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Impact of COVID-19 Nonpharmaceutical Interventions 
on Bordetella pertussis, Human Respiratory Syncytial Virus, 
Influenza Virus, and Seasonal Coronavirus Antibody 
Levels: A Systematic Review
Channah M. Gaasbeek,1,2, Maxime Visser,1,3 Rory D. de Vries,2 Marion Koopmans,2, Rob van Binnendijk,1 and Gerco den Hartog1,3

1Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, RIVM, Bilthoven, the Netherlands, 2Department of Viroscience, Erasmus MC, 
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During the COVID-19 pandemic, nonpharmaceutical interventions (NPIs) were introduced to reduce the spread of SARS-CoV-2. 
This also resulted in a reduction of notifications of other acute respiratory infections and an altered seasonality when NPIs were 
lifted. Without circulation of pathogens, waning of antibodies is expected, which is a first indicator of decreased immunity. 
Here, by performing a systematic literature review, we investigated whether reduced antibody levels due to waning immunity 
contributed to the altered seasonality after NPIs were lifted. Thirteen articles met the inclusion criteria and reported antibody 
levels or seroprevalence of human respiratory syncytial virus, seasonal human coronavirus, Bordetella pertussis, and influenza 
virus. We show that the COVID-19 pandemic most likely led to waning of pathogen-specific antibodies, with the strongest 
evidence for human respiratory syncytial virus and seasonal human coronavirus and with a larger decrease in children vs adults. 
Waning antibodies might have resulted in out-of-season activity for these pathogens.
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The burden of disease caused by respiratory tract infections is 
high, and the majority of these infections occur in young children 
and the elderly [1]. The European Center for Disease Prevention 
and Control defines acute respiratory infections (ARIs) as a sud
den onset of symptoms, at least 1 of 4 symptoms (cough, sore 
throat, shortness of breath, and coryza), and a clinician’s judgment 
that the illness is due to an infection [2]. Viruses that are associated 
with ARIs are influenza, human respiratory syncytial virus 
(HRSV), seasonal human coronavirus (hCoV), human meta
pneumovirus, rhinoviruses, enteroviruses, adenoviruses, and hu
man bocavirus [3]. Besides these viruses, the bacterial pathogens 
Haemophilus influenzae, Streptococcus pneumoniae, Moraxella 
catarrhalis, Mycoplasma pneumonia, and Chlamydophila 

pneumonia cause ARI [4, 5]. In many regions, infections with re
spiratory viruses such as HRSV and influenza virus are increasing
ly reported in the winter season, while infections with human 
metapneumovirus and rhinovirus can be detected throughout 
the year [3]. Less clear seasonal circulation patterns have been 
found in tropical and subtropical regions of the world. Changes 
in environmental factors—notably, the combination of tempera
ture, humidity, and human behavior—are acknowledged as major 
contributing factors underlying the seasonal patterns [3]. Viruses 
such as influenza, HRSV, and coronaviruses spread via short- and 
long-range aerosols but also via droplets, while pathogens such as 
rhinoviruses are more likely to transmit via fomites and direct 
contact [6]. The efficiency of transmission is additionally affected 
by seasonal environmental factors that affect the stability of the re
spiratory viruses, as well as host factors and viral factors.

Since the start of the COVID-19 pandemic, nonpharma
ceutical interventions (NPIs) such as physical distancing, 
wearing face masks, closing schools and sport centers, and 
working from home were introduced to reduce the spread 
of SARS-CoV-2. Strikingly, this resulted in a major decrease 
of notifications for other airborne respiratory pathogens in 
the 2020 and 2021 seasons [7–13]. It is largely unknown 
how the prolonged absence of circulation resulted in an 
altered seasonality of some respiratory pathogens. The ab
sence of reinfections due to the NPIs reduced boosting of hu
moral immunity could result in a decline of antibody levels, 
which is expected to increase vulnerability to infection. 
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Considering the out-of-season relapse of several infectious 
diseases, investigating how antibody levels develop during 
lockdowns can help us understand the impact of humoral im
munity on seasonal fluctuations.

