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Systematic Evaluation of Tyrosine Kinase 
Inhibitors as OATP1B1 Substrates Using a 
Competitive Counterflow Screen 
Thomas Drabison1, Mike Boeckman1, Yan Yang2, Kevin M. Huang1, Peter de Bruijn3, Mahesh R. Nepal1, 
Josie A. Silvaroli1, Anika T. Chowdhury1, Eric D. Eisenmann1, Xiaolin Cheng2, Navjotsingh Pabla1, 
Ron H.J. Mathijssen3, Sharyn D. Baker1, Shuiying Hu1, Alex Sparreboom1, and Zahra Talebi1 

�
 ABSTRACT 

Although the primary elimination pathway for most tyrosine kinase 
inhibitors (TKI) involves CYP3A4-mediated metabolism, the mecha-
nism by which these agents are brought into hepatocytes remains 
unclear. In this study, we optimized and validated a competitive 
counterflow (CCF) assay to examine TKIs as substrates of the hepatic 
uptake transporter OATP1B1. The CCF method was based on the 
stimulated efflux of radiolabeled estradiol-17β-glucuronide under 
steady-state conditions in HEK293 cells engineered to overexpress 
OATP1B1. Of the 62 approved TKIs examined, 13 agents were iden-
tified as putative substrates of OATP1B1, and pazopanib was selected 
as a representative hit for further validation studies. The transport of 
pazopanib by OATP1B1 was confirmed by decreased activity of its 
target VEGFR2 in OATP1B1-overexpressing cells, but not cells lacking 
OATP1B1, consistent with molecular docking analyses indicating an 
overlapping binding orientation on OATP1B1 with the known 

substrate estrone-3-sulfate. In addition, the liver-to-plasma ratio of 
pazopanib in vivo was decreased in mice with a deficiency of the 
orthologous transporters, and this was accompanied by diminished 
pazopanib-induced hepatotoxicity, as determined by changes in the 
levels of liver transaminases. Our study supports the utility of CCF 
assays to assess substrate affinity for OATP1B1 within a large set of 
agents in the class of TKIs and sheds light on the mechanism by which 
these agents are taken up into hepatocytes in advance of metabolism. 

Significance: Despite the established exposure–pharmacodynamic 
relationships for many TKIs, the mechanisms underlying the 
agents’ unpredictable pharmacokinetic profiles remain poorly un-
derstood. We report here that the disposition of many TKIs depends 
on hepatic transport by OATP1B1, a process that has toxicologic 
ramifications for agents that are associated with hepatotoxicity. 

Introduction 
The number of FDA-approved small-molecule tyrosine kinase inhibitors 
(TKI) has rapidly increased since the approval of imatinib in 2001 (1). With 
more than 60 approved drugs, TKIs have transformed the landscape of 
modern medicine, especially oncology, with TKIs being critical to the suc-
cessful treatment of several different cancers (2, 3). Historically, anticancer 

therapies were developed for intravenous administration, which would be 
given as inpatient care (4). TKIs represented a paradigm shift, as these drugs 
can be administered orally and given over prolonged periods of time in an 
outpatient setting. Although oral dosing offers convenience to patients, it 
also entails a heightened risk of interindividual pharmacokinetic variability, 
partially attributable to the limited oral bioavailability of these agents (5) and 
to drug–drug interactions stemming from polypharmacy (6, 7). Despite the 
assumption that TKIs would have a milder toxicity profile than cytotoxic 
chemotherapeutics because of their selective target engagement, these agents 
may induce severe adverse effects in patients (8, 9), including QTc prolon-
gation, sudden cardiac death, arterial thrombosis, and hepatotoxicity (10); 
these adverse events may be dose-limiting and frequently necessitate dis-
continuation of an otherwise effective therapy (9). 

