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In correspondence analysis (CA), the rows and columns 
of a contingency table are optimally represented in a k-
dimensional approximation, where it is common to set 
k = 3 (which includes a so-called trivial dimension). Since 
CA is a dimension reduction technique, we might expect 
that the k-dimensional approximation is not unique, i.e. 
there exist several contingency tables with the same k-
dimensional approximation. Interestingly, Van de Velden 
et al. [17] find in their computational experiments that 3-
dimensional CA solutions are unique up to rotation, which 
leads to the question whether this is always the case. We 
show that k-dimensional CA solutions are not necessarily 
unique. That is, two distinct contingency tables may have the 
same k-dimensional approximation. We present necessary and 
sufficient conditions for the non-uniqueness of CA solutions, 
which hold for any value of k. Based on our sufficient 
conditions, we present a procedure to generate contingency 
tables with the same k-dimensional solution. Finally, we note 
that it is difficult to satisfy the necessary conditions, which 
suggests that CA solutions are most likely unique in practice.
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1. Introduction

Correspondence analysis (CA) is a multivariate statistical technique [1]. The aim of 
CA is to project the rows and columns of a two-way contingency table, which contains 
the frequencies of co-occurrences of two categorical variables, onto a low-dimensional 
space. This k-dimensional solution is often visualised in a plane by setting k = 3 and 
excluding the first dimension, which contains the scaled row and column sums. CA is 
applied on a multitude of applications, see for instance Greenacre [7,8] and the references 
therein.

Since CA projects two-way contingency tables in a low-dimensional space, we might 
expect that the low-dimensional solution is not unique. By unique, we mean that there 
exists only one table that yields, up to orthogonal rotation, the given low-dimensional CA 
solution. Van de Velden et al. [17] perform an extensive computational study, in which 
they investigate the uniqueness of 3-dimensional CA solutions. In their experiments, 
they never find two tables with the same 3-dimensional CA solution, which leads to 
the hypothesis that CA solutions are unique. In this paper, we demonstrate that k-
dimensional CA solutions are not necessarily unique, for any value of k.

The contribution of this paper is as follows. First, we provide necessary conditions that 
a contingency table must satisfy for its CA solution to be non-unique. Afterwards, we 
provide sufficient conditions on the non-uniqueness of k-dimensional CA solutions. Sec-
ondly, based on the sufficient conditions, we present a procedure to generate contingency 
tables that have the same k-dimensional CA solution.

Our sufficient conditions imply that contingency tables with a non-unique CA solution 
exist for any given value of k. Furthermore, from the necessary conditions it follows that 
two tables with the same low-dimensional CA solution, are uniquely related through a 
linear transformation matrix. Finally, based on the difficulty of satisfying the necessary 
conditions, we deduce that CA solutions are likely to be unique in practice, which is in 
line with the experiments of Van de Velden et al. [17].

In the literature, integer matrices with given row and column sums and their proper-
ties have been studied by, amongst others, Brualdi [3], Brualdi and Michael [5], Brualdi 
and Dahl [4] and Chen [6]. One of the properties of such an integer matrix is the lone-
sum property. An integer matrix is called lonesum if it can be uniquely reconstructed 
from its row and column sums. Ryser [13,14] prove that a binary matrix (each entry is 
0 or 1) is lonesum if and only if its 2 × 2 submatrices satisfy a certain condition. Brew-
baker [2] exploits this result to compute the number of binary lonesum matrices for a 
given dimension. The results of Ryser [13,14] and Brewbaker [2] are generalised by Kim 
et al. [11] and Lee [12]. Kim et al. [11] present results for general integer matrices and 
Lee [12] extends these results to integer matrices in a multidimensional space. In general, 
two-dimensional integer matrices are not expected to be lonesum, i.e. there are multiple 
matrices with the same marginals. In this paper, we show that integer matrices can often 
be uniquely reconstructed when a k-dimensional CA solution is known (where the first 
dimension includes the scaled row and column sums). We contribute to the literature by 
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providing necessary and sufficient conditions for an integer matrix to have a non-unique 
CA solution. Moreover, our main theorems can also be applied to non-integer matrices, 
and the results are therefore more generally applicable.

The remainder of this paper is structured as follows. We present CA notation and 
stylised examples of (non-)unique CA solutions in Section 2. In Section 3, we describe 
a linear relationship between contingency tables and its low-dimensional solution. Next, 
we derive necessary conditions of non-unique CA solutions in Section 4. In Section 5, we 
provide sufficient conditions and introduce a method to generate contingency tables with 
a non-unique CA solution. We discuss the implications of the main results and conclude 
in Sections 6 and 7, respectively.

2. Problem description

In this section, we present CA, where we use similar notation as Van de Velden 
et al. [17]. Let F be an nr × nc matrix, where fij denotes the number of times each 
observation i, j occurs. We assume without loss of generality nr ≤ nc. We denote the total 
number of observations as s =

∑
i

∑
j fij = 1�

nr
F1nc

, where 1n is a vector containing 
ones of length n. The row and column totals are defined as r and c, respectively. We 
denote the diagonal matrix containing the row and column totals by Dr and Dc, such 
that r = F1nc

= Dr1nr
and c = F�1nr

= Dc1nc
.

Consider the singular value decomposition (SVD) of the standardised matrix F̃ =
D− 1

2
r FD− 1

2
c , that is,

F̃ = ŨΛ̃Ṽ�,

where Ũ and Ṽ are orthonormal, Λ̃ is a diagonal matrix of singular values in non-
increasing order and λ̃ = Λ̃1nr

is a vector of singular values. Due to the standardisation 
all singular values lie in the interval [0, 1]. The largest singular value is 1, which we refer 
to as the trivial solution, and the corresponding columns of Ũ and Ṽ are 1√

s
D1/2

r 1nr

and 1√
s
D1/2

c 1nc
, see for example Van de Velden and Neudecker [16].

