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Abstract
Background: Advances in targeted therapy development and tumor sequencing technology 
are reclassifying cancers into smaller biomarker-defined diseases. Randomized controlled 
trials (RCTs) are often impractical in rare diseases, leading to calls for single-arm studies 
to be sufficient to inform clinical practice based on a strong biological rationale. However, 
without RCTs, favorable outcomes are often attributed to therapy but may be due to a more 
indolent disease course or other biases. When the clinical benefit of targeted therapy in a 
common cancer is established in RCTs, this benefit may extend to rarer cancers sharing the 
same biomarker. However, careful consideration of the appropriateness of extending the 
existing trial evidence beyond specific cancer types is required. A framework for extrapolating 
evidence for biomarker-targeted therapies to rare cancers is needed to support transparent 
decision-making.
Objectives: To construct a framework outlining the breadth of criteria essential for 
extrapolating evidence for a biomarker-targeted therapy generated from RCTs in common 
cancers to different rare cancers sharing the same biomarker.
Design: A series of questions articulating essential criteria for extrapolation.
Methods: The framework was developed from the core topics for extrapolation identified  
from a previous scoping review of methodological guidance. Principles for extrapolation 
outlined in guidance documents from the European Medicines Agency, the US Food and  
Drug Administration, and Australia’s Medical Services Advisory Committee were  
incorporated.
Results: We propose a framework for assessing key assumptions of similarity of the disease 
and treatment outcomes between the common and rare cancer for five essential components: 
prognosis of the biomarker-defined cancer, biomarker test analytical validity, biomarker 
actionability, treatment efficacy, and safety. Knowledge gaps identified can be used to 
prioritize future studies.
Conclusion: This framework will allow systematic assessment, standardize regulatory, 
reimbursement and clinical decision-making, and facilitate transparent discussions between 
key stakeholders in drug assessment for rare biomarker-defined cancers.
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Box.  Glossary of terms.

Prognostic biomarker—a biomarker variant that describes a population that differs in clinical outcome 
or natural history from a population without this variant regardless of treatment. Outcomes are typically 
observed in those on non-targeted control treatment or best supportive care.
Predictive biomarker—a biomarker that can indicate (1) a druggable target or oncogenic pathway is 
present to identify a population that will benefit from a matched therapy with improved health outcomes 
compared to non-targeted control treatment, or (2) a resistance pathway that identifies a population of 
patients for which the targeted therapy is ineffective thereby guiding choice of therapy. It is also referred 
to as “biomarker actionability.”
Positive predictive value—proportion of patients who test positive by a test being assessed, who also test 
positive by a reference test or evidentiary standard test. It can also be thought of as the probability that a 
test correctly identifies the biomarker.
Negative predictive value—proportion of patients who test negative by a test being assessed, who also 
test negative by a reference test or evidentiary standard test. It can also be thought of as the probability 
that the test correctly identifies absence of the biomarker.
Positive percent agreement—proportion of individuals with the biomarker by the clinical utility standard 
test who also test positive with the new test.
Negative percent agreement—proportion of patients without the biomarker by the clinical utility 
standard test who also test negative with the new test.
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Introduction
Advances in high-throughput sequencing tech-
nology and improved understanding of molecular 
drivers of carcinogenesis1 continue to identify 
potentially targetable molecular alterations and 
pathways.2–4 As a result, the drug development 
paradigm is shifting to include approaches that 
match targeted therapies to specific molecular 
alterations. Effectiveness of targeted therapy in 
one histology in the presence of a matching 
molecular alteration, also referred to herein as a 
“predictive biomarker,” might then establish a 
rationale for classifying other cancer types with 
the same biomarker, as a potentially histology-
independent, druggable target (Box). In this way, 
cancers may be classified into smaller subgroups.

Small population size presents a critical practical 
challenge for generating robust evidence within 
an acceptable timeframe for regulatory approval 
and reimbursement of novel targeted therapies. 
Typically, novel therapies are assessed through 
comparison with standard-of-care treatment on 
measures of net clinical benefit, such as overall 
survival (OS) and quality of life, from randomized 
controlled trials (RCTs).5,6 However, adequately 
powering RCTs for these measures for each bio-
marker-defined cancer subgroup may be infeasi-
ble. Thus, there are calls for approval of 
molecularly targeted therapies to be based on 
non-randomized studies, including basket stud-
ies, using intermediate endpoints such as objec-
tive response rates (ORRs).7–9 Tempering these 
calls, reviews of phase III RCTs have shown the 
clinical benefit of molecularly targeted therapies 

is often only modest when compared with stand-
ard-of-care non-targeted therapies.10–12 Further, 
post-approval commitments and timely with-
drawal of drugs do not always occur when 
required, potentially exposing patients to thera-
pies that are less effective and/or more harmful 
than previously assumed.13–15 Uncontrolled his-
tology-agnostic studies provide valuable proof-of-
concept evidence for rare cancer populations. 
However, without randomized comparison, it is 
difficult to differentiate the clinical benefit of tar-
geted treatment from the natural course of the 
disease process (“natural history”) for each can-
cer type, other biases such as selection bias and 
especially to distinguish any predictive properties 
from any prognostic properties of the biomarker 
for each cancer type (Box). RCTs in rare cancers, 
albeit on intermediate or surrogate outcomes, are 
ideal and recommended wherever possible. 
Innovative trial designs are being developed to 
increase study power to assess the predictive value 
of a biomarker and include biomarker-adaptive 
designs using classical or Bayesian methods for 
randomization according to biomarker status and 
treatment group.16–19 However, as demonstrated 
by regulatory decisions based on non-randomized 
evidence,20 there is an immediate need for a 
framework to support transparent decision-mak-
ing where robust RCT data on clinically relevant 
outcomes is not available.