Similar to observations made with classic cytotoxic chemotherapeutics (11, 
12), the initiation of adverse events associated with TKIs likely relies, at least 
in part, on drug uptake into injurious sites by xenobiotic transporters. 
Consequently, a comprehensive understanding of the specific transporters 
responsible for mediating the membrane crossing of TKIs is essential to 
predict and understand TKI-induced toxicities. Transport mechanisms for 
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TKIs have previously been evaluated on an individual basis utilizing a variety 
of methods, often involving the use of radiolabeled drugs (13), fluorescent 
probes (14), and/or mass spectrometric methods (15). However, the imple-
mentation of such nonstandardized techniques has given rise to discrep-
ancies in identifying specific proteins involved in the transport of TKIs. 
Experimental challenges in traditional, direct uptake assays, in particular the 
existence of substantial nonspecific, extracellular membrane binding, have 
limited the ability to reliably and systemically evaluate the mechanisms by 
which TKIs are taken up into cells (Supplementary Fig. S1A–S1C; ref. 14). 
Although it is technically possible to overcome artifacts associated with 
nonspecific binding by separating the outer membrane from the intracellular 
fraction in direct uptake assays (16), this procedure is cost- and labor- 
intensive and is not considered feasible for large-scale experiments (17). The 
utilization of competitive counterflow (CCF) assays presents a viable option 
for assessing whether a drug is a substrate for a given transporter, as it offers 
an indirect readout of a probe compound independent of nonspecific 
binding effects and directly compares substrate affinity for membrane 
transporters (18). In the present study, we used a CCF assay to screen FDA- 
approved TKIs in cells that overexpress the organic anion–transporting 
polypeptide OATP1B1, a transporter that is highly expressed on the baso-
lateral membrane of hepatocytes (19–22) and mediates the hepatic uptake of 
various, structurally diverse endogenous and xenobiotic compounds (19–22). 
Our study supports the utility of CCF assays to assess substrate affinity for 
OATP1B1 with a large set of agents and sheds light on the mechanism by 
which TKIs are taken up into hepatocytes in advance of metabolism. 

Materials and Methods 
Uptake assays 
Cellular accumulation assays were performed in human embryonic kidney 
cells (HEK293; RRID: CVCL_0045) that were genetically engineered to over-
express human OATP1B1 (23–25). Cell lines were authenticated by Applied 
Biosystems AmpFISTR Identifiler testing with PCR amplification. Cells were 
cultured and grown in DMEM supplemented with 10% FBS and maintained at 
37°C with 5% CO2 (23, 24). All cells were used within passage 30 and verified 
to be Mycoplasma-free using the MycoAlert Mycoplasma Detection Kit 
(Lonza). At 80% to 90% confluency, cells were seeded on poly-D-lysine–coated 
96-well plates 24 hours prior to the assay (2,500 cells/well), and expression of 
OATP1B1 was induced with 1 μg/mL doxycycline in phenol red–free DMEM. 
Transport function was assessed using a radiolabeled prototypical substrate for 
OATP1B1, estradiol [6,7-3H(N)]-17β-D-glucuronide (EβG; specific activity, 
50 Ci/mmol; purity, 99%; American Radiolabeled Chemicals). 

CCF assays 
The CCF assay uses OATP1B1-overexpressing HEK293 cells seeded and 
cultured as described above. During the study, cells were preincubated at 
room temperature (∼ 20°C) with 0.01 μmol/L EβG in prewarmed serum-free 
and phenol red–free DMEM for 1 hour. Following preincubation, each well 
was spiked with 1 μL of a stock solution containing 0.1, 1, or 10 mmol/L of 
positive control (EβG), negative control (glucose), test compound dissolved 
in Dimethylsulfoxide (DMSO), or DMSO only as a vehicle control. Fol-
lowing a 30-minute after incubation with a test compound, the assay was 
stopped by three consecutive washes with PBS at 4°C. Finally, cells were 
solubilized with 150 μL of 1% Triton X-100 in PBS for 2 hours at room 
temperature under constant agitation. A volume of 100 μL of cell lysate was 

transferred to clear-bottom 96-well isoplates, 200 μL of MicroScint-PS 
(PerkinElmer) scintillation fluid was added to each sample-containing well, 
and the plate was subsequently vortex-mixed for 30 seconds. Total radio-
activity was determined on a MicroBeta microplate scintillation counter 
(PerkinElmer), and the resulting counts were then normalized to total 
protein as determined using a Pierce protein assay (Thermo Fisher 
Scientific). 