Infections with pathogens that are circulating at a high level 
in the population will boost antibody levels population-wide. 
Such reinfections apparently sustain immunity on the individ
ual level as well as the population level. In the absence of reex
posure to endemic pathogens, antibody levels decline, as shown 
for hCoV, which is a first indicator that the level of immunity is 
decreasing [14]. We expect antibody waning to be a contribut
ing factor to seasonality. Previously, we showed a decrease of 
HRSV antibodies during the pandemic in a preliminary analy
sis [15]. The antibody half-life could be different for each path
ogen but differ per age. Infants are dependent on sufficient 
levels of maternal immunoglobulin G (IgG) antibody levels 
for protection against infectious diseases in the first months 
of life [16, 17].

To investigate whether reduced levels of antibodies as a result 
of waning immunity in the population may explain the altered 
seasonality of infection after the lifting of NPIs, we performed a 
systematic literature review. To this end, we selected literature 
that studied the prevalence and levels of serum antibodies for 
the most common respiratory infections other than 
SARS-CoV-2 during the COVID-19 period.

METHODS

Design

A systematic review of seroprevalence studies was performed 
according to the PRISMA guideline (Preferred Reporting 
Items for Systematic Reviews and Meta-analyses) [18, 19]. 
Duplicates were excluded by EndNote.

A primary search strategy in PubMed, Embase, and Scopus 
was designed to identify relevant scientific articles, including 
preprints. Inclusion criteria were articles published between 1 
January 2020 and 20 October 2023, in which antibody levels 
(IgG, immunoglobulin A [IgA], or immunoglobulin M) 
were measured or seroprevalence was determined of respira
tory pathogens in individuals of any age. The most commonly 
reported respiratory viruses involved in ARI were included 
(influenza virus, HRSV, human metapneumovirus, hCoV, en
terovirus, rhinovirus, bocavirus, adenovirus), as well as 5 bac
teria that are frequently associated with ARI (M pneumonia, C 
pneumonia, S pneumoniae, H influenzae, M catarrhalis) [4, 5]. 
Although not primarily presenting with typical ARI, 3 addi
tional airborne transmissible pathogens were included in the 
survey (measles virus, Bordetella pertussis, and Neisseria men
ingitidis; all vaccine preventable), as some evidence suggested 
that their circulation may have been affected [9, 20]. Exclusion 
criteria were zoonoses, SARS-CoV-2 infections, nonhuman 
studies, studies with >24 months between time points, studies 

with the first measurement in the second half of 2020, anti
bodies not measured in serum, and review articles. The com
plete search term for the different databases can be found in 
Supplementary Methods 1.

Two authors (C. M. G. and M. V.) independently performed 
the selection process. All articles were first screened on title and 
abstract, and remaining articles were read in depth.

Data Extraction and Risk of Bias

A datasheet was generated listing the different studies, designs, 
population characteristics, results of antibody measurements or 
seroprevalence, and levels of quality. The quality of the studies 
was evaluated by C. M. G. and M. V. using a modified 
Newcastle-Ottawa scale for cohort studies (Supplementary 
Methods 2) [21]. According to these guidelines, studies were 
rated with stars in 3 categories: selection of cohorts, compara
bility of cohorts, and outcome of study. Guided by the qualifi
cation items, studies were rated for their quality with a 
maximum of 9 stars. The overall quality of the study was rated 
high (7 or 8 stars), intermediate (6 stars), or low (≤5 stars).

Data

Stringency indices from 1 January 2020 to 30 June 2022 for the 
Netherlands, Germany, France, Canada, and China were down
loaded from Our World in Data (https://ourworldindata.org/ 
COVID-stringency-index; accessed 9 February 2024) [22]. The 
stringency index is a measure based on 9 response indicators, in
cluding school closures, workspace closures, and travel bans. The 
value is a scale from 0 to 100, where 100 is the strictest. For 
Canada and China, policy differs per region; therefore, strin
gency indices per region were used. For the Netherlands, 
Germany, and France, nationwide stringency indices were used.