In this paper, we address the problem where RCT 
evidence of the effectiveness of targeted treatment 
is available for at least one cancer type (referred to 
herein as the “common cancer”), and the 
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question is whether it can also be recommended 
in other cancers sharing the same biomarker for 
which a new RCT is not feasible on clinically rel-
evant outcomes due to small population size 
(referred to herein as the “rare cancer”). In this 
context, extrapolation refers to the leveraging or 
extending process whereby an indication for use 
of a therapy in a new patient population can be 
supported by existing clinical data from a related 
studied patient population.21–23 Extrapolation of 
evidence from drugs already approved in adults is 
accepted to support submissions for pediatric use 
provided that the disease course and treatment 
response are sufficiently similar in both popula-
tions.22,23 Similarly, in rare biomarker-defined 
cancer populations, it may be possible to extrapo-
late evidence from similar populations where 
robust RCT evidence exists for the same targeted 
therapy to support regulatory approval in the rare 
cancer.21 However, careful consideration of the 
appropriateness of extending the existing trial evi-
dence beyond specific cancer types is required.

In this framework, we outline a series of questions 
to guide extrapolation of evidence for a molecu-
larly targeted therapy generated from RCTs in 
common cancers to different rare cancers sharing 
the same biomarker.

Extrapolation framework

Current approach for evaluation
RCTs enrolling patients with biomarker-positive 
and biomarker-negative disease to compare the 
targeted therapy against standard non-targeted 
care can provide definitive evidence to assess 
treatment effectiveness in both groups and distin-
guish the prognostic and predictive value of a bio-
marker (Figure 1(a)). For targeted therapies in 
the common cancer, RCTs may provide this 
comprehensive evidence. Where data is restricted 
to the biomarker-positive population, stronger 
evidence for treatment efficacy and/or evidence 
across a range of cancer types is required for 
extrapolation. For rare biomarker-defined can-
cers, targeted therapies are typically assessed in 
single-arm studies in the biomarker-positive pop-
ulation (Figure 1(b)). In this scenario, pragmatic 
cross-study comparisons with a historical control 
group are usually relied upon to support claims of 
treatment effectiveness. Ideally, prognostic stud-
ies in patients with the rare cancer, treated with 
the same standard (non-targeted) treatment or 
best supportive care, and known biomarker status 

would be available for these comparisons (Figure 
1(c)). These studies allow assessment of both the 
prognostic value of the biomarker in the rare can-
cer by comparing outcomes for biomarker-posi-
tive and biomarker-negative patients; and provide 
an untreated historical control group for cross-
study comparison with the single-arm study/stud-
ies of the targeted therapy to determine treatment 
effectiveness. Our previous scoping review of 
methodological guidance showed regulatory 
agencies, health technology assessment (HTA) 
bodies, research groups, and others use different 
approaches for this assessment.24 Each group 
incorporated additional topics to guide extrapola-
tion of evidence from common to rare cancers, 
but we did not identify a framework to promote 
the explicit assessment of commonly used 
criteria.

Extrapolation framework
We developed the framework from the core topics 
for extrapolation identified from the scoping 
review24 and incorporated the principles outlined 
in the medicines extrapolation framework of the 
European Medicines Agency.21 The framework is 
presented as a series of questions articulating 
essential criteria for extrapolation, with illustrative 
examples. The criteria reflect key assumptions of 
similarity for the disease definition and treatment 
outcome between the common and rare cancer 
(Table 1). To support the assumption of similar 
treatment outcomes, extrapolation can be more 
readily considered if the targeted treatment is pro-
posed as last-line therapy in the rare cancer. 
Extrapolation would be more complex if effective 
alternative therapies existed. We have further out-
lined a pragmatic approach for evaluating existing 
evidence to judge these criteria for regulatory 
approval, reimbursement, and clinical decisions 
(Figure 2). The level of uncertainty for each crite-
rion can be judged based on existing approaches 
for evidence-based decision-making.25 Each crite-
rion should be considered individually and then 
the overall assessment should be made based on 
the totality of the evidence to judge whether ade-
quate to conclude treatment effectiveness and 
favorable benefit–risk profile26 in the rare cancer. 
The evidence available for each criterion may 
increase or decrease uncertainty for the overall 
judgment (Table 2). Knowledge gaps where lim-
ited evidence exists should inform future research 
to acquire additional data. The framework is 
intended to describe the criteria that need to be 
explicitly addressed for decision-making. It is not 
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Common Cancer Rare Cancer

a. Randomized controlled trial, 
clinical outcome

b. Single-arm trial c. Historical control d. Randomized controlled trial, surrogate 
endpoint

Common cancer

Biomarker
Positive & Negative

Randomization

Control Treatment

Surrogate Surrogate

Outcome Outcome

Surrogate
validation

Biomarker prognostic value:
Difference in outcome for 

biomarker positive vs negative

Targeted treatment effectiveness: 
Randomized controlled trial treatment vs control

Biomarker predictive value: 
difference in treatment effectiveness for biomarker 

positive vs negative (biomarker-treatment interaction)

Rare cancer Rare cancer Rare cancer
Single cancer type or Pan-cancer

Biomarker
Positive & NegativeBiomarker Positive Biomarker Positive

Treatment Control Treatment

Surrogate Surrogate

Outcome Outcome

Control

Targeted treatment effectiveness in biomarker 
positive: single-arm treatment vs historical control
Targeted treatment effectiveness in biomarker 

negative: not assessed

Biomarker prognostic value:
Difference in outcome for 

biomarker positive vs negative

Targeted treatment effectiveness: 
Randomized controlled trial for biomarker 
positive on surrogate outcome validated in 

common cancer

Randomization

Figure 1.  Approach for evaluating biomarker-targeted therapies in common and rare cancers.
In the common cancer, RCTs enrolling patients with biomarker-positive and biomarker-negative diseases to compare the targeted therapy against 
standard non-targeted care may be feasible. This provides definitive evidence to assess treatment effectiveness in both groups and distinguish the 
prognostic and predictive value of a biomarker (a). For rare biomarker-defined cancers, targeted therapies are typically assessed in single-arm 
studies in the biomarker-positive population (b) and rely on cross-study comparisons with a historical control group to support claims of treatment 
effectiveness (c). RCTs in the rare cancer or across multiple rare cancer types, albeit on surrogate endpoints, may be possible and recommended. 
Relative treatment benefits from a common cancer could be extrapolated to the rare cancer(s) sharing the same biomarker based on comparable 
outcomes measured by the same validated surrogate endpoint in both the common and rare cancers (d).
RCT, randomized controlled trial.

intended to be prescriptive since the suitability for 
data extrapolation will likely vary for different bio-
marker-targeted therapy-cancer scenarios. The 
reporting of this study conforms to the RIGHT 
statement modified for a research framework27 
(Supplemental Material).