The k-dimensional approximation is determined by selecting the first k singular values 
(including the trivial solution) of Λ̃ and the corresponding columns of Ũ and Ṽ, where 
we assume without loss of generality that k ≤ nr ≤ nc. We can partition the matrices as

Ũ =
(
Ũk Ũc

)
, Ṽ =

(
Ṽk Ṽc

)
and Λ̃ =

(
Λ̃k

Λ̃c

)
.

We rewrite the SVD on the standardised matrix F̃ to obtain

F̃ = ŨΛ̃Ṽ�

=
(
Ũk Ũc

)(
Λ̃k

Λ̃c

)(
Ṽ�

k

Ṽ�

)

c
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= H + ŨcΛ̃cṼ�
c ,

where H = ŨkΛ̃kṼ�
k is the k-dimensional approximation of F̃ and ŨcΛ̃cṼ�

c is the 
remainder. The matrix F can be expressed in terms of the k-dimensional approximation 
and the remainder, resulting in

F = D
1
2
r (H + ŨcΛ̃cṼ�

c )D
1
2
c . (1)

In CA, it is common to set k = 3 and discard the trivial solution, such that the k-
dimensional approximation can be visualised in the plane using the so-called row and 
column coordinate matrices

Rk = D− 1
2

r ŨkΛ̃α
k , (2)

Ck = D− 1
2

c ṼkΛ̃1−α
k , (3)

where the parameter α is often set to the values 0 or 1 [15,8]. Throughout this paper, 
we assume without loss of generality that α = 1. We consider Assumption 2.1, which 
states that the k-th singular value is strictly larger than the k + 1-th singular value of 
F̃, such that the k-dimensional approximation is uniquely determined and hence the 
k-dimensional approximation is well-defined.

Assumption 2.1. Let λ̃k and λ̃k+1 be the k-th and k + 1-th singular values, we assume 
that λ̃k > λ̃k+1.

Using the previous assumptions and definitions we state a first definition of a k-
dimensional CA solution.

Definition 2.2 (A k-dimensional CA solution in terms of coordinate matrices). A k-
dimensional CA solution of a matrix F consists of matrices Rk, Ck, Dr and Dc.

In CA, it is common to visualise only matrices Rk and Ck in a two-dimensional 
figure. We assume in Definition 2.2 that the marginals Dr and Dc are known. The row 
and column coordinate matrices can be rotated to improve interpretability [15]. Given 
any invertible A of appropriate size, multiplying Rk and Ck by A and A−1, respectively, 
results in a rotated solution. When considering such pairs of rotations the coordinate 
matrices Rk and Ck are not unique. In this paper, we investigate the uniqueness of CA 
solutions without rotations. While Definition 2.2 is often used in practice to visualise 
CA solutions, for our purposes it is more convenient to make use of an alternative CA 
definition, namely Definition 2.3, which is equivalent, as matrices Rk and Ck can be 
obtained from H and vice versa [17].

Definition 2.3 (A k-dimensional CA solution). A k-dimensional CA solution of F consists 
of the matrices H, Dr and Dc.
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Let h(F) denote a function that maps a matrix F to its k-dimensional approximation 
H, which is unique under Assumption 2.1. The first aim of this paper is to determine 
under which conditions there exist matrices with the same marginals as F that have the 
same CA solution. Or using the introduced notation: under which conditions are there 
different matrices Fo and Fa with the same marginals such that h(Fo) = h(Fa)? As a 
second question, can we systematically generate matrices with the same k-dimensional 
approximation?

The examples below illustrate that the number of matrices with the same k-
dimensional solution is instance dependent. We consider a 3-dimensional approximation 
and we denote diag(A) as the diagonal elements of a matrix A. We present two examples 
where either one or three matrices have the same CA solution. The example containing 
a unique CA solution can be verified by enumerating the matrices satisfying the row 
and column marginals, which is possible since the given examples are relatively small, 
while the example containing three matrices with the same k-dimensional solution can 
be verified by computing the corresponding CA solutions.

Example 2.4. Consider the matrix Fo and its (rounded) singular values λ̃o shown below. 
We can verify by enumeration that there is no other matrix having the same CA solution 
(based on Definition 2.3).

Fo =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
3 5 1 1
4 6 1 1

⎞
⎟⎟⎟⎠

λ̃
o =

(
1 0.33 0.14 0.00

)�

Example 2.5. Consider the matrix Fo below and its (rounded) singular values λ̃o. It can 
be verified that h(Fo) = h(Fa

1) = h(Fa
2). That is, matrices Fo, Fa

1 and Fa
2 have the same 

k = 3-dimensional solution.

Fo =

⎛
⎝11 0 0 0

0 10 0 0
0 0 8 3
0 0 3 8

⎞
⎠ Fa

1 =

⎛
⎝11 0 0 0

0 10 0 0
0 0 7 4
0 0 4 7

⎞
⎠ Fa

2 =

⎛
⎝11 0 0 0

0 10 0 0
0 0 6 5
0 0 5 6

⎞
⎠

λ̃
o = (1 0.71 0.69 0.38)� λ̃

a

1 = (1 0.71 0.69 0.23)� λ̃
a

2 = (1 0.71 0.69 0.08)�

3. Relation to inverse correspondence analysis

We consider a k-dimensional CA solution of F to be unique, if there is no other matrix 
F̂ with the same k-dimensional approximation. Van de Velden et al. [17] are interested 
in retrieving a matrix F that satisfies a given k-dimensional CA solution, which is known 
as the inverse correspondence analysis problem. They show, in a computational study 
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consisting of thousands of randomly generated tables, that 3-dimensional CA solutions 
of a contingency table are always unique up to rotation [15]. To see whether this holds 
theoretically, we investigate if we can identify conditions under which there exist different 
matrices F and F̂ that have the same k-dimensional CA solution.