Immunoprecipitation and kinase assay 
Immunoprecipitation (IP)-based kinase assays were performed using a 
modification of a previously reported method (24, 26). Briefly, OATP1B1 
overexpressing– or empty vector–containing HEK293 cells were transiently 
transfected with a Flag-tagged VEGFR plasmid. These cells were then treated 
with pazopanib (10 μmol/L) or vehicle control. Cell lysates collected in a 
modified RIPA buffer were then used for Flag-IP as described previously 
(26). For murine studies, hepatocytes isolated from FVB mice were seeded at 
a density of 1 � 106 per well and incubated overnight, treated with pazo-
panib (10 μmol/L) or vehicle control for 1 hour, and then collected for IP. 
For the in vitro kinase assays, myelin basic protein (Active Motif, 31314) was 
utilized as a prototypical substrate for both serine/threonine and tyrosine 
kinases to enable in vitro kinase assays because of the presence of multiple 
sites for phosphorylation. These two components were incubated in kinase 
buffer (Cell Signaling Technology, 9802) supplemented with or without ATP 
(50 μmol/L) for 30 minutes at 30°C, followed by kinase assays run using the 
ADP-Glo Kinase Assay kit (Promega). Relative kinase activity was calculated 
as compared with the vector-transfected cells. 

Molecular docking 
The human OATP1B1 structures (PDB code: 8HNB, 8HNC, 8HNH, 8K6L, 
8HND, and 8PHW), either in apo form or in complexes with different 
substrates, were obtained from RCSB PDB (https://www.rcsb.org/). Fabs and 
cholesterol hemisuccinate in 8PHW were removed. Proteins were prepared 
and minimized using Protein Preparation Wizard of Schrödinger 2020 
(RRID: SCR_016749; Schrödinger, LLC, 2020.) in the OPLS3e force field. 
Grid was generated by centering on the original ligands or three conservative 
hydrophobic residues (for apo form 8HNB) with ligand diameter midpoint 
set to 30 Å. TKIs were prepared using the LigPrep wizard (RRID: 
SCR_014879) in the same force field followed by Glide SP docking to all the 
conformation states of OATP1B1 (27). The docking pose with the best 
docking score was selected. 

Hepatocyte isolation 
Mice were euthanized via CO2 asphyxiation, and death was confirmed by 
cardiac puncture. Livers were dissected and stored in PBS supplemented 
with 1% penicillin–streptomycin and subsequently rinsed three times with 
PBS in a sterile tissue culture hood. In a Petri dish containing Hank’s Bal-
anced Salt Solution (HBSS) with 0.5 mmol/L EGTA, livers were mechanically 
dissociated with scissors. This tissue homogenate was centrifuged at 30 � g 
for 5 minutes at 4°C in a 50-mL conical tube. The supernatant was removed, 
and 10 mL of HBSS was added to the tube. The resuspended liver homog-
enate was centrifuged again at 30 � g for 5 minutes at 4°C, and the super-
natant was subsequently removed. To the liver homogenate, 10 mL of 0.05 
type IV collagenase was added in HBSS containing 10 mmol/L CaCl2. This 
was incubated at 37°C for 20 minutes under agitation. Next, 25 mL complete 
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medium was added following this incubation to stop enzymatic digestion. 
Cells were triturated via 25-mL serological pipette to resuspend and im-
mediately filtered through a 100-μm sieve. The cell suspension was centri-
fuged at 30 � g for 5 minutes at 4°C, and the supernatant was discarded. The 
cell pellet was resuspended with 12 mL complete medium and added to 
another 50-mL conical tube containing 10 mL 35% Percoll solution in HBSS. 
Cells were centrifuged at 110 � g for 15 minutes, with no braking of the 
centrifuge. The top most layer of media was discarded, whereas the hepa-
tocyte pellet remained undisturbed. Next, 30 mL of complete media was 
added, and hepatocytes were resuspended. Purified hepatocytes were 
centrifuged again at 30 � g for 5 minutes, and the supernatant was discarded. 
Hepatocytes were resuspended in 10 mL of complete media, seeded 24 to 
48 hours prior to experimentation, and incubated at 37°C with 5% CO2. 