Components
We propose assessing disease similarity under 
three extrapolation components: (1) “Prognosis” 
addressing clinical outcomes of biomarker-
defined cancer in the absence of targeted treat-
ment to inform control data, (2) “Analytical 
Validity” addressing the performance characteris-
tics of the test used to identify the biomarker, and 
(3) “Biomarker Actionability” addressing the evi-
dence that the biomarker represents a dominant 
targetable molecular pathway and predicts the 

effect of the therapy being assessed. We propose 
assessing similarity of treatment outcomes under 
two components: (4) “Efficacy” addressing pre-
dictions of similar clinical benefit between can-
cers based on signals of efficacy on intermediate/
surrogate outcomes in the rare cancer and (5) 
“Safety” addressing similarity of the safety profile 
between cancers and methods to augment safety 
data in the rare cancer. The order of the compo-
nents is not fixed, and a pragmatic approach may 
be to start with identifying the best available evi-
dence of treatment outcomes in the rare cancer 
first and addressing other criteria later.

Disease definition
Prognosis
Criterion (1a) Is the prognosis of the biomarker-
positive rare cancer adequately described and 
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estimated with adequate precision for use as a his-
torical control?

The prognosis of biomarker-positive rare cancers 
describes the natural history in the absence of tar-
geted therapies. Natural history may be available 
for the histology-defined cancer without bio-
marker information. However, targeted therapies 
are developed to reverse or inactivate an aberrant 
biological pathway and the related biomarker may 
be associated with unfavorable, favorable, or neu-
tral prognosis. For example, HER2 gene amplifi-
cation or overexpression is a poor prognostic 
factor in breast cancer29 and anti-HER2 

therapies, such as trastuzumab, have been shown 
to reverse the natural history of this poor progno-
sis disease.30

Historical control data for the biomarker-positive 
population could be obtained from retrospective 
biomarker analyses of RCTs or cohort studies 
testing non-targeted therapy, and real-world stud-
ies annotated with biomarker data (e.g. electronic 
health record data or registries). Critical require-
ments for such prognostic studies include unbi-
ased patient selection, large sample size, uniform 
treatment, high-quality data collection for marker 
status at baseline, identification of potential 

Table 1.  Extrapolation criteria.

Disease definition

(1) Prognosis

Criterion (1a) Is the prognosis of the biomarker-positive rare cancer adequately described and estimated 
with adequate precision?

Criterion (1b) Could favorable outcomes in single-arm studies in the biomarker-defined rare cancer be due 
to better prognosis?

(2) Analytical validity

Criterion (2a) If the biomarker test proposed in the rare cancer is the same test used in the common cancer 
pivotal trial, have the performance characteristics of the test been assessed in the rare cancer?

Criterion (2b) Can the scoring criteria or molecular grouping strategy to define the biomarker-positive and 
biomarker-negative subgroups established in the common cancer be directly applied to the rare cancer or 
does it require modification?

Criterion (2c) What is the prevalence of the biomarker in the rare cancer? Does this prevalence change 
over the course of the disease? What is the performance of the proposed test in low-prevalence 
biomarker-positive rare cancers?

Criterion (2d) Is the test proposed  in the rare cancer different to the test used in the common cancer? If so, has 
the new/alternative test been analytically validated against the evidentiary standard test in the rare cancer?

(3) Biomarker actionability

Criterion (3a) How strong is the evidence supporting biomarker actionability in the rare cancer?

Criterion (3b) Is there evidence that suggests treatment effect in the rare cancer may differ from the 
common cancer thereby not supporting extrapolation?

Treatment outcome

(4) Efficacy

Criterion (4) Is there a validated surrogate endpoint that can be used to extrapolate the clinical benefit of 
targeted therapy from the common cancer to the rare cancer? Are estimates of targeted therapy efficacy 
based on this surrogate endpoint similar between the common and rare cancer?

(5) Safety

Criterion (5) Are the adverse events experienced in the rare cancer similar to those experienced in the 
common cancer? Are there any clinically meaningful differences between cancers?
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(1) Prognosis

(4) Efficacy

(2) Analytical validity

(3) Biomarker 
       actionability

Evidence Evaluation

Extrapolation criteria

Additional Evidence:
Pre-approval

Criteria met

Residual uncertainties

Criteria met

Knowledge gaps

Judgements based on totality of evidence
Extrapolation & Additional evidence

Additional Evidence:
Post-approvalRegulatory Decision

Positive
Risk-benefit 
assessment 

Inadequate 
evidence for 
Risk-benefit 
assessment

Provisional or 
regular approval
Post-approval 
commitments
- pre-specified
- address residual 
uncertainties

Not approved
Rejected

New evidence
- Post-approval
  commitments
- Real world 
  studies
- Independent 
  studies

Support 
treatment benefit
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treatment benefit
Review of regulatory 
approval decisionDi
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(5) Safety