If we can retrieve two matrices F and F̂ that satisfy (1) and have the same k-
dimensional CA solution, we have a pair of matrices such that h(F) = h(F̂). However, 
finding a matrix that satisfies (1) for a given H is a non-linear problem, since matrices 
Ũc, Λ̃c and Ṽc are unknown. Groenen and Van de Velden [9] show that it is possible to 
rewrite this to a linear problem, which provides a necessary condition for satisfying (1). In 
this section, we present this linear relationship between a matrix F and its k-dimensional 
CA solution. This means that if another matrix F̂ has the same k-dimensional CA solu-
tion as F, then both matrices satisfy the same linear relationship.

To verify that a k-dimensional CA solution is unique we can use the known matrices 
shown in Definition 2.3, where H can be decomposed into the matrices Ũk, Ṽk and 
Λ̃k. On the other hand, the matrices Ũc, Ṽc and Λ̃c are unknown. Matrices Ũ and Ṽ
are orthonormal, which means that each column of Ũc and Ṽc is orthogonal to each 
column of Ũk and Ṽk, respectively. Let Ũ0 and Ṽ0 denote the null space of Ũk and Ṽk, 
respectively, which can be obtained using

Ũ�
k Ũ0 = 0(k,nr−k),

Ṽ�
k Ṽ0 = 0(k,nc−k),

where 0m,n is a zero matrix of size m × n. There exist orthonormal matrices W and Q
such that

Ũc = Ũ0W, (4)

Ṽc = Ṽ0Q, (5)

which shows that the unknown matrices Ũc and Ṽc can be obtained up to rotation.
We define G = WΛ̃cQ� and substitute (4) and (5) into the SVD of F̃ to obtain

F̃ = H + ŨcΛ̃cṼ�
c

= H + Ũ0WΛ̃cQ�Ṽ�
0 (6)

= H + Ũ0GṼ�
0 .

Since F̃ = D− 1
2

r FD− 1
2

c , we know that any integer matrix Frec, which has H as its k-
dimensional approximation, satisfies the following linear relationship, called the recovery 
equation

Frec = D
1
2
r (H + Ũ0GṼ�

0 )D
1
2
c . (7)
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The inverse correspondence analysis problem is formally stated as: given a k-dimensional 
CA solution consisting of matrices H, Dr and Dc, can we find an integer matrix that 
satisfies the recovery equation [9]. Note that both matrices Ũ0 and Ṽ0 are not unique. 
When Frec is a solution to the recovery equation, it remains a solution even after rotating 
Ũ0 (or Ṽ0), since both Frec and Λ̃c remain unchanged when considering the standardised 
decomposition in (6).

Several approaches have been proposed to solve the inverse correspondence analysis 
problem. Groenen and Van de Velden [9] solve inverse correspondence analysis using a 
full enumeration approach. Van de Velden et al. [17] note that the inverse correspondence 
analysis problem can be modelled as a mixed-integer programming formulation, which 
leads to a more efficient algorithm.

Even though the recovery equation describes a linear relationship, it only provides 
a necessary condition for answering our research question. Van de Velden et al. [17]
sometimes retrieve a matrix F̂ that satisfies the recovery equation (7), but the k largest 
singular values of F and F̂ differ. Moreover, inverse correspondence analysis is an al-
gorithmic approach to verify the uniqueness of a given CA solution. To structurally 
find matrices that have the same k-dimensional approximation an analytical approach 
is needed.

We classify the possible input integer matrices Frec that satisfy the recovery equation, 
associated with an original matrix Fo, into three groups: original, admissible and non-
admissible input matrices. Clearly, the original input Fo satisfies the recovery equation. 
Admissible matrices satisfy the recovery equation, and the k largest singular values are 
the same as those corresponding to the original Fo. Note that in the inverse correspon-
dence analysis problem the original matrix is not known, therefore, it is not possible to 
determine whether the k-dimensional solution belongs to matrix Fo or an admissible ma-
trix Fa. Non-admissible input matrices do satisfy the recovery equation, however, one of 
its k largest singular values differs from those corresponding to the original Fo. In order 
to determine under which conditions it is possible have h(Fo) = h(Fa), it is important 
to understand how one can construct admissible input matrices. To do so, consider the 
following definition.

Definition 3.1 (Admissible input matrix). A matrix Fa �= Fo is an admissible input matrix 
of Fo if the following three conditions are satisfied.

C1. Fo and Fa have the same marginals, i.e. Do
r = Da

r and Do
c = Da

c .
C2. Fa is a solution to the recovery equation (7) with H = h(Fo).
C3. Fo and Fa have the same first k singular values, sorted in a non-increasing order.

Note that Definition 3.1 describes a symmetric relation in the sense that Fo is an 
admissible input matrix of Fa if and only if Fa is an admissible input matrix of Fo. 
Also, note that if we only satisfy C1 and C2, while C3 is violated, we have obtained 
a non-admissible input matrix. In Section 4, we investigate the structural properties of 
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admissible matrices. We exploit these properties to systematically construct admissible 
input matrices in Section 5.

4. Structural properties of correspondence analysis solutions

We prove that when an original matrix Fo and an admissible matrix Fa are given, 
i.e. h(Fo) = h(Fa), then Fo and Fa are uniquely related with a linear transformation 
matrix T. We show several properties of matrix T, which are necessary conditions for 
the existence of an admissible matrix.

