technique uses electric endoscop Imaging technologies that provide detailed contrast enhancement of the mucosal surface and blood vessels by a light source illuminating the inspected area without the need of dyes. The most investigated modes of optical chromoendoscopy are narrow-band imaging (NBI) and blue light imaging (BLI), which work on the principle of using light specific wavelengths (blue and green light) to visualize neoplasia [35-37]. The depth of penetration into the mucosa depends on the wavelength of the light, due to the absorption of light by haemoglobin. This clarifies why blood vessels are highlighted when viewed with NBI and BLI. A different technique that can be used to identify lesions in the esophagus is virtual chromoendoscopy, for example i-Scan. This technique works through reconstructing an image provided by the endoscope so that the mucosa looks like it is illuminated by using light in a certain wavelength, without actually changing the wavelength [38].

When looking at surface patterns for adenocarcinoma, the following items are evaluated: mucosal architectural distortion, microvascular irregularities and ulceration. For the identification of the first two items, a classification system was developed and validated by the Barrett’s International NBI group (BING) [39]. In normal tissue, the mucosal architecture has a ridge/villus pattern with multiple longitudinal lines or a circular pattern. If the pattern appears irregular and distorted, this can be classified as abnormal, and the risk of high grade dysplasia or malignancy is increased [39,40]. The vascular pattern can be classified as normal when the blood vessels are situated regularly along or between mucosal ridges and-or those showing normal, long, branching patterns. When the vascular pattern is focally or diffusely distributed not following the normal mucosa, this is classified as irregular [39,40]. The third item concerning the surface pattern in adenocarcinoma, ulceration, is related to a risk of 84 % of having submucosal invasion and therefore has a higher risk of lymph node metastases [41].

3.3. Endosonography

Endosonography (EUS) has been broadly studied to determine differences in tumour invasion in the esophagus. Overall, it appears to be not accurate enough to distinguish between mucosal (T1a) and submucosal (T1b) tumours. A large meta-analysis on this topic showed heterogeneity present among the included studies suggesting multiple factors affect the diagnostic accuracy (i.e. location and type of the tumour, method (linear vs radial) and frequency of EUS probe and the experience of the endoscopist) [42]. Moreover, a study from 2022...
showed a high frequency of overstaging for T1 tumours when using EUS [43]. The Dutch study showed downstaging of 60 % from cT2 tumours to cT1 tumours after endoscopic reassessment by an experienced interventional endoscopist, rendering them suitable for endoscopic resection. After resection, histological analysis showed that 80 % of the downstaged lesions were pT1 tumours. In line, other studies demonstrated that EUS is a suboptimal technique to distinguish between the above mentioned tumours when compared to histological analysis after resection of the tumour [44,45].

3.4. Artificial intelligence

No published articles are found on determining the tumour invasion of oesophageal AC by artificial intelligence (AI). Studies on AI’s measurement of infiltration depth in oesophageal SCC, gastric, and colon AC have been published. For example, a study on gastric cancer showed a promising sensitivity of 77 % and a specificity of 96 % for distinguishing early gastric cancer from deeper submucosal invasion with higher accuracy than human endoscopists with varying experience [46]. Furthermore, Messmann et al. mention several studies using real-time AI-assisted staging of early squamous cell carcinoma through determination of infiltration depth. These studies show that AI performs similar to expert endoscopists for predicting depth [47]. Research on oesophageal AC regarding infiltrating depth is currently lacking.

4. Histopathological assessment and definitive curative criteria

After resection, histopathological assessment needs to be performed on the resected specimen to determine the definite tumour depth, size, margin status, differentiation grade and presence of lymphovascular invasion (LVI) to decide whether the endoscopic treatment is sufficient or additional treatment interventions are required (i.e. surgery, chemotherapy, radiotherapy). If complete endoscopic resection has been achieved and vertical margins appear to be free of tumour, the tumour depth is limited to the mucosa or \(\leq 500 \) \(\mu \)m in the submucosa (sm1), the tumour is well to moderately differentiated (G1/2 and there is no LVI, the ESGE and ASGE guidelines recommend that curative resection has been achieved (Fig. 1). No step-up treatment is required. Ablation of the remaining Barrett’s mucosa is recommended, because of an increased risk of metachronous neoplastic recurrence [48,49]. If any of the criteria stated above are not met, additional treatment is recommended in most guidelines. These criteria are based on the evidence that after performing endoscopic resection the risk of lymph node metastasis (LNM) is lower compared to the risk of mortality when undergoing oesophagectomy.

4.1. Mucosal tumours

The oesophagus has lymphatic vessels that frequently extend into the mucosa, resulting in the potential of malignant lesions to metastasize not only through the submucosal, but also through the mucosal lymphatics [50]. Nonetheless, mucosal tumours (T1a) are rarely associated with LNM. Multiple retro- and prospective studies showed a risk of 0 % for local recurrence and/or LNM in mucosal tumours in the oesophagus [51–55]. Yet, other retrospective studies and a systematic review reported a prevalence for LNM ranging from 1 to 3 % [56–59]. As Weksler et al. furthermore state, nodal metastases were significantly affected by the tumour differentiation grade, the size of the lesion and the presence of LVI based on a self-made scoring system that predicts the risk of nodal metastases for mucosal and submucoosal oesophageal AC [59]. The higher the score, the more of the before mentioned predictors are found after histopathological assessment, the higher the risk for LNM. In addition, a study on the outcome of surgical treatment for AC in the gastro-oesophageal junction showed that in univariate analysis N-stage, tumour differentiation grade and depth of tumour invasion was a prognostic factor for a recurrence-free period [58]. In multivariate analysis only N-stage was a prognostic factor. Two recent studies from 2021 to 2022 that aimed to assess the risk of LNM in oesophageal AC with low versus high risk histological features (absence versus presence of LVI and good/moderate versus poor tumour differentiation) showed conflicting results [60,61]. The study from 2021 showed no LNM, even in high risk tumours [60]. Meanwhile the study from 2022 reported LNM in 7 % of high risk mucosal tumours [61]. Regardless of this conflicting data, with an average risk of 0–3 % for LNM compared to the mortality risk of 0–5 % for oesophagectomy, endoscopic resection is according to most current guidelines the preferred mode of treatment without the need of additional treatment when all curative criteria are met.