RESULTS

Study Selection and Characteristics

Our search resulted in 3675 unique articles that were subse
quently screened by title and abstract (Figure 1). Sixteen articles 
were assessed by full text. One study was first excluded by title 
but later included per the abstract. Ten articles met all inclusion 
criteria and reported antibody levels or seroprevalence estimates 
against respiratory pathogens during the COVID-19 period.

Three articles documented >1 study population, which re
sulted in 13 evaluated studies [23–25]. In some studies, >1 tar
get pathogen was evaluated, giving rise to 18 independent 
pathogen investigations, organized in Table 1 according to 
pathogen. All studies had a period of NPIs between the anti
body sampling points (Figure 2). For all studies, the first anti
body measurement was in 2019 or at the start of the 
COVID-19 pandemic (before June 2020). Three studies had 
their last measurements at the end of 2020 [26, 27]. The other 
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10 studies had their last measurements in 2021 or 2022. The 
time between the measurements ranged from 6 to 24 months.

Six studies were conducted in the Netherlands, 3 in Canada, 
2 in China, 1 in Germany, and 1 in France. Six studies reported 
antibody levels to HRSV, 5 to influenza virus, 4 to hCoV, and 3 
to B pertussis. Three studies were population based [15, 28, 29]; 3 
were performed in female health care workers (HCWs) [25, 26,   
30]; 2 used serum from annual health examinations [27, 31]; 1 
was in lactating women [23]; 1 was in a cohort of men who 
have sex with men [24]; 1 was in adult patients with COVID-19 
[24]; and 1 used leftover plasma samples from clinical chemistry 
analysis [32]. Twelve studies reported antibody levels and 2 re
ported seroprevalence. The main characteristics are described in 
Table 1.

All countries applied different strategies and timing to control 
COVID-19. The NPIs between January 2020 and August 2022 in 
each study are shown in Figure 2 [33]. In the Netherlands and 
Germany, schools were completely closed at all levels multiple 
times during the pandemic, while in France this occurred only 
during the first lockdown. However, France mandated a stricter 
face-covering policy during the pandemic, as did Jiangsu, China. 
China and Canada had a stricter travel control policy as com
pared with most European countries.

Risk-of-Bias Assessment

For the 13 studies, risk-of-bias assessment qualified 4 as 
low risk of bias, 6 as medium risk, and 3 as high risk 

(Supplementary Table 1). Most studies scored high on the se
lection process, while more differences were seen on the com
parability measure; this was mostly due to the difference in type 
of study. Cross-sectional studies had lower scores due to less 
comparable cohorts. Common reasons for studies with a high 
risk of bias were a select group of individuals, a limited sample 
size, and a cross-sectional study survey.

B pertussis

In a study in Canada with a medium risk of bias, 18 female 
HCWs were followed during the first year of the COVID-19 pan
demic (May–June 2020 to February–May 2021) [30]. There was 
no change in the proportion of individuals with anti–pertussis 
toxin antibody levels >40 IU/mL (1 individual in 2020 as well 
as 2021, 5.6%). However, the proportion with undetectable anti
body levels (≤5 IU/mL) increased from 10 of 18 (55.5%) in 2020 
to 12 of 18 (66.6%) in 2021.