Consider nr ×nc matrices Fo and Fa. Suppose that Fa is an admissible matrix of Fo, 
then by Definition 3.1 it holds that their k-dimensional approximations are the same

Fo = UoΛoVo�

= UkΛkV�
k + Uo

cΛo
cVo�

c ,

Fa = UaΛaVa�

= UkΛkV�
k + Ua

cΛa
cVa�

c ,

which implies that

U�
k Uo

c = 0,

U�
k Ua

c = 0.

This means that Uo
c and Vo

c can be obtained from Ua
c and Va

c , respectively, using an 
orthonormal transformation

Uo
c = Ua

cW∗,

Vo
c = Va

cQ∗,

where W∗ and Q∗ are orthonormal. Let

W =
(

I
W∗

)
,Q =

(
I

Q∗

)
.

Thus, Uo and Vo can be obtained from Ua and Va using an orthonormal transformation

Uo = UaW,

Vo = VaQ.

Next, we present a lemma on the right Moore–Penrose inverse, which is a generalised 
inverse satisfying specific properties, see for instance Horn and Johnson [10].
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Lemma 4.1. The Moore-Penrose inverse of a matrix F is unique. If matrix F has linearly 
independent rows, then the Moore–Penrose inverse is defined as F+ = F�(FF�)−1. This 
is a right inverse, because FF+ = I.

Consider the following three partitioned matrices

Fo =
(
Uk Uo

c

)(
Λk

Λo
c

)(
V�

k

Vo�
c

)
, (8)

Fo+ =
(
Vk Vo

c

)(
Λ−1

k

Λo
c
−1

)(
U�

k

Uo�
c

)
, (9)

Fa =
(
Uk Ua

c

)(
Λk

Λa
c

)(
V�

k

Va�
c

)
, (10)

where Fo+ denotes the Moore-Penrose inverse of Fo if it exists. Note that we can verify 
that FoFo+ = I, because for square orthonormal matrices U−1 = U�.

The following theorem states that the original and admissible matrix are uniquely 
related through a linear transformation.

Theorem 4.2. Given an admissible matrix Fa of Fo as shown in (10) and (8), where 
the singular values of matrix Fo are non-zero, then there exists a unique T such that 
TFo = Fa.

Proof. We define T = FaFo+ and show that it has the desired properties. By assumption 
all singular values of matrix Fo are non-zero and the rank of Fo equals the number of 
non-zero singular values. The rank equals the number of linearly independent rows, so Fo

has linearly independent rows. From Lemma 4.1 it follows that the right Moore-Penrose 
inverse Fo+ exists. Since the Moore-Penrose is unique, T = FaFo+ is unique as well.

Moreover, using (8) and (9) we can show that

Fo+Fo = VoVo�

= VaQQ�Va�

= VaVa�. (11)

Using (11)

TFo = FaFo+Fo

= UaΛaVa�VaVa�

= UaΛaVa�

= Fa.
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To conclude, there exists a unique T such that Fa = TFo. �
Below we give a closed form expression for this unique T.

T = FaFo+

=
(
Uk Ua

c

)(
Λk

Λa
c

)(
V�

k

Va�
c

)(
Vk Vo

c

)(
Λ−1

k

Λo
c
−1

)(
U�

k

Uo�
c

)

=
(
Uk Ua

c

)(
Λk

Λa
c

)(
I V�

k Vo
c

Va�
c Vk Va�

c Vo
c

)(
Λ−1

k

Λo
c
−1

)(
U�

k

Uo�
c

)

=
(
Uk Ua

c

)(
Λk

Λa
c

)(
I

Va�
c Vo

c

)(
Λ−1

k

Λo
c
−1

)(
U�

k

Uo�
c

)

=
(
Uk Ua

c

)(
I

Λa
cVa�

c Vo
cΛo

c
−1

)(
U�

k

Uo�
c

)

= UkU�
k + Ua

cΛa
cVa�

c Vo
cΛo

c
−1Uo�

c .

In the lemma below we state what properties are satisfied by T.

Lemma 4.3. Given an admissible matrix Fa of Fo as shown in (10) and (8) and
T = FaFo+, then Tr = r and 1�

nr
T = 1�

nr
.

Proof. Recall that the row and column totals are the same for Fo and Fa due to Defi-
nition 3.1. The first property can be derived using the row total of Fo and Fa

r = Fa1nc

= TFo1nc

= Tr,

where we used that Fo1nc
= r.

Similarly, the second property can be derived based on the column total

1�
nr

Fo = c�

= 1�
nr

Fa

= 1�
nr

TFo.

Post-multiplying by Fo+ on both sides results in

1�
nr

FoFo+ = 1�
nr

TFoFo+ =⇒
1�
n = 1�

n T. �

r r
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In this section, we have shown that when Fa is an admissible matrix of Fo, i.e. 
h(Fo) = h(Fa), then there exists a unique T satisfying the relation TFo = Fa. We 
have shown what properties are satisfied by T, which are necessary conditions for an 
admissible matrix to exist. These conditions are summarised in the theorem below.

Theorem 4.4. Given an admissible matrix Fa of Fo as shown in (10) and (8), where the 
singular values of matrix Fo are non-zero. Then there exists a unique linear transforma-
tion matrix T = FaFo+, which satisfies Tr = r and 1�

nr
T = 1�

nr
.

In the upcoming section, we establish sufficient conditions for having admissible ma-
trices using symmetric matrices T.

5. Generating admissible matrices

In this section, we describe a method to generate a class of matrices for which an 
admissible matrix exists. First, we show what conditions the original matrix Fo and a 
specific linear transformation matrix T must satisfy, such that an admissible matrix Fa

exists. Afterwards, we show how to generate such a pair of matrices Fo and Fa, which 
therefore satisfy h(Fo) = h(Fa).

5.1. A class of candidate matrices

We prove several general lemmas, which are used to obtain sufficient conditions under 
which candidate matrices exist.

