the globe demand that no more of this blood is spilled.

Call it reproductive rights, human rights, reproductive justice, or just plain health care, safe accessible maternity care and safe accessible abortion are two sides of the same coin. Millions of women will require both in their lifetime. As a community of people who hold health and justice dear, we should fight with all our might to support and facilitate both.

I declare no competing interests

Lisa Hallgarten
lisahallgarten@gmail.com
Brook, London EC2M 4HE, UK

Zachi I Attia and colleagues’ show us that we live in a time in which there is more to computer observations than meets the eye. Machine-learning methods for detecting imminent atrial fibrillation on electrocardiograms (ECGs) with sinus rhythm are a valuable step forwards, especially for patients with embolic stroke of undetermined source. However, some methodological drawbacks—related to the selection of controls—hamper implementation of their presented algorithm in clinical practice.

An AI-ECG algorithm for atrial fibrillation risk: steps towards clinical implementation

We read with interest the Article by Zachi I Attia and colleagues’ describing the use of artificial intelligence (AI) using a convolutional neural net for identification of patients at risk of atrial fibrillation from electrocardiograms (ECGs) taken during sinus rhythm.

Although their study is provocative, we were concerned about two methodological issues in their study design. First, the authors used an aggregated cohort for their model that included individuals who never developed atrial fibrillation, but had at least one ECG combined with those who had by definition at least two ECGs (one with atrial fibrillation and another ECG within 31 days). Furthermore, the authors only included the first ECG in their analysis of the group of individuals who never developed atrial fibrillation over a 24-year period. During such a long interval, subtle signal characteristics could have changed because of changes in ECG equipment models and settings. Hence, rather than detecting atrial fibrillation, their model might be detecting the individuals who are more likely to have multiple ECGs or recent ECGs. Second, the authors do not report basic demographic characteristics, such as age, sex, and race, with common ECG abnormalities, such as heart rate, Q waves, left ventricular hypertrophy, left atrial enlargement, PR interval, P wave amplitude, P wave duration, and P wave axis, for patients who were either positive or negative for atrial fibrillation. It would be informative to see these baseline patient characteristics. Such features are often automatically identified by existing algorithms and encoded automatically into searchable fields in many commercial ECG software packages. A control analysis using standard statistical methods that incorporated many of these features might have had similar performance characteristics and would certainly offer greater mechanistic insights than the current analysis.

VLM reports a minor stock in General Electric; research grants and speaking honoraria from Siemens; scientific advisory payments, stock options, and speaking fees from Imedica; expert witness payments on behalf of Jubilant Druimage; and consulting on behalf of Curium, all unrelated to this Correspondence. BKN reports research grants from the National Institutes of Health, Health Services Research and Development, the Department of Veterans Affairs, the American Heart Association, and Apple. BKN reports compensation as Editor-in-Chief of Circ Cardiovasc Qual Outcomes. BKN reports being a co-inventor on US Utility Patent Number US5/356,012 (US2017/0143156A1) held by the University of Michigan. The patent is licensed to Angiolight, in which BKN holds ownership shares and receives a consultancy fee.

Venkatesh L Murthy, Brahmajee K Nallamothu
vlmurthy@med.umich.edu
Internal Medicine and Radiology (VLM) and Michigan Integrated Center for Health Analytics and Medical Prediction, Department of Internal Medicine, University of Michigan Medical School (BKN), University of Michigan, Ann Arbor, MI 48109, USA

Frank J Wolters
f.j.wolters@erasmusmc.nl

The idea of being able to predict incident atrial fibrillation from just a 12-lead electrocardiogram (ECG) with no demographic or clinical information in the Article by Zachi I Attia and colleagues1 raised much interest at the meeting of the AF-SCREEN International Collaboration.2

A crucial issue that could limit the use and generalisability of the study comes from patient selection for atrial fibrillation prediction, in which patients with a sinus ECG in the 31 days before, or any time after, incident atrial fibrillation, were selected. Although 1698 (55.7%) of 3051 normal sinus rhythm ECGs were recorded within a week of the index atrial fibrillation ECG, multiple sinus ECGs were recorded in the 31 days before atrial fibrillation, according to figure 1.1 This intensity of ECG testing would be quite unusual in the outpatient setting. The median time between the sinus and atrial fibrillation ECGs was 0 days (IQR 4 to 24), so a large number of ECGs used to predict atrial fibrillation were done on the same day as, or soon after, the index atrial fibrillation ECG. Therefore, these ECGs are likely to be after electrical, pharmacological, or spontaneous cardioversion for clinically detected atrial fibrillation, which could alter the ECG in ways detected by the artificial intelligence algorithm. Additionally, it is highly likely many individuals included were patients who had been admitted to hospital. Therefore, the results might be pertinent for prediction only in patients who had been hospitalised for heart failure, ischaemic chest pain, other acute medical conditions, cardiac or non-cardiac surgery, or clinically manifested atrial fibrillation requiring cardioversion. The Article provides none of this clinical information. If these assumptions are correct, it would have substantial implications on the generalisability of the results for screening in asymptomatic people or even in people after stroke, to predict future atrial fibrillation.

I report grants to my employer, the Heart Research Institute; personal fees and non-financial support from Bristol-Myers Squibb-Pfizer Alliance, Bayer, Daiichi Sankyo, and Omron; and non-financial support from Alivecor, all unrelated to this Correspondence.

Ben Freedman
ben.freedman@sydney.edu.au
Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia


Authors’ reply
We thank our colleagues for their interest in our Article1 about artificial intelligence (AI)-enabled electrocardiogram (ECG) to identify patients with atrial fibrillation. They have posed key questions about confounding of the model by potential differences in baseline characteristics and about generalisability. We see measurable differences between groups that need to be acknowledged (appendix p 1), but in a sensitivity analysis stratifying by age and sex (appendix p 2) we observe consistent area under the curve values across a range of subgroups. This analysis is reassuring because it indicates that the ECG adds value in addition to chronological age and sex, which have been shown to have only modest performance for estimating the risk of atrial fibrillation.3

However, we chose not to take this analytical approach in our Article, instead seeking to address a risk stratification question. In previous work we showed that the ECG can predict age, sex, and low ejection fraction with high accuracy4,5 and, as such, we see the ECG as a composite biomarker that might aggregate the electrocardiographic signature of various demographic features and comorbidities. By not matching cases and controls on age, sex, or other features, we capture ECG characteristics that are associated with atrial fibrillation risk among typical, unselected patients. This approach allows us to use a single ECG in isolation to assess risk of atrial fibrillation, leading to a tool that might be easier to adopt clinically. An AI-ECG algorithm that aggregates risk factors such as ECG-derived age, ECG-derived sex, electrocardiographic manifestations of overt heart disease, and presumably subtle signs of atrial cardiopathy detectable only by a convolutional neural network will provide a more nuanced assessment of risk.

The questions about generalisability are equally valid. We previously found that our low ejection fraction model worked equally well across ethnic and racial groups, but each model must be independently assessed. To address generalisability, we are doing several validation studies using existing external cohorts and are starting a prospective study to assess incident atrial fibrillation detected by an event monitoring patch in patients at high risk (NCT04208971). These ongoing studies will help us refine the model and determine whether it requires adaptation for different cohorts and how we can best use it for targeted atrial fibrillation screening, treatment...