Criteria met

Residual uncertainties

Criteria met

Knowledge gaps

Criteria met
Residual uncertainties

Criteria met

Knowledge gaps

Criteria met

Residual uncertainties

Criteria met

Knowledge gaps

Criteria met

Residual uncertainties

Criteria met

Knowledge gaps

Not approved
Separate rare 
cancer studies 
required

Negative
Risk-benefit 
assessment

Figure 2.  Extrapolation framework: decision tree.
A pragmatic approach for evaluating existing evidence for molecularly targeted therapies in rare biomarker-defined cancers for regulatory and 
clinical decision-making. Existing evidence for the same targeted therapy from common cancers sharing the same biomarker is considered and 
judged according to extrapolation criteria for applicability to the rare cancer histotype.

confounders, complete and long-term follow-up 
for clinical outcome assessment, and outcome 
ascertainment with sufficient precision and repli-
cability.31,32 The Reporting Recommendations for 
Tumor Marker Prognostic Studies checklist for 
reporting prognostic marker studies details impor-
tant issues for study design and conduct.33,34

When natural history data are only available for 
the rare cancer type without biomarker stratifi-
cation, extrapolating data on prognosis of the 

biomarker-positive tumor from the common to 
rare cancer might provide the best available evi-
dence but it is associated with high level of 
uncertainty. Statistical modeling techniques 
such as propensity score matching to generate 
synthetic control arms, and adjusting for known 
prognostic factors including differences in his-
totypes, could be used to better estimate prog-
nosis, but such approaches are still limited as it 
is not possible to account for all possible 
confounders.35–43

Table 2.  Assessment of uncertainty when extrapolating evidence for transparent decision-making.

Judgmenta Evidence assessed for each criteriona Decision assessed from evidence for all criteriab

Important uncertainty No research evidence identified or 
searched for

Use criteria to identify or plan studies for later 
reassessment

Possibly important uncertainty Judgment
Responses from other extrapolation 
criteria increase uncertainty

Identify additional evidence required pre-approval

Probably no important 
uncertainty

Judgment
Responses from other extrapolation 
criteria decrease uncertainty

Provisional or regular approval, define post-
approval commitments

Source: Adapted from Piggott et al.28

aJudgment for the level of uncertainty for extrapolation should be made individually for each criterion. Judgments from other extrapolation  
criterion either increase or decrease certainty of each criterion.
bThe final decision should be made based on the totality of the evidence. If there is probably no important uncertainty for most of the criteria, 
then there is likely sufficient evidence to support regulatory approval. Any substantial knowledge gaps identified resulting in possibly important 
uncertainty for one or more criteria should define additional studies required pre-approval. If there is important uncertainty for many or most of  
the criteria, further studies are required to address knowledge gaps for later reassessment. Judgment for decision-making should be  
individualized and consider estimated benefits versus risks of targeted therapy compared to alternative therapies if available.
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Criterion (1b) Could favorable outcomes in sin-
gle-arm studies in the biomarker-defined rare 
cancer be due to better prognosis?

Evidence that a biomarker has no or worse prog-
nostic impact in rare cancer provides greater con-
fidence that favorable outcomes from a single-arm 
study may be attributable to the targeted therapy. 
Even so, other biases, such as selection bias, may 
lead to better outcomes in single-arm studies. 
Any given biomarker may be prognostic but not 
predictive, predictive but not prognostic, both 
prognostic and predictive, or neither prognostic 
nor predictive. HER2 overexpression in breast 
cancer is an example of a biomarker that is both 
prognostic and predictive.29,30 When biomarker 
expression is associated with good prognosis, 
such as in the case of hormone receptor-positive 
breast cancer, the benefit of targeted treatments 
will be difficult to establish in the absence of 
RCTs. Favorable clinical outcomes from single-
arm studies are often assumed to be the effect of 
the targeted therapy but may, in fact, be due to 
the indolent natural history of cancer.

Analytical validity.  Analytical validity refers to the 
analytical performance characteristics of a test to 
reliably detect the biomarker in a biological speci-
men. Measures include concordance, sensitivity, 
and specificity against a validated test, and repro-
ducibility. Assessment of the analytical validity of 
the biomarker test (assay/technology) is distinct 
to, but predicated on, the clinical utility of the 
biomarker to predict treatment benefit. The piv-
otal RCTs that established targeted treatment 
effectiveness in the common cancer, also establish 
the clinical utility of the biomarker in the com-
mon cancer.44 As such, the biomarker test used in 
the pivotal RCT is generally regarded as the “clin-
ical utility standard” (or evidentiary standard) 
test for assessment of analytical performance. 
However, the analytical performance characteris-
tics of the test established in common cancers 
may or may not be directly relevant to rare  
cancers.44–46 Two central issues are: first, without 
an RCT to validate the biomarker predicts treat-
ment benefit in the rare cancer, assessing the ana-
lytical validity of the biomarker test for use in the 
rare cancer will be more complex. Second, as 
technology evolves, the biomarker test proposed 
in the rare cancer may not be the same as that 
used in the pivotal RCT in the common cancer. 
These and other issues that should be considered 
when evaluating analytical validity of the bio-
marker test are outlined below:

Criterion (2a) If the biomarker test proposed in 
the rare cancer is the same test used in the com-
mon cancer pivotal trial, have the performance 
characteristics of the test been assessed in the rare 
cancer?

The test proposed in the rare cancer may be the 
same test used in the RCT of the common can-
cer. Pre-analytic factors that affect quality of ana-
lytes include specimen type (e.g. core tumor 
biopsy vs blood), preservation (e.g. fresh vs for-
malin-fixed paraffin-embedded), tissue fixation 
methods (e.g. time to fixation, duration and tem-
perature of fixation, fixing agent), and specimen 
age. These factors are specified for the clinical 
utility standard test and influence the usefulness 
of the assay. Even so, biological differences 
between the cancers may alter the test’s perfor-
mance characteristics, potentially limiting appli-
cability in rare cancers. For example, excessive 
melanin pigment in some melanomas can inter-
fere with DNA polymerases used in polymerase 
chain reaction (PCR) methods and invalidate test 
results.47 Testing should be undertaken in accred-
ited laboratories. Sufficient concordance and 
reproducibility across laboratories should be 
confirmed.