Murine pharmacokinetic studies 
For pharmacokinetic studies, plasma and liver tissue samples were collected 
from male wild-type (WT) mice (8–13 weeks old) and sex- and age-matched 
OATP1A/1B cluster–knockout (OATP1A/1B-KO) mice following an estab-
lished protocol (28). This model provides a translationally useful model of an 
OATP1B1-deficient phenotype that is insensitive to compensatory mecha-
nisms associated with redundant OATP1A-type transporters in mice. All 
animals were on an FVB background strain, were given a standard diet and 
water ad libitum, and were housed and handled in accordance with the 
Institutional Animal Care and Use Committee at The Ohio State University 
(protocol #2015A00000101-R2). Pazopanib was administered to mice as a 
single oral dose (300 mg/kg) dissolved in sterile PBS as described (29) after a 
3-hour fasting. Serial blood samples were collected in accordance with a 
previously established protocol (28). At the terminal timepoint, the mice 
were euthanized via carbon dioxide inhalation, and the blood was collected 
by cardiac puncture with a needle and 1-mL syringe and transferred to a 1.5- 
mL heparinized tube. Next, the samples were centrifuged at 15,000 � g for 
5 minutes, and the plasma supernatant was collected. All samples were an-
alyzed at the Laboratory of Translational Pharmacology (Erasmus MC 
Cancer Institute, Rotterdam, the Netherlands) for the presence of pazopanib 
by a validated analytical method based on LC/MS-MS (30). Pharmacokinetic 
parameters were calculated by noncompartmental methods using Phoenix 
WinNonlin (RRID: SCR_024504) version 8.2 (Certara). 

Data availability 
The data generated in this study are available within the article and its 
Supplementary Data files. Experimental results from uptake studies were 
normalized to total protein content and baseline values and expressed as a 
percentage. An unpaired two-sided Student t test with Welch correction or a 
two-way ANOVA was used to compare group differences. Values are pre-
sented as mean ± SD unless stated otherwise in the figure captions. A cutoff 
value of P < 0.05 was used for statistical significance, and all analyses were 
performed using the software package Prism 9 (GraphPad). 

Results 
Optimization and validation of CCF assays for OATP1B1 
substrates 
In order to establish an effective CCF assay, steady-state equilibrium con-
ditions need to be established for the transporter (18). To ascertain the 
saturation time for OATP1B1-overexpressing cells, we conducted a 3-hour 

time course assay in standard 96-well plates using EβG (0.01 μmol/L) as a 
prototypical OATP1B1 substrate (Fig. 1A). The intracellular levels reached 
equilibrium in OATP1B1-overexpressing cells at 45 minutes, as evidenced by 
an initial plateau in radioactivity readings over time, which was maintained 
for at least 120 minutes. Consequently, a 1-hour preincubation was used for 
all subsequent experiments to achieve steady-state conditions. Similarly, the 
time-dependent efflux of EβG was characterized by spiking unlabeled EβG at 
a concentration of 100 μmol/L 1 hour after the initial preincubation with 
radiolabeled EβG, resulting in a second steady state being observed at 
30 minutes (Fig. 1B). Therefore, 30 minutes was chosen as an adequate 
coincubation time to induce counterflow and stimulated efflux for all fol-
lowing assays. 

To further validate this CCF assay for OATP1B1 and ensure its indepen-
dence from EβG-specific effects, multiple established transported substrates 
of OATP1B1 were tested as efflux inducers at excess concentrations of 
100 μmol/L; EβG (positive control), estrone-3-sulfate (E3S), pravastatin, and 
rifampin all induced significant efflux of the preloaded radiolabeled EβG 
under the described conditions (Fig. 1C). Conversely, glucose, which is not a 
substrate of OATP1B1 and DMSO, used as a vehicle control, failed to induce 
efflux, indicating that the developed method constitutes a valid, 
OATP1B1 substrate–specific initiation of efflux. 

Evaluation of TKIs as OATP1B1 substrates using CCF 
assays 
We next evaluated FDA-approved TKIs as potential substrates of OATP1B1 
utilizing the CCF assay, comprising a set of 62 compounds (Fig. 1D). To ensure 
proper functioning of the cells and assay, EβG was included as a positive control 
in all studies. Despite previous reports that suggest 10 times the IC50 of a test 
compound as the optimal concentration for counterflow evaluation (31), we opted 
to evaluate final experimental concentrations of 1, 10, and 100 μmol/L of the test 
compounds because of the scale of the screen, potential solubility constraints of 
some of the test compounds, and the ability to reliably identify putative substrates 
of OATP1B1 (Fig. 1D; Supplementary Fig. 2SA and S2B; refs. 18, 31). 