Consider an nr × nc matrix F and an nr × nr matrix T and their respective SVDs, 
where the singular values ΛT are unsorted.

F = UΛV�

=
(
Uk Uc

)(
Λk

Λc

)(
V�

k

V�
c

)
, (12)

T = UTΛTU�
T

=
(
UkT UcT

)(
ΛkT

ΛcT

)(
U�

kT

U�
cT

)
. (13)

The next theorem states that when the last c singular vectors of matrix F are equal 
to a set of c singular vectors of T and the remaining k singular values of T are all equal 
to 1, then a QR decomposition of TU can be written as UΛT.

Theorem 5.1. Consider (12) and (13). If Uc = UcT and ΛkT = I, then TU = UΛT.



R.S.H. Willemsen et al. / Linear Algebra and its Applications 690 (2024) 162–185 173
Proof. Since U is orthonormal, it follows that

U�
k Uc = 0

= U�
kTUcT

= U�
kTUc,

where we use that Uc = UcT. This implies that Uk can be obtained from UkT by 
applying an orthonormal transformation

Uk = UkTW∗, (14)

where W∗ is an orthonormal k × k matrix. Therefore, the following matrix is also or-
thonormal

W =
(

W∗

I

)
.

Using (14) and Uc = UcT, we observe that U can be obtained from UT by applying 
another orthonormal transformation

U =
(
Uk Uc

)

=
(
UkT UcT

)(
W∗

I

)

= UTW. (15)

Starting with the SVD of T, we obtain the following expression by post-multiplying 
by UT and W and applying (15)

T = UTΛTU�
T =⇒

TUT = UTΛTU�
TUT =⇒

TUT = UTΛT =⇒

TUTW = UTΛTW =⇒

TU = UTΛTW. (16)

Since ΛkT = I, it follows that

ΛTW =
(

I
ΛcT

)(
W∗

I

)
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=
(

W∗

ΛcT

)

=
(

W∗

I

)(
I

ΛcT

)

= WΛT. (17)

By applying (17) on (16), we obtain

TU = UTΛTW

= UTWΛT

= UΛT.

To conclude, we have shown that TU = UΛT holds. Since U is orthonormal and ΛT is 
diagonal (and hence upper triangular), this implies that UΛT is indeed a QR decompo-
sition of TU. �

From now on we restrict ourselves to a symmetric T. Instead of analysing whether 
the standardised relation TF̃o = F̃a holds, we can verify TFo = Fa, where F̃ is the 
standardised version of F. This implies we can use non-standardised matrices to make 
the proofs and derivations more tractable.

Lemma 5.2. Given a symmetric matrix T, (standardised) matrices Fa = D
1
2
r F̃aD

1
2
c and 

Fo = D
1
2
r F̃oD

1
2
c , such that Do

r = Da
r = Dr and Do

c = Da
c = Dc. The standardised 

relation TF̃o = F̃a holds if and only if TFo = Fa.

Proof. We prove this statement in both directions.
=⇒ Assume that TF̃o = F̃a holds. We start with the definition of matrix Fa:

Fa = D
1
2
r F̃aD

1
2
c

= D
1
2
r TF̃oD

1
2
c

= TD
1
2
r F̃oD

1
2
c

= TFo,

where we use that T, D
1
2
r and TD

1
2
r are symmetric matrices.

⇐= Assuming that TFo = Fa

D
1
2
r F̃aD

1
2
c = Fa

= TFo
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= TD
1
2
r F̃oD

1
2
c

= D
1
2
r TF̃oD

1
2
c =⇒

F̃a = TF̃o. �
In the next lemma, we state under which conditions on T, the row and column 

marginals of Fo and Fa are equal to each other.

Lemma 5.3. If TFo = Fa holds, where T satisfies Tr = r and 1�
nr

T = 1�
nr

, then 
Do

r = Da
r = Dr and Do

c = Da
c = Dc.

Proof. Starting with the row marginals r of Fo, we have

Fo1nc
= r =⇒

TFo1nc
= Tr =⇒

Fa1nc
= r.

So the row marginals are indeed the same for Fo and Fa. Likewise, with 1�
nr

Fo = c�, 
we have

1�
nr

T = 1�
nr

=⇒
1�
nr

TFo = 1�
nr

Fo =⇒
1�
nr

Fa = c�,

which shows that the column marginals are also the same for Fo and Fa. �
Using Theorem 5.1 and Lemmas 5.2-5.3, we derive sufficient conditions for the exis-

tence of admissible matrices. Let δ be a vector of length c, with elements satisfying

δj = λ̃o
k

λ̃o
k+j

for j = 1, . . . , c.

We impose an additional restriction on the singular values of T, namely that λcT < δ, 
where a < b states that the entries of vector a are strictly smaller than the entries of 
vector b. Since λ̃o

k > λ̃o
k+1 by Assumption 2.1, it holds that 1c < δ is always a valid 

lower bound.

Theorem 5.4. Given the following matrices and conditions

A1. a matrix Fo and a standardised matrix F̃o = D− 1
2

r FoD− 1
2

c ,
A2. a symmetric matrix T, such that Tr = r and 1�

nr
T = 1�

nr
,

A3. a matrix Fa �= Fo, such that TFo = Fa,
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A4. the SVD of F̃o and T can be partitioned as

F̃o =
(
Ũo

k Ũo
c

)(
Λ̃o

k

Λ̃o
c

)(
Ṽo�

k

Ṽo�
c

)
,

T =
(
UkT UcT

)(
ΛkT

ΛcT

)(
U�

kT

U�
cT

)
,

where Ũo
c = UcT, ΛkT = I.

A5. λcT < δ.

Then Fa is an admissible matrix of Fo.

Proof. To prove that Fa is an admissible matrix of Fo, we show that Fa satisfies the 
three conditions stated in Definition 3.1.