Criterion (2b) Can the scoring criteria or group-
ing strategy to define the biomarker-positive and 
biomarker-negative subgroups established in the 
common cancer be directly applied to the rare 
cancer or does it require modification?

Scoring criteria.  For some binary biomarkers 
such as DNA point mutations, the same criteria 
to define the biomarker-positive and biomarker-
negative subpopulations in one cancer could be 
directly applied to another. For example, in the 
Kirsten rat sarcoma viral oncogene homolog gene, a 
single-nucleotide variation, where glycine is sub-
stituted by cysteine at codon 12 (KRAS G12C), 
results in activation of downstream signaling 
pathways. This mutation is found in some non-
small cell lung cancers (NSCLC),48,49 colorectal 
cancers (CRC),50 and pancreatic adenocarci-
noma51 and the same criteria could be used to 
classify patients across the different cancer types.

For other biomarkers, such as some quantitative 
biomarkers or gene signatures, existing criteria in 
one cancer type will always need to be modified 
for use in another cancer type. For example, in 
breast cancer, HER2 gene amplification induces 
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HER2 protein overexpression on tumor cell 
membrane and is known to be oncogenic.52,53 
Although no “gold” standard exists for detecting 
HER2 alterations,54 the scoring algorithm based 
on HER2 amplification, using HER2 gene copies 
per nucleus or the HER2 gene signals to chromo-
some 17 centromere ratio as detected by fluores-
cent or silver in situ hybridization, and HER2 
protein overexpression as detected on immuno-
histochemistry, have been widely validated in 
breast cancer as a predictive biomarker for vari-
ous HER2-targeted therapies.54–56 This scoring 
algorithm required modification before applying 
to gastric/gastroesophageal junction cancers due 
to differences in pattern of HER2 expression.57,58 
The HER2 scoring systems for CRC59 and endo-
metrial serous carcinoma60 are also modified and 
differ slightly from each of the other cancers.

Grouping strategy.  Different but related 
molecular alterations involving one or more 
genes affecting a common pathway can result 
in the same clinical disease.61 The grouping of 
alterations may be accepted if there is strong 
rationale that the group will respond similarly 
to therapy based on clinical, preclinical, or in 
silico (computational) mechanistic evidence.61 
In this way, where various molecular alterations 
comprise the biomarker-defined disease in 
the common cancer, the same grouping strat-
egy may be used to define the disease in the 
rare cancer. To illustrate, numerous “deleteri-
ous” mutations of the breast cancer susceptibil-
ity genes 1 and 2 affect a common DNA repair 
pathway resulting in a similar phenotype that 
predicts treatment benefit with poly(adenosine 
diphosphate–ribose) polymerase enzyme inhib-
itors in breast, ovarian, prostate, and pancreatic 
cancers.62–66 Depending on the strength of sci-
entific rationale, it may be reasonable to either 
expand or restrict the alterations included in 
the common cancer trial when applying the 
data to the rare cancer.

Establishing databases of rare cancers annotated 
with comprehensive genomic profile data would 
be very useful for assay development and valida-
tion of scoring. The criteria or grouping strategy 
to define the biomarker-positive and biomarker-
negative subgroups in the rare cancer should ini-
tially be established a priori by consensus based 
on available information from common cancers. 
Rare cancer databases that also capture the natu-
ral history and clinical outcomes of targeted ther-
apies can also be used to validate the biomarker 

criteria established in the rare cancer. Modification 
of criteria may be necessary depending on find-
ings from validation studies (4).

Criterion (2c) What is the prevalence of the bio-
marker in the rare cancer? Does this prevalence 
change over the course of the disease? What is the 
performance of the proposed test in low-preva-
lence biomarker-positive rare cancers?

Biomarker prevalence can vary widely across dif-
ferent cancer types, stages, treatments, and dis-
ease trajectories.67 For example, mismatch repair 
deficiency (dMMR) results from mutations in a 
family of genes involved in DNA repair. This 
biomarker is considered to be predictive of 
immunotherapy benefit, and pembrolizumab, a 
programmed death 1 (PD-1) inhibitor, has been 
approved for solid tumors with dMMR follow-
ing progression on prior treatment.68,69 The 
prevalence of dMMR varies widely across histo-
types, ranging from approximately 28% in endo-
metrial cancer70 to 0.04% in breast cancer.71 
Furthermore, within the same cancer, such as 
CRC, prevalence of dMMR can also vary 
between early-stage disease (10%–20%) and 
advanced-stage disease (3%–4%).72 Biomarker 
status can also change over the course of the dis-
ease as part of the disease trajectory and/or result 
of previous treatment.44,73

For a test with a given analytical sensitivity and 
specificity, changes in biomarker prevalence can 
significantly alter its positive predictive value 
(PPV) and negative predictive value (NPV)44 
(Box). A test with high sensitivity and specificity 
will have poorer PPV in cancers where biomarker 
prevalence is low compared to other cancers with 
higher prevalence of the same biomarker. The 
same test will have poorer NPV in cancers where 
biomarker prevalence is high compared to can-
cers with lower biomarker prevalence.45,73 
Incorrect classification of a patient (a false posi-
tive or false negative result) can potentially result 
in incorrect treatment recommendations.73

The prevalence range of the biomarker in the rare 
cancer as determined by the proposed test for the 
disease setting should be assessed. The PPV and 
NPV of the test can be calculated using estimates 
of sensitivity and specificity.44 In rare cancers 
with low biomarker prevalence, a test with sensi-
tivity and specificity approaching 100% should be 
used whenever possible to minimize the false neg-
ative and false positive rates, respectively.73 
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Tolerance of a higher false positive rate would 
depend on the potential for treatment harm, 
treatment costs, and delays to more effective 
alternative therapies if available.