In order to correlate radiolabeled EβG efflux with the ability of a given test 
compound to be itself transported by OATP1B1, we normalized the final 
intracellular radioactivity of cells treated with each TKI to those cells treated 
with an equimolar concentration of the positive control (unlabeled EβG). 
Therefore, a reported CCF value of 1 indicates an efflux equal to that ini-
tiated by EβG, <1 indicates efflux less than that initiated by EβG, and >1 
indicates efflux greater than that initiated by EβG. We set an arbitrary 
threshold of 0.5 (or 50% efflux relative to EβG) to identify potential sub-
strates of OATP1B1 in the set of TKIs. Our screening results identified 
several TKIs as putative substrates of OATP1B1 (Supplementary Table S2). It 
is important to note that various patterns of efflux were noted when ex-
amining potential concentration dependence. For some TKIs (ceritinib, 
cobimetinib, crizotinib, erdafitinib, nintedanib, osimertinib, sunitinib, tofa-
citinib, and vandetanib), efflux was clearly dependent on concentration, and 
a few TKIs only induced efflux at the highest concentration tested. Addi-
tionally, a subset of TKIs (axitinib, cabozantinib, dabrafenib, dasatinib, 
futibatinib, lapatinib, nilotinib, pexidartinib, pralsetinib, selumetinib, and 
tucatinib) exhibited an unexpected efflux pattern solely at lower concen-
trations, which can potentially be attributed to cytotoxic effects of high 
concentrations of these agents on cells during the incubation period. Among the 
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TKIs identified as substrates, as indicated by the induction of efflux by more than 
50% compared with the cold EβG as control, across the tested concentration 
range, 16 compounds induced efflux by >50% at 1 μmol/L, 16 compounds at 
10 μmol/L, and 13 compounds at 100 μmol/L (Supplementary Table S2). 

Validation studies of pazopanib as an OATP1B1 
substrate 
Based on the results of the CCF assays at all concentrations and its association 
with toxicodynamic events originating in the liver (32–35), pazopanib was 
chosen as a representative compound for further validation. To substantiate the 
findings from the CCF assay, we employed a kinase assay to assess the extent of 
pazopanib influx mediated by OATP1B1 into cells. Cells that overexpressed 
OATP1B1 or the corresponding vectors were transfected to express VEGFR2 , 
the primary target kinase for pazopanib (36). These cells were then treated with 
pazopanib, the kinase was collected using immunoprecipitation, and a kinase 
assay was carried out. OATP1B1-overexpressing cells exposed to pazopanib 
exhibited a markedly reduced kinase activity compared with control cells that did 

not overexpress OATP1B1 (Fig. 2A). This suggests that pazopanib was able to 
exert a greater pharmacodynamic effect in the presence of OATP1B1, implying a 
greater accumulation of pazopanib in these cells. Similarly, pazopanib caused a 
greater decrease in kinase activity in hepatocytes from WT mice relative to those 
from mice lacking the orthologous transporters (OATP1A/1B-KO mice). This 
implies that pazopanib is transported into hepatocytes by OATP1A- and/or 
OATP1B-type transporters natively expressed in murine hepatocytes (Fig. 2B). 