B pertussis seroprevalence was reported in 2 studies of medi
um risk of bias in Beijing, China [27], and high risk of bias in 
Jiangsu, China [31]. Both used leftover serum from patients 
who attended annual health examinations. In both studies, an
tibody levels were divided into categories, in which those 
≥100 IU/mL were regarded as evidence for recent infection 
(within the last year) and levels between 40 and 100 IU/mL 
were considered to reflect infections >1 year ago. In the study 
in Beijing (N = 1518), the investigators compared 2 consecutive 
time points and found that the median concentrations of anti– 

Figure 1. PRISMA flow diagram of study selection.
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pertussis toxin IgG antibodies had decreased between 2019 
and 2020. The percentage of individuals with antibody levels 
≥40 IU/mL did not change (2.04% vs 1.66%) [31]. For the study 
in Jiangsu (N = 788), more individuals had antibody levels 
>40 IU/mL in 2020 vs 2019 (5.5% vs 21.2%), and this decreased 
in 2021 (17.0%) [27].

Human Respiratory Syncytial Virus

Two longitudinal studies with a low risk of bias applied 
anti-HRSV antibody testing in 2020 and 2021. The first study 
was a prospective cohort in the Netherlands (N = 558; age, 
1–89 years), which demonstrated a significant decrease of 
anti-HRSV IgG antibodies for most age groups between June 
2020 and June 2021 [15]. The other study concerns the inhab
itants of a small rural town in Germany [28]. For 189 of the 883 
inhabitants of this community, anti-HRSV antibodies were 
measured in May 2020 and April 2021. A small monthly 
decrease of −0.6 relative units/mL was detected.

Antibody levels against HRSV were studied by Reicherz et al. 
In this study with a medium risk of bias, paired serum samples 
from 18 female HCWs were analyzed for HRSV IgG antibody 
levels in February to May 2020 and May to June 2021 [25]. 
In addition, antibody levels were studied in infants in 2020 
(n = 20) and 2021 (n = 65) yet on a cross-sectional basis 
(high risk of bias). For female HCWs and infants, anti-HRSV 
antibody levels had significantly declined in 2021 vs 2020. 
For infants, this decrease was ∼15-fold. Besides a decrease in 
antibody levels, the neutralization capacity decreased 12-fold 
in women and 3.4-fold in infants in 2021 vs 2020.

In a study in the Netherlands with a medium risk of bias, 
anti-HRSV IgG and IgA antibodies were measured in the se
rum of lactating women in spring (n = 38) and fall (n = 38) 
2020 [26]. Antibody levels in lactating women with previous 
SARS-CoV-2 infection increased 1.7-fold for anti-HRSV IgG 
and 3.5-fold for anti-HRSV IgA. Antibody levels were also 
measured in 84 HCWs without past SARS-CoV-2 infection. 
This high–risk of bias study showed no differences in 
anti-HRSV IgG antibodies in serum over time.

Influenza

The study in Germany investigating anti-HRSV antibodies 
measured anti-influenza antibodies in 153 unvaccinated inhab
itants (low risk of bias) [28]. Neither strain-specific influenza 
titers as measured by hemagglutination inhibition (HI) nor se
roprevalence showed significant changes over time.

Likewise, in a study based on 2 cohorts in the Netherlands, 
no significant change in HI titers against influenza was detected 
[24]. In men who have sex with men (N = 100; low risk of bias) 
and a prospective cohort study on the longterm outcomes of a 
SARS-CoV-2 infection (N = 65; medium risk of bias), influenza 
antibodies were compared between 2019 and 2021. No signifi
cant waning of HI titers in both cohorts was noted [24].

In the study measuring anti-HRSV antibodies (medium risk 
of bias) in 76 lactating women, antibodies against influenza 
were measured [26]. In lactating women with previous 
SARS-CoV-2 infection, no difference was detected for influenza 
IgG antibodies, whereas IgA antibodies against influenza showed 
a 2-fold increase. In HCWs without past SARS-CoV-2 infection 
(high risk of bias), there was no difference in influenza IgG an
tibody levels in serum over time as well.

Seasonal Human Coronavirus

A longitudinal cohort in northern France included 2520 sam
ples from 898 individuals and measured nucleocapsid and S1 
antibody levels of all 4 hCoVs (NL63, OC43, 229E, and 
HKU1) [29]. In this low–risk of bias study, a decline in anti-S 
IgG levels for all 4 hCoVs was detected between April 2020 
and November 2021. After exclusion of probable infections 
based on a >8-fold increase for ≥2 biomarkers, antibody wan
ing seems to occur more rapid in children compared to adults.

