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Robust Capacitated Train Rescheduling
with Passenger Reassignment under
Stochastic Disruptions

Xin Hong1 , Lingyun Meng1, Francesco Corman2 ,
Andrea D’Ariano3, Lucas P. Veelenturf4, and Sihui Long1

Abstract
During railway operations unexpected events may occur, influencing normal traffic flows. This paper focuses on a train
rescheduling problem in a railway system with seat-reserved mechanism during large disruptions, such as a rolling stock
breakdown leading to some canceled services, where passenger reassignment strategies have also to be considered. A novel
mixed-integer linear programming formulation is established with consideration of train retiming, reordering, and reservicing.
Based on a time–space modeling framework, a big-M approach is adopted to formulate the track occupancy and extra train
stops. The formulation aims to maximize the passenger accessibility measured by the amount of the transported passengers
subject to canceled services and to minimize the weighted total train delay for all trains at their destinations. The proposed
mathematical formulation also considers planning extra stops for non-canceled trains to transport the disrupted passengers,
which were supposed to travel on the canceled services, to their pre-planned destinations. Other constraints deal with seat
capacity limitation, track capacity, and some robustness measures under uncertainty of disruption durations. We propose dif-
ferent approaches to compute advanced train dispatching decisions under a dynamic and stochastic optimization environ-
ment. A series of numerical experiments based on a part of ‘‘Beijing–Shanghai’’ high-speed railway line is carried out to verify
the effectiveness and efficiency of the proposed model and methods.

Railway transportation systems provide an efficient and
sustainable service for passengers and have a strong com-
petitiveness compared with the other transport modes.
However, trains do not always arrive or depart on time,
sometimes are even canceled. In daily railway operations,
some external and internal unpredictable disruptions of
the railway system, such as severe weather conditions
and rolling stock breakdowns, may lead to reduced
capacity of tracks and stations. As a result, train dis-
patchers need to make appropriate train rescheduling
decisions, like retiming and reordering, to recover the
affected rail operations within a short computation time.
During severe disruptions, other dispatching measures
such as changing the stopping plans, canceling or insert-
ing train services may also be taken to allow disrupted
passengers to travel to their destinations. Consequently,
in a railway network of high density and limited capacity,
real-time train rescheduling becomes extremely compli-
cated and may strongly affect the quality of passenger
services and the performance of the overall rail system
(1, 2).

Under severe disruptions, train rescheduling is even
more challenging in a railway system with a seat reserva-
tion mechanism compared with a mechanism without
seat reservations. The seat reservation mechanism means
that passengers should buy tickets in advance with a
planned departure at the original station, a planned arri-
val at the destination station, and a seat number. Once a
train service is canceled as a result of a disruption, all
passengers who were supposed to travel on it will be
affected, and they need eventually be assigned to other
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trains, with limited remaining seat capacity, to travel to
their destination station. Therefore, in case of serious
disruptions, passenger reassignment strategies have to be
developed together with train rescheduling strategies.
Both strategies have the main objective of ensuring that
more passengers arrive at their destinations as early as
possible within an acceptable time horizon. With a seat
reservation mechanism, the combination of effective
train rescheduling with passenger reassignment is critical
for railway operators in a disrupted high-density net-
work with limited capacity, because the disrupted pas-
sengers may occupy seats in other trains and additional
train stops may be required to serve as many as possible
disrupted passengers.

This paper deals with the problem of rescheduling
trains with passenger reassignment in a railway system
with a seat reservation mechanism under a rolling stock
breakdown. A mixed-integer programming formulation
is proposed for this problem with the following objective
function components: the maximization of the passenger
accessibility, measured by the amount of disrupted pas-
sengers transported to their destination station, and the
minimization of a weighted total train delay at their des-
tination stations. The characteristics of uncertainty and
randomness are taken into account during the optimiza-
tion process. We introduce Robust Train Stop Changing
(RTSC) constraints into the proposed formulation to
ensure that the stopping plans of the rescheduled trains
are consistent under disruption scenarios of different
durations. This definition of timetable robustness can be
viewed as a robust passenger reassignment because all
the extra stops added during the rescheduling phase aim
to transport passengers affected by disruptions. Various
deterministic and stochastic approaches are proposed to
solve the studied problem with the aim of investigating
the trade-off between the accuracy of managing uncer-
tainty information and the time of computing optimal
rescheduling solutions.