4.2. Submucosal tumours

For lesions infiltrating the submucosa (T1b) the risk of LNM
increases. One of the most investigated risk factors for LNM is the extent of tumour invasion in the submucosa. When the lesion has invaded <500 μm in the submucosa (sm1) or invaded ≥500 μm in the submucosa (sm2/3), the risk for LNM is 0–9 % and 0–38 % respectively [53,55, 62–64]. Especially surgical studies on LNM, as opposed to endoscopic studies, show high rates of metastases in submucosal tumours. This might be an overestimation due to the older aspect of the surgical studies. In these time periods, the exact tumour invasion in the surgical specimens did not change the mode of treatment for patients with oesophageal AC. Additionally, there is a large difference in the amount of resected submucosa which might make it difficult for the pathologist to identify the deepest point of tumour invasion in large surgical specimens. Therefore, tumour invasion can be understaged with a higher rate of LNM compared to an endoscopically resected specimen. In like manner, the surgical specimen is cut in 5 mm slices for histopathologic assessment, compared to 2 mm slices with an endoscopically resected specimen allowing a less detailed inspection of the tumour and its invasion resulting in the same understaging as mentioned in the latter sentence [65]. Moreover, multiple studies showed that LVI and poor tumour differentiation (G3) were also associated to the presence of LNM [56,66,67]. For example, a meta-analysis of 23 studies from 2000 to 2018 reported a significantly increased risk for LNM for patients with a lesion containing LVI with an odds-ratio of 5.72 [66]. Several studies reported a significantly increased risk for LNM for patients with poorly differentiated lesions with odds-ratios ranging from 2.2 to 9.73 [56,68, 69]. A recent multicentre cohort study from 2021 made an individual risk calculator to predict LNM in patients with submucosal oesophageal AC [70]. The model showed a good discriminative ability where the risk for LNM increased with tumour invasion depth (every increase of 500 μm), LVI and tumour size (for every increment of 10 mm) with hazard ratios of 1.08, 2.95 and 1.23 subsequently. In a study published in 2014 on the risk of LNM in patients with T1b sm1 EAC patients meeting all histological criteria (well/moderately differentiated, no LVI) the risk of LNM was 2 % compared to 9 % for tumours that showed one or more poor prognostic criteria [62]. Since a metastasis rate of 9 % is higher than the mortality rate for oesophagectomy, additional staging and treatment is recommended in most guidelines. This should be carefully balanced against individual mortality and morbidity risks related to surgery. Watchful waiting strategies are also being evaluated. This will be discussed in the next chapter.

5. Summary

In oesophageal cancer, AC is becoming more common in Western countries compared to the stable higher incidence of SCC for the Eastern World. One of the main risk factors for developing oesophageal AC is reflux disease which can cause metaplasia from the squamous cell mucosa to columnar epithelium (Barrett’s Oesophagus) that can progress to dysplasia and eventually adenocarcinoma. The rising incidence of oesophageal adenocarcinoma is an important point of research and management of this disease has changed over the last decades in most guidelines from mainly surgical treatment to endoscopic treatment of this disease has changed over the last decades in most guidelines. Watchful waiting strategies are also being evaluated. This will be discussed in the next chapter.

Practice points

- EMD can be used for removing visible BO-associated lesions <20 mm with a low probability of deep submucosal invasion and for larger or multifocal benign (dysplastic) lesions.
- ESD can be used for removing BO-associated lesions suspicious for submucosal invasion, for malignant lesions >20 mm, and for lesions in scarred/fibrotic areas.
- If complete endoscopic resection has been achieved and vertical margins appear to be free of tumour, the tumour depth is limited to the mucosa or ≤500 μm in the submucosa (sm1), the tumour is well to moderately differentiated (G1/2) and there is no LVI, most guidelines recommend that curative resection has been achieved.
- The curative criteria for endoscopic treatment of oesophageal AC are based on the evidence that the risk of lymph node metastasis is lower compared to the risk of mortality when undergoing oesophagectomy.
- Ablation of the remaining Barrett’s mucosa is recommended, because of an increased risk of metachronous neoplasic recurrence.

Research agenda

- All curative criteria for endoscopic treatment of oesophageal AC are based on the risk of LNM. Though many studies show large ranges for this risk. More studies are needed to narrow this range and validate the criteria more accurately.
- More research on the separate influence of the different criteria (tumour invasion, differentiation grade, presence of LVI) on LNM is desirable to determine the individualized risk for patients with oesophageal AC.
- AI is an upcoming system which might be able to assist an endoscopist with recognizing and grading lesions in the oesophagus. There is a need for more extensive research in this field in the future.

Declaration of competing interest

None.

References

A.D.I. Maan et al.

Siewert JR, Stein HF, Mfechu BR, Barthel H, Fink U. Histologic tumor type is an independent prognostic parameter in esophageal cancer: Lessons from more than 1,000 consecutive patients treated in the central western in the Western world. Ann Surg 2001;234(3):360–7; discussion 8–9.