In a cross-sectional study with a medium risk of bias based on 
a cohort of Dutch children (N = 613), nucleocapsid and S1 anti
body levels of all 4 hCoVs were measured in leftover serum sam
ples. For all 4 hCoVs, IgG antibodies decreased in children from 
6 months until 18 years between early 2020 and early 2021 [32]. 
The decrease was largest for children from 6 to 12 months.

Four hCoVs were measured in 76 lactating women who ex
perienced a SARS-CoV-2 infection [26]. In this medium–risk 
of bias study, hCoV-NL63 and hCoV-229E IgG antibody levels 
increased 2- and 1.5-fold over time, respectively. An increase in 
IgA antibody levels was also noted for hCoV-OC43 (3.2-fold), 
hCoV-HKU1 (3.2-fold), and hCoV-229E (2.2-fold). In the 
group of HCWs without previous SARS-CoV-2 infection 
(high risk of bias), only hCOV-OC43 IgG antibody levels sig
nificantly decreased.

DISCUSSION

In this systematic review, we detected a decay in antibody levels 
of different respiratory pathogens during the COVID-19 pan
demic, with strongest evidence for hCoV and HRSV but no ev
idence for decay of antibodies to influenza virus. This type of 
research will increase our understanding whether antibody 
waning could contribute to seasonality and determine groups 
at risk for an infection after a period of reduced circulation.

In 10 of the 13 studies, a decrease of antibody levels to HRSV, 
hCoV, and/or B pertussis was detected. The observed antibody 
decrease for HRSV and hCoV seemed to be larger in children 
than adults, and more infants who did not have their first 
infection were present [25, 29, 32]. Interestingly, no significant 
decrease of antibody levels for influenza was observed in 4 stud
ies conducted in the Netherlands and Germany. In 2 B pertussis 
studies in China, besides a reduction in median antibody levels, 
more individuals with high antibody levels were detected [27, 31], 
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suggesting that B pertussis circulation was not completely 
absent in the Chinese population during the study period. 
Samples were collected when the lockdown in Beijing and 
Jiangsu had ended. This might explain increasing B pertussis 
antibody levels in the population. All other countries had a pe
riod with NPIs between the consecutive time points.

Annual incidence rates of HRSV, B pertussis, and influenza 
infection are high, substantially higher than what is usually re
ported during an infection season on clinical terms [4–6]. 
Annual infection rates of mostly asymptomatic HRSV and in
fluenza have been reported to reach 40% to 50% or higher, de
pending on age and even including repeated infections during 1 
season [5, 6]. As a consequence, population-level immunity is 
expected to be boosted, thereby reducing the number of suscep
tible individuals, which leads to interruption of widespread 

virus transmission. After this period of infections, antibody lev
els wane. Depending on the amount of waning, this inevitably 
leads to a more susceptible population again but may vary per 
pathogen. The period with NPIs led to a longer period of reduced 
pathogen circulation, which forms a likely explanation for a 
more significant decay in antibody levels for the various patho
gens evaluated. After NPIs were lifted, unusual numbers of 
out-of-season notifications were reported for several pathogens.

For HRSV, unusual out-of-season activity in the summer 
of 2021 was observed [9, 34, 35]. Although this can be in 
part explained by an increase in testing [36], there was a 
high peak in hospitalizations of children with HRSV reported 
in several countries, indicating a true increase in infections 
[37–39]. The incidence of hCoV infections returned after 
NPIs were released, with a delayed peak in spring and summer 