The remainder of this paper proceeds as follows. The
next section introduces a literature review and the state-
ment of paper contribution. The problem description is
then provided. The next section introduces the mixed-
integer linear programming formulation and three meth-
ods proposed to solve the problem. The computational
results on the mathematical formulation and solving meth-
ods are then presented. The final section outlines some
directions for further research on the studied problem.

Literature Review and Paper Contribution

Literature Review

The train rescheduling problem has been extensively
studied in the past few decades. Advances in scheduling
theory make it possible to solve a real-time train

scheduling problem, in which train departure/arrival
times, train orders, and routes will be determined (3–5).
Recent surveys (6–9) summarize recent methods and
solution techniques for train timetabling, train dispatch-
ing, and train rescheduling.

A recent research stream is focused on train reschedul-
ing during disruptions, and with a focus on the passenger
flows affected by them. Sato et al. introduce a timetable
rescheduling algorithm when train traffic is disrupted
(10). A mixed-integer programming formulation is pro-
posed to minimize further inconvenience to passengers.
Louwerse and Huisman focus on adjusting the timetable
of a passenger railway operator in case of partial or com-
plete track blockage (11). The main objective is to maxi-
mize the service level offered to passengers by minimizing
the number of canceled trains and the delays of the oper-
ated trains and by distributing the operated trains evenly
over time. Veelenturf et al. propose a railway timetable
rescheduling approach for handling large-scale disrup-
tions on a macroscopic modeling level (12). An integer
linear programming formulation is introduced to mini-
mize the number of canceled and delayed train services.
Binder et al. focus on the railway timetable rescheduling
problem from a macroscopic level of infrastructure repre-
sentation in the case of large disruptions (13). An integer
linear programming formulation is proposed to minimize
the passenger dissatisfaction, the operational costs, and
the deviation from the disrupted timetable. Corman et al.
integrate train rescheduling and delay management by
developing microscopic passenger-centric models (14).
Corman and D’Ariano investigate a set of disruption res-
olution scenarios involving cancelation of train services,
rerouting, and shuttle trains, to manage seriously dis-
turbed traffic conditions in large networks (15). Detailed
performance indicators about train delay and passengers’
discomfort are computed.

Most of the approaches presented in the literature
mainly concern the train rescheduling problem in a static
environment, where key parameters are set to fixed val-
ues. However, railway traffic management is a complex
and dynamic system, and the information is always with
some degree of uncertainty. Because of this, some
researchers have recently introduced dynamic and sto-
chastic approaches with consideration of uncertainty fac-
tors related, for example, to the duration of scheduled
and unscheduled process times.

Meng and Zhou solve a train dispatching problem
focused on a major service disruption on a single-track
rail line, with the objective of minimizing the expected
additional delay under different forecasted operational
conditions (16). A robust meet–pass plan is selected and
determined for every rolling period. Quaglietta et al. pro-
pose several metrics plus a framework to assess the stabi-
lity of railway dispatching solutions, by adopting a
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rolling horizon approach under a stochastic and dynamic
environment (17). Larsen et al. focus on the stochastic
evaluation of train schedules computed by a microscopic
optimization-based scheduler of railway operations based
on deterministic information (18). Meng et al. propose a
cumulative flow variables-based integer programming
model for dispatching trains under a stochastic environ-
ment on a general railway network (19). Stable train
routing constraints are introduced to ensure that trains
traverse the same route across different capacity break-
down scenarios. Cavone et al. propose a mixed-integer
linear programming for robust real-time train reschedul-
ing in case of disturbances (20). A self-learning decision
making procedure determines appropriate relevance
weights for the distribution of buffer times when distur-
bances of the same type affect the network. Davydov
et al. propose a stochastic model by using specific distri-
butions of operating times, which depend on the actual
traffic conditions (21). The arrival time distribution is
obtained by adjusting the train trajectory and corre-
sponds well with the experimental data derived by
Russian Railways. D’Ariano et al. focus on the optimiza-
tion of train sequencing, routing, and timing decisions
related to short-term maintenance works in a railway
network subject to disturbed process times (22). The
bi-objective problem minimizes the deviation from a
scheduled plan and maximizes the number of aggregated
maintenance works under stochastic disturbances.
Cacchiani et al. pay attention to the passenger demand
uncertainty by formulating robust optimization models
for integrated train stop planning and timetabling with
constraints on passenger demand (23). Their goal is to
determine robust solutions in planning so as to reduce
the passenger inconvenience that may occur in real-time
as a result of additional passenger demand.