Criterion (2d) Is the test proposed in the rare can-
cer different to the test used in the common can-
cer? If so, has the new/alternative test been 
analytically validated against the evidentiary 
standard test in the rare cancer?

With advancements in diagnostic technology fol-
lowing the pivotal treatment trial in the common 
cancer, a new test may be considered a more valid 
measure of the biological target. The new test pro-
posed to identify the biomarker in the rare cancer 
may use similar (e.g. two different commercially 
developed PCR tests) or different (e.g. panel point 
mutations vs whole exome sequencing) technol-
ogy. When the test proposed for the rare cancer is 
not the same test used in the common cancer, it 
may result in discordance between the biomarker-
defined populations using each test.74 Retrospective 
testing of patient samples from the pivotal trial to 
assess concordance with an accepted clinical utility 
standard test and linked with clinical outcome data 
is ideal and should be done if possible75,76 but may 
not be feasible.77 Concordance measures include 
positive percent agreement, negative percent 
agreement, and overall percent agreement (Box). 
However, different organizations have adopted dif-
ferent criterion and the extent of sufficient agree-
ment is an unresolved issue.78–80 Discrepancies are 
resolved using another orthogonal method.77 
Intra-observer, inter-observer, and inter-labora-
tory reproducibility is assessed where appropri-
ate.45,81 Where discordance exists between the two 
tests, there would be insufficient evidence of clini-
cal utility of the biomarker as defined by the new 
test in rare cancer.

Biomarker actionability.  A biomarker is poten-
tially “actionable” if it represents (i) a molecular 
pathway driving oncogenesis and tumor progres-
sion that can be mitigated or reversed by targeted 
therapy to improve clinical outcomes and is not 
also affected by (ii) a resistance pathway so that 
targeted therapy rapidly becomes ineffective. 
Critical to demonstrating actionability is evidence 
of the ability of the biomarker to predict clinical 
outcomes. Methods to validate a predictive bio-
marker within a specific cancer type utilizing trial 
designs to assess for the biomarker-treatment 
interaction are established.82 When assessing the 
predictive value of a biomarker in rare cancers 

utilizing Bayesian adaptive trial designs, increased 
biological understanding may reasonably shift 
Bayesian priors. In this paper, we assume the pre-
dictive value of the biomarker has been validated 
in the common cancer. Scenarios where this does 
not hold are beyond the scope of this work.

A principal assumption for extrapolation is that 
the biomarker is equally actionable for both the 
common and rare cancers, but this might not be 
the case. Assessment of biomarker actionability in 
the rare cancer may be informed by considering 
the two questions outlined below:

Criterion (3a) How strong is the evidence sup-
porting biomarker actionability in rare cancer?

Frameworks ranking biomarkers according to 
strength of evidence supporting actionability have 
been published and can inform this assessment in 
rare cancers.83–89 Top-tier evidence of biomarker 
actionability for matching targeted therapy is 
established in prospective, adequately powered 
RCTs on measures of net clinical benefit—often 
established for common cancers. In rare cancers 
where RCTs utilizing these outcome measures 
are not possible, these frameworks make recom-
mendations for ranking the strength of evidence 
supporting actionability and include (i) retrospec-
tive studies showing clinical benefit from targeted 
therapy in the biomarker-positive versus bio-
marker-negative group, (ii) prospective studies 
showing increased tumor responsiveness without 
data on survival endpoints, (iii) evidence for a 
top-tier association but in a different cancer histo-
type, (iv) preclinical models predicting sensitivity 
to matched therapy without clinical data, and (v) 
in silico evidence predicting functional impact 
similar to that seen for a biomarker-therapy match 
in different histotypes. Evidence supporting the 
biological rationale in the rare cancer should be 
ranked according to strength of clinical validity 
using these frameworks. Extending these frame-
works, we propose considerations for downgrad-
ing the strength of the evidence for actionability 
in the rare cancer below.

Criterion (3b) Is there evidence that suggests the 
treatment effect in the rare cancer may differ from 
that in the common cancer thereby not support-
ing extrapolation?

Clinical, preclinical, and mechanistic evidence for 
different actionability across cancers should be 
assessed.
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Cellular context and tumor microenviron-
ment.  Complex interactions between the bio-
marker and the cellular context or tumor 
microenvironment unique to a specific tumor 
type may exist and alter the actionability of the 
biomarker. Pembrolizumab received histology-
agnostic FDA approval for the treatment of 
advanced solid tumors with a high tumor muta-
tional burden (TMB-H) for patients who have 
no other alternative therapeutic options based on 
the non-randomized, open-label KEYNOTE-158 
study.90 However, clinical benefit was shown to 
differ across TMB-H tumors where ORR in 
endometrial cancer was 47% while in anal can-
cer only 7%, suggesting that tumor microenviron-
ments may influence treatment response and that 
the predictive ability of TMB may not be uniform 
across different cancer types.91–94

Compensatory resistance pathways.  Even if a 
molecular alteration is a driver across multiple 
cancers and these are treated with the same tar-
geted agent(s), emergence of compensatory resist-
ant pathways may differ across cancer types.95 For 
example, v-raf murine sarcoma viral oncogene 
homolog B1 (BRAF) inhibitor vemurafenib has 
been evaluated in a range of BRAF V600-mutant 
histotypes including melanoma, NSCLC,96,97 and 
CRC.96 In melanoma, RCTs have demonstrated 
vemurafenib improved OS compared to dacar-
bazine chemotherapy.98,99 In a non-randomized 
basket trial, response rates in NSCLC (42%)96 
were comparable to melanoma99 but no responses 
were seen in CRC.96 Subsequent preclinical stud-
ies have shown that vemurafenib monotherapy 
results in rapid acquired resistance to BRAF 
inhibition in CRC but not in the other cancer 
types.95,100 This finding has been subsequently 
confirmed in a prospective RCT with dual inhibi-
tion of BRAF and epidermal growth factor recep-
tor pathways.101

Significant differences in the cellular or tumor 
microenvironment and/or compensatory resist-
ance pathways between common and rare cancers 
downgrade the strength of the evidence for action-
ability and raise uncertainty about extrapolation.