• C1, which states that Do
r = Da

r and Do
c = Da

c , holds due to A2, A3 and Lemma 5.3.
• For C2, we have to verify whether Fa satisfies the recovery equation (7). Due to 

A3 and Lemma 5.2 we know that F̃a = TF̃o. Using Theorem 5.1, we obtain the 
following SVD

F̃a = TF̃o

= TŨoΛ̃oṼo�

= ŨoΛTΛ̃oṼo�

= Ũo
kΛ̃o

kṼo�
k + Ũo

cΛcTΛ̃o
cṼo�

c .

So, we obtain

Fa = Do 1
2

r (Ũo
kΛ̃o

kṼo�
k + Ũo

cΛcTΛ̃o
cṼo�

c )Do 1
2

c . (18)

Note that at this point we have found a solution to the recovery equation (7), however, 
the singular values of F̃a might no longer be in a non-increasing order.

• In the next two steps we verify C3, which states that the first k singular values of 
F̃o and F̃a are the same when sorted in non-increasing order.
– We start by showing that the first k singular values of F̃o and F̃a are equal to 

each other. From the SVD of Fa given in (18) it follows that

λ̃a
i =

{
λ̃o
i , if i = 1, . . . , k,

λTiλ̃
o
i , if i = k + 1, . . . , nr.

From A5 we can derive that
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λ̃a
i = λTiλ̃

o
i

< δi−kλ̃
o
i

= λ̃o
k

= λ̃a
k,

for i = k + 1, . . . , nr. Since the standardised singular values λ̃a
i with indices i =

k + 1, . . . , nr cannot become larger than the k-th singular value, we conclude that 
the first k singular values of F̃o and F̃a are the same.

– Finally, we show that not all singular values of F̃o are the same as those of F̃a. 
Assume by contradiction that F̃o and F̃a have the same singular values, then it 
must hold that ΛcT = I and T = I, which violates A3. Thus, there exists an index 
i ∈ {k + 1, . . . , nr} such that F̃o and F̃a have different singular values.

We conclude that conditions C1, C2 and C3 of Definition 3.1 are satisfied. Hence, we 
conclude that Fa is an admissible matrix of Fo. �

In this section, we demonstrated that given a matrix Fo and a transformation matrix 
T fulfilling certain properties, there exists an admissible matrix Fa = TFo where more 
than one singular value may differ. The main insight is in the construction of matrix 
T, which shares singular vectors with the standardised matrix F̃o. Consequently, the 
structural characteristics of Fo and T are sufficient conditions for the existence of an 
admissible matrix Fa.

5.2. A method to generate admissible matrices

In the previous section, we presented sufficient conditions for admissible matrices. 
However, it is not straightforward to construct matrices satisfying those criteria, e.g. 
common singular vectors for F̃o and T. In this section, we introduce a method to generate 
admissible matrices Fa of Fo, hence, satisfying h(Fo) = h(Fa).

We introduce a block structure in matrix F. If we want to control the last nb − 1
singular values, then the rows are divided into nb blocks and the columns are divided 
into nb +1 blocks, where we assume that nb ≥ 2. The dimension of block F11 is n1 ×n1, 
note that we need n1 ≥ k − 1 when considering a k-dimensional CA solution. The 
rightmost n2 ≥ 0 columns are filled with 1’s, while setting n2 = 0 results in a square 
matrix. All blocks Fij have size 2 ×2, except blocks F1j , Fi1 and F1(nb+1). The blocks Fii

for i = 2, . . . , nb are symmetric matrices and the upper left element equals the bottom 
right element. The remaining blocks Fij for i > j all contain g, while the elements of 
blocks Fij for i < j are set to e. We leave the first block F11 unspecified, although later 
on we notice that the entries in that block should be large enough to influence the first 
k singular values. To summarise, matrix F has the following structure
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F =

⎛
⎜⎜⎜⎜⎜⎜⎝

F11 F12 . . . F1nb
F1(nb+1)

F21 F22 . . . F2nb
F2(nb+1)

...
...

. . .
...

...

Fnb1 Fnb2 . . . Fnbnb
Fnb(nb+1)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F11 e1n1,2 . . . e1n1,2 1n1,n2

g12,n1

c2 d2

d2 c2
. . . e12,2 12,n2

...
...

. . .
...

...

g12,n1 g12,2 . . .
cnb

dnb

dnb
cnb

12,n2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(19)

Furthermore, we construct the following block matrix T and corresponding partitioned 
vector ui, where the rows and columns are divided in similar blocks as matrix F

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

In1 0n1,2 . . . 0n1,2

02,n1

a2 b2
b2 a2

. . . 02,2

...
...

. . .
...

02,n1 02,2 . . .
anb

bnb

bnb
anb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

ui = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n1

0

0
...

1

−1
...

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

where ui denotes a vector such that the i-th block contains the vector [1 − 1]�. In 
Lemma 5.5-5.7, we prove that ui is a singular vector of F, F̃ and T.

Lemma 5.5. Given F and ui for i = 2, . . . , nb as defined in (19) and (21). The vector ui

is a singular vector with corresponding singular value ci − di of matrix F.

Proof. We first show that ui is an eigenvector of matrix FF�.

u�
i FF�ui =

(
ci − di√

2

)2

+
(
di − ci√

2

)2

= (ci − di)2 + (ci − di)2
2 2
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= (ci − di)2.

Hence, ui is an eigenvector of matrix FF� with corresponding eigenvalue (ci − di)2. 
Equivalently, ui is a singular vector of matrix F with corresponding singular value ci −
di. �
Lemma 5.6. Given F and ui for i = 2, . . . , nb as defined in (19) and (21). The vector ui

is a singular vector of the standardised matrix F̃, where F̃ = D− 1
2

r FD− 1
2

c .