Even though some researchers have done studies
about railway operations with consideration of dynamic
and stochastic characteristics, all the above research has
been developed by assuming a railway system with no
seat reservation, which means that the seat capacity for
trains is not considered. Some of the studies pay atten-
tion to passenger inconvenience, which is measured as a
total traveling time consisting of on-board time, waiting
time, and transfer time. However, the disrupted train
means that disrupted passengers need to be reassigned to
other trains. Therefore, a main question in a railway sys-
tem with seat reservation is whether passengers may be
able to arrive at their destinations in a disrupted situa-
tion in which several trains operate with a limited avail-
able seat capacity and with a pre-defined stopping plan.
Furthermore, trains should be rescheduled by consider-
ing both the need for changing their stopping plans to
accommodate disrupted passengers and the presence of a
disrupted train in the railway network. The disrupted

passengers should be assigned to specific trains, which
still have enough capacity to take new passengers. The
assignment optimization of the disrupted passengers is a
very complicated task, because of the seat reservation
mechanism (similar to airlines [24, 25]). At the same
time, having a train performing an extra stop would
result in a longer travel time, which would ultimately
lead to delays, and possibly even to a domino effect of
delay propagation in the overall railway network during
operations.

Statement of Contributions

This paper focuses on rescheduling a train timetable fac-
ing a disruption, such as a rolling stock failure. The pas-
senger reassignment problem is solved under the
assumption of a seat-reserved mechanism. The disrup-
tion is modeled under a dynamic and stochastic environ-
ment, that is, its duration is not known beforehand. This
paper aims to offer the following contributions:

(1) This research focuses on a railway system with a
seat-reserved mechanism, like the railway opera-
tions in China. There are some differences with
previous research. First, not only are tracks of a
limited capacity, but also trains are capacitated
with a limited number of available seats, and
passengers have booked their seats in a specific
train. Because of the passenger seat reservation
system, passengers in a disrupted train must
change their ticket, as their booked service is
canceled and they have to travel on other trains
with sufficient available free seats. This behavior
is substantially different from a railway system
with a non-reserved mechanism, such as the
usual ticketing systems in most European coun-
tries in relation to regional/local trains or urban
transit systems. In the latter cases, passengers
with a ticket, between an origin and a destina-
tion, can choose their favorite trains when they
enter the system, leading to crowding and route
choice under uncertainty.

(2) We propose a novel mixed-integer linear pro-
gramming formulation of the problem of deter-
mining a robust disposition timetable under
disruptions with the consideration of the follow-
ing key elements: passenger reassignment (how
many passengers in which passenger groups
travel in which trains), train rescheduling (which
trains stop and where, which train times, orders,
and routes are adopted in the network), track
capacity utilization (the minimum safety separa-
tions must be respected between any pair of con-
secutive trains on rail resources), and various
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passenger and train indicators are optimized.
The disrupted passengers who were supposed to
travel in the broken train, and have the same ori-
gin and destination station, form one passenger
group.

(3) We deal with an uncertain duration of disrup-
tions. To improve the robustness of our dispatch-
ing plan under this uncertainty, we introduce
RTSC constraints in the mathematical formula-
tion. Three different solution approaches are pro-
posed to deal with different assumptions on the
disruption duration. Numerical experiments are
also carried out to demonstrate the potential ben-
efits of the approaches.

Problem Description

In railway operations, punctuality is one of the main per-
formance indicators to be optimized. This indicator can
be viewed as the minimization of weighted train delays
on a railway network, by considering the importance of
each train for train operating companies. From a passen-
ger perspective, each person would like to travel accord-
ing to what is indicated in his/her ticket. However, if a
disruption occurs, the passenger may be satisfied if he/
she can arrive at his/her destination as early as possible,
even with a revised ticket. RTSC constraints will affect
the actual train operation and passenger organization.
For example, if train dispatchers continuously change
their plans with the updating of disruption information,
rescheduling actions will have to be updated multiple
times and the organization of affected passengers will be
disordered by a changeable response system.