In addition to kinase activity, the results of an in silico molecular docking study 
provided additional validation and characterization of pazopanib’s interaction 
with OATP1B1. In this analysis, pazopanib docks best to 8PHW, which occupies 
the substrate binding pocket of OATP1B1 in an orientation resembling E3S, a 
known, experimentally verified substrate (Fig. 2C and D). The docking score of 
pazopanib to 8PHW (�7.8 kcal/mol; Supplementary Tables S3 and S4) is com-
parable to that of E3S to 8PHW (�8.0 kcal/mol). No specific polar contacts were 
observed; instead, binding relied on hydrophobic contacts and π� π stacking 
interactions with adjacent residues, including Phe356, Tyr352, and Phe386. Taken 
together, these results provide further confirmation that pazopanib is a 
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FIGURE 1 Development and validation of the CCF method. A, Uptake of 0.01 μmol/L [3H]-EβG in OATP1B1-overexpressing HEK293 cells was 
evaluated at room temperature over 120 minutes in 96-well plates (n ¼ 4 technical replicates, representative of n ¼ 2 biological replicates; error bars 
represent SD). B, After saturation of cells at 1 hour, 100 μmol/L unlabeled EβG was spiked into wells, causing efflux of [3H]-EβG (n ¼ 6 technical 
replicates across n ¼ 2 biological replicates; error bars represent SD). C, After 1 hour of saturation with 0.01 μmol/L [3H]-EβG, 100 μmol/L positive 
(blue bars) and negative (gray bars) control substrates of OATP1B1 were spiked into wells and incubated for 30 minutes. Final intracellular radioactivity 
was measured and presented as relative to untreated control (n ¼ 9 technical replicates across n ¼ 3 biological replicates; error bars represent SD. 
***, P < 0.001; ****, P < 0.0001; five compared with the control). D, Stimulated efflux of preloaded [3H]-EβG stimulated after the addition of 
10 μmol/L TKI. Final intracellular radioactivity was measured and presented as relative to the efflux induced by an equimolar concentration of EβG, a 
known substrate and efflux inducer (n ¼ 6 technical replicates across n ¼ 2 biological replicates; error bars represent SEM). VC, vector control. 
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transported substrate of OATP1B1. To further understand physico-
chemical characteristics that may drive the ability of OATP1B1 to 
transporter TKIs, similar docking studies were performed for all TKIs 
included in the CCF screens (Supplementary Tables S3 and S4). Inter-
estingly, all TKIs identified as substrates in the CCF assay, at any tested 
concentration, could be successfully docked into OATP1B1, and all but 
one interacted most favorably with the minor pocket–open state of the 
transporter. Furthermore, of the TKIs not identified as a substrate of 
OATP1B1, a majority of them failed to be docked successfully, and the 
TKIs that did show an interaction with OATP1B1 in the CCF assay had 
significantly worse docking scores than the identified positive hits. 

The documented occurrence of severe and potentially fatal hepatotoxicity 
associated with pazopanib administration prompted the inclusion of a black 
box warning in its prescribing information (32). We speculated that the 
occurrence of this side effect may be dependent on OATP1B-type trans-
porters, based on the general thesis that cell-specific expression of trans-
porters serves as a mechanism governing the uptake of toxic drugs for a 
selective injury to targeted cells. Based on prior findings (29) demonstrating 
the onset of acute hepatotoxicity in mice 24 hours postadministration of a 
single 300 mg/kg oral dose of pazopanib, we administered an equivalent dose 
to both WT mice and OATP1A/1B-KO mice. The accumulation of pazo-
panib in the livers of WT mice was significantly higher after 24 hours 
compared with the levels observed in OATP1A/1B-KO mice, suggesting that 
OATP1A/1B transporters are responsible, at least in part, for the uptake of 
pazopanib into hepatocytes (Fig. 3A). The observed changes in the accu-
mulation and hepatic distribution of pazopanib were not accompanied by 
proportional changes in drug levels in plasma, further substantiating the 
notion that changes in liver uptake were due to a transporter defect, and not to 
alterations in systemic exposure (Fig. 3B; Supplementary Table S5). As bio-
markers of liver injury, aspartate transaminase (AST) and alanine transaminase 
(ALT) were quantified in plasma 24 hours after pazopanib administration. 
Following exposure to pazopanib, WT mice experienced significantly increased 
levels in circulating AST and ALT compared with levels observed in OATP1A/ 

1B-KO mice, implying that the presence of OATP1A/1B is necessary to induce 
the recorded toxicity phenotypes (Fig. 3C). 

Discussion 
In recent years, CCF assays have proven to be a reliable method for identifying 
potential substrates of a xenobiotic transporter using fluorescent or radiolabeled 
probes (18, 37–41). Our investigation adds to this field by systematically assessing 
FDA-approved TKIs as putative substrates of OATP1B1. This method circum-
vents methodologic issues associated with nonspecific extracellular membrane 
binding that would otherwise confound the results of a traditional, direct uptake, 
and it thus allows for a more reliable result for those compounds that cause 
artificial results in a direct uptake assay. The positive and negative controls acted 
as expected during the assay validation, and we identified 13 TKIs (of 62) as 
potential substrates of OATP1B1 across a range of concentrations. Among the 
hits, several TKIs have previously been claimed to be substrates of OATP1B1 
(42), including axitinib, crizotinib, pazopanib, and sorafenib, and several other 
TKIs have been reported to inhibit OATP1B1, including encorafenib, mid-
ostaurin, pazopanib, and pralsetinib. Interestingly, about half of the identified 
substrates are marketed TKIs that include warnings and precautions in the 
prescribing information for hepatotoxicity. This supports the possibility that 
hepatic uptake mechanisms for these agents depend on OATP1B-type trans-
porters (Supplementary Table S1). 