Proof. The rows and columns corresponding to elements ci and di in each block i =
2, . . . , nb have the same row and column sum. When standardising, the values ci and di
are divided by the same constant. We can apply Lemma 5.5 to verify that ui is a singular 
vector of F̃. �
Lemma 5.7. Given T and ui for i = 2, . . . , nb as defined in (20) and (21). Then ui is a 
singular vector with corresponding singular value ai − bi of matrix T.

Proof. Since T is a symmetric matrix it is diagonalisable, which implies that the eigen-
values of T are equal to its singular values. Clearly, the following relation is satisfied

Tui = (ai − bi)ui,

which means that ui is an eigenvector and ai − bi is an eigenvalue of T. In conclusion, 
ui is a singular vector with corresponding singular value ai − bi of matrix T. �

In the upcoming lemma, we present an expression for all n1 + 2nb − 2 singular values 
of T.

Lemma 5.8. Given a matrix T as defined in (20), if

• ai + bi = 1 for i = 2, . . . , nb,
• ai �= bi for i = 2, . . . , nb,
• ai ≥ 0 and bi ≥ 0 for i = 2, . . . , nb,

then matrix T has singular values

λi =

⎧⎪⎪⎨
⎪⎪⎩

1, i = 1, . . . , n1,

1, i = n1 + 1, . . . , n1 + nb − 1,
ai − bi, i = n1 + nb, . . . , n1 + 2nb − 2,

where ai − bi < 1.
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Proof. Without loss of generality we can switch the rows and columns of T such that: 
a2 − b2 ≥ · · · ≥ anb−1 − bnb−1 ≥ anb

− bnb
. We can arrange the singular values of matrix 

T into the following three groups:

• The first n1 singular values are equal to 1, which correspond to the upper left block 
of matrix T.

• Using similar reasoning as in Lemma 5.7, it can be shown that T has singular values 
ai + bi for i = 2, . . . , nb, which are all equal to 1 by assumption.

• From Lemma 5.7 it follows that the remaining singular values are ai − bi for i =
2, . . . , nb. We can assume without loss of generality that ai > bi. Since ai + bi = 1, 
this implies that 1 > ai − bi > 0. �

We conclude that T has singular values ai − bi for i = 2, . . . , nb, and these are the 
smallest singular values of matrix T. The next lemma states two other conditions that 
matrix T satisfies, which follow directly from (20).

Lemma 5.9. Given a matrix T as defined in (20) and ai + bi = 1 for i = 2, . . . , nb, then 
Tr = r and 1�

nr
T = 1�

nr
.

Using Theorem 5.4 and Lemmas 5.5-5.9, we prove the main result that Fa is an 
admissible matrix of Fo.

Theorem 5.10. Given

B1. a matrix Fo, which can be partitioned as shown in (19). The values ci − di for 
i = 2, . . . , nb are the smallest singular values of Fo.

B2. a symmetric matrix T �= I, which can be partitioned as shown in (20), the entries 
of T satisfy ai ≥ 0, bi ≥ 0, ai + bi = 1 and ai �= bi for i = 2, . . . , nb.

Then Fa = TFo, implying that h(Fo) = h(Fa).

Proof. We show that all the assumptions of Theorem 5.4 are satisfied. Assumptions A1 
and A3 follow directly from the definitions of Fo and T, so A2, A4 and A5 remain.

• From Lemma 5.9 it follows that Tr = r and 1�
nr

T = 1�
nr

. Thus, A2 is satisfied.
• By combining Lemma 5.6 and 5.7, we obtain that the last nb − 1 singular vectors of 

F̃o and To are the same, e.g. Ũc = UcT. Furthermore, in Lemma 5.8 we have shown 
that ΛkT = I and ΛcT ≤ I. So, A4 holds.

• Since 1c < δ is a valid lower bound, it follows that λcT ≤ 1c < δ, so A5 is satisfied.

Thus, if we set Fa = TFo, then Fa is an admissible matrix of Fo. �
We illustrate Theorem 5.10 by means of an example.
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Example 5.11. Throughout this example we consider 3-dimensional CA solutions. Sup-
pose we have the following original matrix

Fo∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3 1 3 10 3 3 1
3 1 5 2 9 3 2
4 1 2 2 2 7 2
3 1 9 2 5 3 2
3 1 3 1 3 3 11
7 1 2 2 2 4 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

At first glance we do not suspect this matrix Fo∗ to have an admissible matrix, since 
this matrix looks quite different compared to Example 2.5. However, permuting the rows 
and columns (which does not influence the singular values) yields

Fo =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 1 3 3 3 3 1

1 10 3 3 3 3 1

2 2 9 5 3 3 1

2 2 5 9 3 3 1

2 2 2 2 7 4 1

2 2 2 2 4 7 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

λo =
(
22.52 9.57 7.95 5.31 4.00 3.00

)�
.

We notice that Fo satisfies the structure defined in (19). Also, we can construct a matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 3
4

1
4 0 0

0 0 1
4

3
4 0 0

0 0 0 0 2
3

1
3

0 0 0 0 1
3

2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

satisfying (20). It can be verified that the two conditions of Theorem 5.10 hold, which 
means that the matrix obtained using Fa = TFo is an admissible matrix. We can verify 
that
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Fa =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 1 3 3 3 3 1

1 10 3 3 3 3 1

2 2 8 6 3 3 1

2 2 6 8 3 3 1

2 2 2 2 6 5 1

2 2 2 2 5 6 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

λa =
(
22.52 9.57 7.95 5.31 2.00 1.00

)�
,

is indeed an admissible matrix. Note that in this example the last two (rounded) singular 
values of the original and admissible matrix are different from each other.