Treatment outcomes
Efficacy.  A principal assumption of extrapolation 
is that the common and rare cancers sharing the 
same biomarker are similar in prognosis and 
response to targeted treatment such that the same 
treatment effect could be expected.102 When 

efficacy of targeted therapy is only evaluated in 
single-arm trials, relative treatment benefit could 
be extrapolated from the common cancer to the 
rare cancer provided that: (i) RCT data confirms 
net clinical benefit in the common cancer, and (ii) 
signals of efficacy from single-arm or randomized 
studies in the rare cancer are comparable between 
the common and rare cancer based on the same 
validated surrogate endpoint measure(s).102 Simi-
larly, where clinical benefit of targeted therapy 
has been demonstrated in a range of heteroge-
neous cancer types grouped together by the same 
actionable biomarker profile in a “pan-cancer” 
study, clinical benefit may reasonably be extrapo-
lated to each rare cancer type provided signals of 
efficacy on the surrogate measures are similar. 
For example, fam-trastuzumab deruxtecan is a 
HER2 directed antibody–drug conjugate which 
has been shown to improve ORR, duration of 
response (DOR), and OS compared to physi-
cian’s choice chemotherapy in HER2 overex-
pressed/amplified, previously treated, metastatic 
breast cancer (ORR 70% vs 29%, median DOR 
19.6 months vs 8.3 months, HR for OS 0.66, 
p = 0.0021).103 HER2 overexpression is found 
across diverse cancer types but prevalence rates 
can be low. In endometrial and cervical cancers, 
the prevalence of HER2 overexpression in these 
tumors is approximately 4%.104 In April 2024, the 
FDA granted accelerated tumor-agnostic approval 
to fam-trastuzumab deruxtecan for patients with 
previously treated, advanced HER2-positive 
(Immunohistochemistry (IHC) 3+) cancers who 
have no satisfactory alternative treatment 
options.105 This approval was based on a pan-
cancer single-arm basket trial showing a compa-
rable ORR of 61.3% and median DOR of 
22.1 months.106 Magnitude of benefit was par-
ticularly high in IHC 3+ endometrial (ORR 
84.6%, DOR not reached) and cervical cohorts 
(ORR 75%, DOR 14.2 months).106 These results 
compare favorably to historical controls where 
survival outcomes are poor and chemotherapy 
response rates are low.107,108 However, there was 
no observed benefit in the pancreatic cohort 
(ORR 4%, DOR 5.7 months).106 Concurrent 
control comparison may not be feasible in all rare 
cancer cohorts. Hence uncertainties will remain 
when the overall treatment effect is applied in 
each of the different rare cancer cohorts.

Surrogate measures may include progression-free 
survival (PFS), ORR, pharmacokinetic/pharma-
codynamic (PK/PD) properties, circulating 
tumor DNA levels, and functional imaging 
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responses. Heterogeneity of treatment effect on 
surrogate measures may be tested. This approach 
has been supported by regulatory and HTA bod-
ies including the The Food and Drug 
Administration (FDA), The European Medicines 
Agency (EMA), United Kingdom’s National 
Institute for Health and Care Excellence and 
Australia’s Medical Services Advisory 
Committee.22,44,61,109

RCTs in rare cancers are ideal wherever possi-
ble, including the use of novel trial designs such 
as randomized basket trials using intermediate 
outcomes, to strengthen the evidence of effi-
cacy as compared with relying solely on non-
randomized trials. Beyond clinical trials in rare 
cancers, the organized collection of clinical out-
come data from post-marketing studies,110 reg-
istries, and real-world studies should be 
prioritized to continuously build the body of 
evidence. When considering extrapolation of 
relative treatment effect, the following ques-
tions should be considered:

Criterion (4) Is there a validated surrogate end-
point that can be used to extrapolate the clinical 
benefit of targeted therapy from the common 
cancer to the rare cancer? Are estimates of tar-
geted therapy efficacy based on this surrogate 
endpoint similar between the common and rare 
cancer?

Treatment outcomes based on surrogate end-
points, such as PFS or ORR, used for extrapola-
tion should be adequately assessed to determine 
whether they reliably predict treatment benefits 
for OS.111–114 It is generally not feasible to ade-
quately validate surrogate endpoints in rare can-
cer studies, particularly in the absence of trials of 
randomized design. However, these surrogate 
endpoints should, at a minimum, be validated in 
the common cancer trials.

Surrogate endpoints are validated for a specified 
context of use for a specific biomarker, type of 
therapy, cancer type, and disease setting. 
Therefore, a validated surrogate endpoint for one 
cancer type is not necessarily a valid surrogate for 
a different cancer type.115 For example, in a study 
of multiple first-line chemotherapy and hormone 
therapy trials of advanced cancers, PFS was 
shown to be an acceptable surrogate for OS in 
colorectal and ovarian cancers but not in breast 
and prostate cancers.116 The minimum size of the 
surrogate difference or threshold needed to 

predict a clinical benefit gain (e.g. OS gain) can 
also differ across cancer types.117

ORR and disease stabilization measures including 
DOR and disease control rate (DCR, a combined 
measure of ORR and stable disease (SD) at a spe-
cific time-point) are commonly used as a surro-
gate for OS in oncology and as a primary endpoint 
in pivotal trials supporting regulatory approvals in 
rare cancers.118–120 Tumor shrinkage is regarded 
to be exceedingly rare in the absence of effective 
therapy and is widely perceived to precede other 
clinical improvements, including survival prolon-
gation. However, the validity of ORR as a surro-
gate for OS has not been established for most 
settings.121,122 Non-randomized trials have been 
shown to exaggerate DOR for targeted therapies 
when compared with RCTs of the same drug for 
the same setting.123 DCR as an endpoint also 
does not completely capture treatment activity as 
many tumors with indolent natural history will 
satisfy the criterion of short-term SD.124