Fostamatinib, midostaurin, pazopanib, and sorafenib were hits in our CCF 
assay at all three tested concentrations. Of these four compounds, fostamatinib 
is a known hepatotoxin for which OATP1B1-dependent interactions have not 
been documented before, either in the literature or in its product label. Sim-
ilarly, midostaurin has not previously been recognized as a substrate for this 
transporter, although the agent is a known potent inhibitor of both OATP1B1 
(IC50 ¼ 0.3–1.3 μmol/L) and the related liver transporter OATP1B3 (IC50 ¼

5 μmol/L; ref. 43). In contrast, both pazopanib and sorafenib have been re-
ported as substrates of the OATP1B1, in both regulatory documents and by 
independent, academic investigations (13, 44). 
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It is important to note that there are observed deviations in expected concentration- 
dependent efflux patterns within the 13 lead compounds identified in our study, and 
such patterns have been reported in other counterflow-type methods (18). Reasons 
for this and other limitations of this method include the fact that (i) high concen-
trations of test compounds can reduce cellular viability over the course of loading and 
efflux, causing a lack of expected cellular efflux at the higher range when it was 
already observed at the lower concentrations; (ii) a TKI may have relatively weak 
affinity for OATP1B1 such that interactions in a CCF assay may not be observed at 
lower concentrations and induction of efflux occurs only at higher concentrations; 
and (iii) solubility limitations at high test concentrations may compromise interac-
tions with the transporter and the TKI. In addition, to address those compounds that 
slightly, but not significantly, induced probe uptake (as indicated by a CCF value 
of <0), it is possible that inhibition of an efflux transporter expressed natively in 
HEK293 cells may effectively sequester the EβG probe within the cell, as they are 
integral in the establishment of a steady-state equilibrium causing a deceptive “in-
creased uptake” of the probe following TKI spike. Given these limitations, although 
our positive hits reliably exhibit previously identified substrate characteristics of 
OATP1B1, the absence of certain agents among these hits does not preclude them 
from being considered as potential substrates (14, 45–52). However, traditional 
uptake assays have limitations that necessitate the use of indirect methods, such as 
the time-consuming and costly nature of establishing reliable transport kinetics or 
separating the membrane and intracellular fractions to eliminate the effects of 
nonspecific binding; nonspecific membrane binding is a known issue with cellular 
uptake assays and limits our ability to perform uptake assays with select compounds. 
A hallmark of nonspecific membrane binding is the drastically increased signal in 
both control cells and transporter-expressing cells; this decreases the signal-to-noise 
ratio to a point at which changes associated with the expression of a transporter 
become indiscernible (Supplementary Fig. S1A–S1C). The CCF method employed 
in the present studies avoids these obstacles and is easily scalable to 96-well plates 
with minimal wash steps, thereby introducing a cost- and time-effective advantage in 
facilitating these types of studies. 

In confirmatory studies, pazopanib emerged as a compelling candidate because of its 
consistent identification as a substrate across all three tested concentrations. In silico, 
pazopanib exhibited strong characteristics of an OATP1B1 substrate. Indeed, 

molecular docking of pazopanib into the recently elucidated structure of OATP1B1 
(27) showed thermodynamically favorable interactions with the binding pocket, 
mediated predominantly by hydrophobic interactions and π� π stacking with 
nearby phenylalanine residues. This is further substantiated by the superposition of 
pazopanib and other known OATP1B1 substrates, demonstrating the steric similar-
ities of binding and achieving comparable docking scores. Specifically, pazopanib 
preferably interacts with the minor pocket–open state of OATP1B1, which is con-
structed by the three hydrophobic residues Y352, F356, and F386 (53). Furthermore, 
docking all positive hits from any concentration showed successful and preferred 
interaction with this configuration, suggesting a potential driving factor that renders 
TKIs substrates of OATP1B1. Shape complementarity to the minor pocket and 
interaction with the hydrophobic residues that form this pocket may be an important 
factor to select substrates for the OATP1B1 transporter. The computational model of 
pazopanib successfully interacting with the binding pocket of OATP1B1 provides 
further support for the thesis that this TKI acts as a transported substrate. 