To summarise, this section contains a general approach to generate pairs of matrices 
Fo and Fa that satisfy h(Fo) = h(Fa). The main idea is to construct matrices Fo and 
T as shown in (19) and (20). In addition, the assumptions of Theorem 5.10 should 
be satisfied, which should not be too difficult. For instance, B1 is often satisfied by 
choosing elements in block F11 to be much larger than the remaining blocks, such that 
the “singular values of block F11” are larger than the “singular values corresponding to 
blocks i = 2, . . . , nb”.

6. Discussion

We discuss the implications of Theorems 4.4 and 5.4. Also, we provide an example 
which satisfies the necessary conditions, but not our sufficient conditions.

When assuming that all singular values are non-zero, the necessary conditions for the 
existence of an admissible matrix shown in Theorem 4.4 imply that there is a unique 
relationship between two matrices that have the same k-dimensional approximation. 
Even if other (possibly non-linear) relations between the original and admissible matrices 
exist, these relations can always be replaced by the linear relationship. Satisfying the 
necessary conditions in practice with an arbitrary contingency table is not trivial and 
it is unlikely that one would encounter this in an empirical setting. Thus, we expect 
that it is unlikely that admissible matrices are found in practice, which is in line with 
the experimental results from Van de Velden et al. [17], who never found an admissible 
matrix when generating random matrices.

Based on the sufficient conditions shown in Theorem 5.4 we are able to generate 
admissible matrices. This implies that there exist matrices F1 and F2 with the same 
k-dimensional approximation. The described procedure is flexible both in terms of k and 
the number of singular values that may change. Firstly, this procedure works for any 
value of k. Suppose we have a suitable F in the form of (19) for which an admissible 
matrix exists. If we want to find an admissible matrix for larger values of k, we can 
increase the size of block F11. This larger matrix is expected to satisfy the sufficient 
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conditions, so the admissible matrix exists as well. Secondly, we can control the number 
of singular values that differ between F1 and F2 by adjusting the number of blocks 
shown in (19). In conclusion, k-dimensional CA solutions are not necessarily unique for 
any value of k.

In our derivations and formulations of the necessary and sufficient conditions, the 
integrality constraint of a contingency matrix was not used. Hence, the presented results 
are also applicable to non-integer matrices. Notice that when we find an admissible non-
integer matrix satisfying the conditions of Theorem 5.10, we can generate infinitely many 
admissible matrices by slightly perturbing matrix T.

Finally, it is important to note that the sufficient conditions in Theorem 5.4 are not 
the same as the necessary conditions in Theorem 4.4. In Theorem 4.4, in contrast with 
Theorem 5.4, we assume that all singular values are non-zero, so it is not known whether 
a unique matrix T exists when there are singular values that take the value zero. Also, 
Theorem 5.4 requires T to be symmetric and have singular values smaller or equal to 
1, which is not required in Theorem 4.4. By manipulating a matrix that satisfied the 
sufficient conditions in Theorem 5.4 we obtain an admissible matrix that satisfies the 
necessary conditions, but no longer satisfies the sufficient conditions, which is shown in 
the next example.

Example 6.1. Consider the original matrix

Fo =

⎛
⎜⎜⎜⎜⎜⎝

100 1 1 1 1
1 90 1 1 1
1 1 80 1 1
1 1 1 7 4
1 1 1 5 1

⎞
⎟⎟⎟⎟⎟⎠ ,

λ̃
o =

(
1 0.950 0.943 0.724 0.142

)�
,

and admissible matrix

Fa =

⎛
⎜⎜⎜⎜⎜⎝

100 1 1 1 1
1 90 1 1 1
1 1 80 1 1
1 1 1 8 3
1 1 1 4 2

⎞
⎟⎟⎟⎟⎟⎠ ,

λ̃
a =

(
1 0.950 0.943 0.726 0.043

)�
.

We can verify that TFo = Fa and h(Fo) = h(Fa) hold for the following (rounded) linear 
transformation matrix
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T =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−0.004 −0.004 −0.005 0.542 0.843
0.004 0.004 0.005 0.458 0.157

⎞
⎟⎟⎟⎟⎟⎠ ,

λT =
(
1.08 1.00 1.00 1.00 0.28

)�
.

It can be verified that T satisfies the necessary conditions, however, since T is not 
symmetric assumption A2 of Theorem 5.4 is violated.

It remains an open problem under which less restrictive sufficient conditions an ad-
missible matrix exists. Hopefully, in further research the gap between the sufficient and 
necessary conditions can be closed.

7. Conclusion

In correspondence analysis (CA), the aim is to optimally depict the rows and columns 
of a contingency table in a k-dimensional space. Van de Velden et al. [17] found in their 
experiments that the 3-dimensional CA solution uniquely corresponds with the original 
contingency table up to rotation [15]. Therefore, we investigated the uniqueness of k-
dimensional correspondence analysis (CA) solutions.

We presented a relationship between a contingency table and the k-dimensional so-
lution [9]. We provided stylised examples in which two tables exist with the same 
k-dimensional CA solution. In the first main result, we outlined necessary conditions 
that must be satisfied for a non-unique CA solution to exist. In the second main result, 
we presented sufficient conditions for the existence of non-unique CA solutions. This is 
followed by a method that generates tables with a non-unique CA solution based on the 
sufficient conditions.

The two main results have several implications. Firstly, based on the sufficient condi-
tions we concluded that contingency tables with a non-unique CA solution exist for any 
value of k. In addition, we showed that two tables with the same low-dimensional CA 
solution are uniquely related by a linear transformation. Lastly, based on the necessary 
conditions it is unlikely to find such tables in practice, thereby confirming the experi-
mental results of Van de Velden et al. [17], who always found contingency tables with a 
unique CA solution.
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