In view of these limitations, alternative endpoints 
assessing PD response utilizing minimally inva-
sive functional technologies125 and/or composite 
endpoints may need to be considered. If vali-
dated for the specific context of use, these end-
points may prove useful for extrapolation (Figure 
1(d)). Composite endpoints may be particularly 
useful in rare cancers as they may be more sensi-
tive in detecting the spectrum of treatment effects 
and reduce sample size requirements.126,127 
Composites can also assess more than one aspect 
of the patient’s health status and incorporate 
clinically meaningful outcomes.126 If composite 
endpoints are used, they should be prespecified, 
clearly defined, weighted according to clinical 
relevance, used and reported according to pub-
lished guidance,128,129 and validated prior to use 
in different cancer types and clinical settings. 
Where evidence based on surrogate endpoints 
does not support similar efficacy between the 
common and rare cancers, extrapolation may not 
be appropriate.

Safety
Criterion (5) Are the adverse events experienced 
in the rare cancer similar to those experienced in 
the common cancer? Are there any clinically 
meaningful differences between cancers?

Another important assumption made for extrapo-
lation is that the safety profile of the targeted ther-
apy in rare cancer is similar to that of common 
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cancer. In common cancers, safety data of tar-
geted therapy from RCTs provide an unbiased 
comparison of adverse events (AEs) related to 
treatment and differentiate these from disease-
related or other non-treatment-related AEs. 
Safety data is also augmented by post-marketing 
and real-world studies that capture use in popula-
tions outside those highly selected for RCTs.

AEs are likely to be common across multiple 
cancer types. However, differences can exist 
across cancer types because of differences in co-
existing environmental exposures, comorbidi-
ties, organ-specific tumor burden, and prior 
systemic and local therapies resulting in differing 
tolerance to treatment-related toxicity.130,131 For 
example, a meta-analysis of 20 PD-1 inhibitor 
trials showed significantly higher incidence of 
pneumonitis in NSCLC and renal cell carci-
noma compared to melanoma.130 Safety data 
across cancer types should be assessed to judge 
whether differences are clinically meaningful 
and are of significant magnitude to represent 
important high uncertainty, limiting extrapola-
tion. Additional sources that may augment safety 
data in the rare cancer include natural history 
studies, auxiliary safety cohorts, expanded access 
programs, and real-world studies capturing off-
label use132,133 and PK/PD data.125 In controlled 
“pan-cancer” trials, safety data of the combined 
control arm may be heterogeneous due to the 
varying control treatments.

Decision tree
We recommend addressing all criteria for the five 
components necessary for extrapolation to inform 
decision-making for the targeted therapy in the 
rare cancer. Explicit judgments about the level of 
uncertainty for each component based on an 
assessment of the supportive evidence will result 
in a more transparent approach to regulatory 
decisions. We propose that certainty for all or 
most of the criteria is required to extrapolate the 
treatment benefit of targeted therapy from the 
common to the rare cancer. During the process of 
evidence evaluation, knowledge gaps may be 
identified in one or more component(s). 
Depending on the clinical impact of these gap(s), 
further research may be needed before extrapola-
tion can be used (Figure 2).

When there is sufficient evidence for provisional 
or regular regulatory approval, uncertainties may 
remain regarding the longer-term clinical benefits, 

safety in broader rare cancer populations, and 
spectrum of uncommon AEs. Detailed plans  
for post-approval commitments addressing spe-
cific residual uncertainties identified during pre-
approval evaluation should be outlined (Figure 2).

Strengths
The framework is an important first step to out-
line the breadth of criteria essential for evidence 
assessment for rare biomarker-defined cancers. It 
is an initial conceptual construct for stimulating 
multidisciplinary discourse toward developing a 
validated and reproducible tool that can be incor-
porated into the HTA process, clinical practice 
guidelines, and clinical decision-making. Five 
essential components of evidence assessment 
from multidisciplinary fields have been incorpo-
rated into a single framework. These components 
should be, but are not commonly, considered as a 
whole. However, consideration of only one or few 
components, such as efficacy without addressing 
prognosis or the analytic validity of the biomarker 
test, would be incomplete.

Limitations
There are several limitations. The utility of the 
framework and validity of the approach for judg-
ing extrapolation criteria and uncertainty has not 
yet been assessed. The applicability of the frame-
work across a wide range of targeted therapy-can-
cer histotype scenarios, as well as reproducibility 
and consistency of uncertainty judgments require 
testing.

Future work
As evidence for histology-agnostic-targeted thera-
pies accumulates, the extrapolation criteria may 
be refined, and anchors developed to guide uncer-
tainty judgments. A transparent process should 
be developed to assess consistency and reproduc-
ibility of uncertainty judgments by independent 
assessors. This could be undertaken by seeking 
expert consensus on trialed examples and used to 
develop a guidance document. Future studies 
evaluating the utility of this framework for regula-
tory and reimbursement decisions should be con-
ducted. Outcome measures for these studies may 
include completeness of evidence assessment and 
transparency of decisions, time taken from initial 
targeted therapy approval in a common cancer to 
additional approvals in other rare cancers sharing 
the same biomarker, clinical benefit of drugs 
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approved using this framework, and proportion of 
subsequent withdrawals.

Conclusion
We have proposed a framework for extrapolating 
evidence of treatment effects for molecularly tar-
geted therapies from common to rare cancers 
sharing the same predictive biomarker. This 
framework supports systematic assessment, 
standardized decision-making, and transparent 
discussions between key stakeholders. Where 
there is still insufficient evidence for extrapola-
tion, our approach will also help better target 
future research to address critical gaps. This will 
ultimately inform clinical practice and will benefit 
patients with rare biomarker-defined cancers to 
access safe and effective targeted therapies.
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