As further confirmation of intracellular translocation of pazopanib by 
OATP1B1, we exploited its kinase inhibition activity as a surrogate signal for 
intracellular transport with a biosensor. After transfection with VEGFR, cells 
proficient (OATP1B1-overexpressing HEK293 cells and hepatocytes isolated 
from WT mice) or deficient for OATP1B-type transporter proteins (vector 
control HEK293 cells and hepatocytes isolated from OATP1A/1B-KO mice) 
were coincubated with pazopanib. These studies support the thesis that both 
in vitro and ex vivo, OATP1B-type transporters are integral to the cellular 
uptake of pazopanib. Interestingly, the partial decrease in kinase activity 
following exposure to pazopanib in OATP1B-deficient cells suggests the 
involvement of one or more additional uptake transporters in the cellular 
uptake of pazopanib, and these may include organic cation transporter 
OCT1, which is also abundantly expressed on mammalian hepatocytes (54). 

A potentially interesting connection of the transport of TKIs with OATP1B1 is in 
the context of pazopanib-induced hepatotoxicity, a serious health concern in both 
clinical and preclinical settings (33, 34). The mechanisms underlying pazopanib- 
induced hepatotoxicity remain to be completely elucidated. Our findings point to 
the possibility that the transport of pazopanib into hepatocytes is a necessary 
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initiating event that precedes the observed toxicity. Although the translational 
relevance of this thesis requires further exploration in future studies, this screen 
serves as proof of principal that OATP1B-type transporters may be a therapeutic 
target to prevent or ameliorate pazopanib-induced liver injury. This possibility is 
consistent with the finding that following a hepatotoxic dose of pazopanib, 
relatively greater increases in the liver enzymes AST and ALT were observed in 
WT mice compared with OATP1A/1B-KO mice and that these observations are 
in line with the decreased concentrations of pazopanib in the liver of animals 
engineered to be deficient for OATP1A/1B transport. It is tempting to speculate 
that this mechanism may have clinical significance for the future development of 
combination therapies involving TKIs that are transported by OATP1B1 and for 
the evaluation of pharmacokinetic drug–drug interactions. Indeed, modulation 
of OATP1A/1B-mediated transport may alter the liver accumulation of pazo-
panib, or other transported TKI substrates, and may either increase or decrease 
the susceptibility to the development of drug-induced toxicities. Interestingly, the 
diminished liver accumulation in OATP1A/1B-KO mice occurred without sta-
tistically significant changes in the exposure of pazopanib in plasma. Although 
this observation is not unprecedented and has previously been documented for 
other OATP1B1 substrates, such as the taxanes paclitaxel and docetaxel as well as 
the vinca alkaloid vincristine (12, 55), it is possible that hepatic uptake is not a 
rate-limiting step in pazopanib elimination and/or that this distribution process 
is not exclusively contingent on a single uptake transporter. 

Conclusion 
In this study, we established and validated a CCF assay using radiolabeled EβG 
in OATP1B1-overexpressing HEK293 cells; this assay was then used to evaluate 
the transport mechanisms of a set of FDA-approved TKIs. Our findings dem-
onstrate the importance of OATP1B1 as an important mediator of the cellular 
uptake of select TKIs, suggesting that this transport mechanism contributes to 
the hepatic uptake and elimination of these agents. In view of the established 
exposure–toxicity relationships for many TKIs, the observations made here 
further suggest that OATP1B1-mediated transport, which occurs in advance of 
hepatic metabolism, may contribute to interindividual pharmacokinetic vari-
ability observed previously in patients with cancer requiring treatment with 
TKIs. Collectively, these findings confirm the utility of CCF screening ap-
proaches for identifying substrates of this clinically important xenobiotic trans-
porter and may assist in understanding the mechanisms underlying drug–drug 
interactions and toxicities for TKIs identified as OATP1B1 substrates. 
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27. Ciută A-D, Nosol K, Kowal J, Mukherjee S, Raḿırez AS, Stieger B, et al. 
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39. Ungvári O, Bakos É, Kovacsics D, Özvegy-Laczka C. The fluorescence-based 
competitive counterflow assay developed for organic anion transporting 
polypeptides 1A2, 1B1, 1B3 and 2B1 identifies pentamidine as a selective 
OATP1A2 substrate. FASEB J 2023;37:e23223. 
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