Figure 2. Stringency index per study. The relative stringency index of nonpharmaceutical interventions per country between January 2020 and June 2022. Vertical gray bars 
show the sampling periods per study. *Studies also having a sampling period in 2019.
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2021 [9]. For HRSV and hCoV, waning of antibody levels was 
detected, which suggests that this might have resulted in an 
out-of-season onset of infections after release of NPIs. 
Influenza and B pertussis notifications remained absent after 
relaxation of NPIs in the regular season of 2020 to 2021 [9, 
11, 12, 40]. Influenza notifications returned with an uncom
mon late onset during the 2021–2022 season and an earlier 
onset in the 2022–2023 season [41]. However, influenza B/ 
Yamagata has been sporadically reported since the start of 
the COVID-19 pandemic and may have gone extinct [42]. 
For influenza, antibody levels remain unchanged over time. 
Waning might occur over a longer period, and other factors 
might be contributing to influenza seasonality as compared 
with HRSV and hCoV infections. B pertussis notifications re
mained absent for 3 years until 2023. Periods with lower levels 
of notifications are not uncommon for B pertussis, as it is 
known to peak every 3 to 5 years [43]. Although a reduction 
in antibody levels was detected in 2 studies, this does not di
rectly associate with an increase in infections, and other fac
tors might be involved in the seasonality of B pertussis 
infections.

In 2 studies [25, 32], infants showed the highest decrease in 
antibody levels. These infants possibly had not yet been infect
ed with HRSV and hCoV and therefore showed mostly a de
crease of maternally derived antibodies. The half-life of 
antibodies after the first infection was found to be as fast as 2 
months for HRSV antibodies [44]. Yet, after a second infection, 
neutralizing titers showed a slower decrease [44]. So, multiple 
exposures to diverse pathogens contribute to the development 
of robust immunologic memory. Not surprising, our study 
showed a larger decrease of antibody levels in children vs 
adults, which might be explained by the less frequent exposure 
to these pathogens. This would also suggest that children and 
especially infants without primary infection were more suscep
tible to infections after a period of reduced circulation and 
might contribute to the seasonality of HRSV and hCoV. 
Although other immune mechanisms contribute to the protec
tion against infection, changes in antibody levels likely provid
ed a good indicator of adaptive immunity and for the impact of 
the introduction and lifting of NPIs.

Our review highlights that there is limited information on 
the seroprevalence of respiratory infections during the pan
demic and points at several limitations. First, our review is a de
scriptive study, and no causal inference can be made upon these 
data. The interpretation of the findings of the presence or ab
sence of antibodies decay during the pandemic depends on 
the quality and design of the studies. The studies varied in 
risk of bias. Most studies (7 of 13) used demographic subgroups 
of individuals, not representative for the general population, or 
they had limited sample sizes. Second, the number of studies 
was low, and articles were found for only 4 of the previously 
named pathogens involved in ARI. For all other pathogens 

involved in ARI, decay levels are unknown. Studies were con
ducted in 5 countries in 3 continents. Antibody kinetics might 
be different in other countries; therefore, whether our findings 
apply globally needs to be determined. Furthermore, the stud
ies used different antibody detection methods and had different 
time spans between the sampling points, which made it difficult 
to directly compare results. It is also not clear what normal 
year-to-year changes in antibody levels are and whether a de
cline was caused only by NPIs. Studies with longitudinal data 
of antibody levels before the COVID-19 pandemic are scarce. 
Further research should analyze data from prepandemic sea
sons or examine antibody levels after the return of a normal 
seasonality pattern.

Nonetheless, this systematic review shows that the 
COVID-19 pandemic most likely led to the waning of antibodies 
for 3 of the 4 included respiratory infections, with the highest 
evidence of waning for HRSV and hCoV. Degree of waning var
ied per pathogen, with a larger effect in children and with a larger 
group of infants who had not yet been infected. Waning of anti
bodies seemed to contribute to seasonality for HRSV and hCoV 
but less for B pertussis infections. How this waning of antibodies 
relates to susceptibility to infection remains to be determined. 
The COVID-19 pandemic provides a unique opportunity to 
investigate these questions.
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