The inputs include the following information:

(1) Railway network

We consider a railway network composed of several
stations and track segments with a macroscopic

representation of the infrastructure, shown in Figure 1.
We view the railway network as a directed graph
G= (N, A) with a set of nodes N and a set of directed
arcs A. Nodes represent entry and exit points of stations
and directed arcs represent track segments and stations.

(2) Passenger travel demands

For each passenger origin–destination (OD) group, we
consider a volume (demand) of passengers with the same
origin and destination stations, the train assigned to per-
form their service, and their planned arrival time at the
destination station.

(3) Timetable

The timetable is the planned schedule of all train ser-
vices, with a detailed description of train timing, order-
ing, and routing, plus arrival/departure times of each
train at each station, and the carrying capacity of each
train in relation to the available passenger seats.

(4) Disrupted train

We know the location of the train which has a failure
and the stochastic characteristic of the disruption dura-
tion. We assume the disruption can be resolved by having
the affected train pulled to the next station along its run-
ning direction. As for the disruption characteristic, we
consider several scenarios with different duration times.
In our assumption, a probability is given for each sce-
nario, following a given distribution.

A detailed train timetable and passenger reassignment
plan can be obtained as the major outputs.

We also make the following assumptions.

(1) We do not consider the reassignment of each
individual passenger. Passengers are divided into

Figure 1. Illustration of railway network.
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different passenger groups. Passengers in each
group have the same demand.

(2) We do not consider the reassignment of passen-
gers who are not in the train facing a disruption.
The available seat capacity on the following
trains is static. Penalties are set in the objective
function for the on-board (undisrupted) passen-
gers. In other words, real-time ticket changes
only involve disrupted passengers.

(3) We consider one transfer only for passengers on
the disrupted train, from the disrupted train to
the following train that can transport them to
their destinations.

(4) We assume that stations have a relatively large
capacity. The station capacity constraints are
thus not included in our mathematical model.

We next describe a fictitious example to illustrate
the problem in more detail. We compare a passenger

reassignment strategy with the condition without passen-
ger reassignment. In this example, five trains, named
No.1 to No.5, travel from Station A to Station D with
some intermediate stops in the original timetable. There
are two passenger groups: a red one (two passengers)
and a black one (three passengers). Both groups travel
on train No.1 but with different destinations (Station C
for the red group and Station D for the black group).
Figure 2a shows the passenger flows in the original time-
table. When train No.1 is at Station C, the black-group
passengers are still on board, while the red-group passen-
gers disembark train No.1.

During operations, something goes wrong with train
No.1 on the track section from Station A to Station B
and this train cannot move toward Station B. A rescue
train is required to move train No.1 to Station B. All pas-
sengers on train No.1 must disembark and wait for the
available following trains to (eventually) travel to their
destinations. Clearly, the disrupted passengers can only

Figure 2. Illustration of example: (a) original timetable and passenger flow, (b) feasible condition without passenger reassignment, and
(c) feasible condition with passenger reassignment.
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choose trains with a scheduled stop at Station B (so that
they can use those trains) and with a scheduled stop at
their destinations (so that they can arrive at their destina-
tion without any further need of changing train). A ticket
change needed for disrupted passengers is only possible if
there is available seat capacity.

In Figure 2b, dispatchers take some train rescheduling
measures (such as train retiming and reordering) without
consideration of passenger reassignment, that is, without
the addition of unscheduled stops for the following trains
to serve disrupted passengers. The red-group passengers
can only choose train No.4, and the black-group passen-
gers can only choose trains No.4 and No.5. In relation
to the available seat capacity of the following trains, dis-
rupted passengers know about the timetable of the fol-
lowing trains and the possibilities to change their ticket
in advance. In this way, they can be ready to board a fol-
lowing train with enough seat capacity and with a feasi-
ble stopping plan (i.e., a plan covering their OD). A
ticket change mechanism is considered such that not all
disrupted passengers can choose the earliest feasible train
from Station B in case there is not enough seat capacity.
However, not all disrupted passengers can be served.

The passenger reassignment strategy works as follows.
In Figure 2c, all disrupted passengers can reach their des-
tination. This is made possible by adding an extra stop
to trains No.2 and No.3 at Station B. However, the num-
ber of disrupted passengers that embark on trains No.2
and No.3 depends on the available seat capacity on those
trains. The drawback of serving all passengers is the need
to increase the travel time of the following trains as a
result of the addition of an unscheduled stop for trains
No.2 and No.3. The travel time increase may generate
dissatisfaction for the undisrupted passengers if they
arrive at their destination with an additional delay. In a
high-density timetable, the addition of unscheduled stops
for some trains may generate consecutive delays for the
following trains. The investigated problem is thus inher-
ently multi-objective when considering the needs of dis-
rupted versus non-disrupted passengers.

To the best of our knowledge, the problem studied in
this paper is original and of high practical interest both
for train operating companies and infrastructure manag-
ers in the presence of disruptions that enforce taking re-
ticketing decisions for some passengers.

Methodology

Notations

We first introduce the general subscripts, input para-
meters and decision variables in Table 1. It should be
explained that the exit points from the transfer and desti-
nation stations are the transfer and destination nodes for
passenger OD pairs, respectively.

Mathematical Formulation

Objective function (1) is proposed in this paper with the
following components: the maximization of passenger
accessibility, measured by the number of disrupted pas-
sengers that are reassigned to following available trains
to travel to their destinations; the minimization of the
weighted total train delay that considers the positive
deviation of all trains with respect the scheduled arrival
time at their destinations. It should be explained here that
the weight for each train is determined by the amount of
undisrupted passengers originally traveling on the follow-
ing trains, vf =NPf =1000. In this way, the negative
impact of passenger reassignment on the undisrupted
passengers can be taken into consideration. The two
objective function components are optimized via a
weighted-sum approach and by considering all the dis-
ruption scenarios. When the total available seat capacity
is enough, all the disrupted passengers can be saved by
setting a relatively large weight for the objective compo-
nent of maximizing the passenger accessibility.

Z =Max e 3
X

w2W

yw 3
X

p2P

X

f 2Favai

yf , p,w� (1�e)3

X

w2W

yw 3
X

f2F=ff �g
vf 3 (af , df ,w � ATf ) ð1Þ

Subject to:
Capacity loss constraints:

af �, bw,w =Dstw, 8w 2 W ð2Þ

af �, ew,w ø Detw, 8w 2 W ð3Þ

Start time constraints at the origin node:

af , of ,w ø ESTf , 8f 2 F,w 2 W ð4Þ

Within cell transition constraints:

af , j,w ø af , i,w, 8f 2 F, (i, j) 2 Af : i, j 2 N ,w 2 W ð5Þ

Minimum and maximum running time constraints:

TTf , i, j,w = af , j,w � af , i,w, 8f 2 F, (i, j) 2 Af : i, j 2 N ,w 2 W

ð6Þ

TTf , i, j,w ł df , i, j +qmax
f , i, j, 8f 2 F, (i, j) 2 Af : i, j 2 N ,w 2 W

ð7Þ

TTf , i, j,w ł qmax
f , i, j 3

X

p2P

Df , p, j,w + df , i, j 3 M ,

8f 2 Favai, (i, j) 2 Af \ As : i 2 N , j 2 fs, dpg,w 2 W

ð8Þ

TTf , i, j,w ø df , i, j, 8f 2 F, (i, j) 2 Af : i, j 2 N ,w 2 W ð9Þ
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TTf , i, j,w ø df , i, j +Df , p, j,w 3 tf , i, j,

8f 2 Favai, p 2 P, (i, j) 2 Af : i 2 N , j 2 fs, dpg,w 2 W

ð10Þ

TTf , j, k,w ø df , j, k +Df , p, j,w 3 pf , j, k ,

8f 2 Favai, p 2 P, (i, j), (j, k) 2 Af :

i 2 N , k 2 N , j 2 fs, dpg,w 2 W

ð11Þ

Table 1. General Subscripts, Input Parameters, and Decision Variables

Symbol Description

General subscripts
i, j, k Node index, i, j, k 2 N, N is the set of nodes in a railway network
a Arc index, a 2 A, A is the set of arcs in a railway network
t Time index, t 2 f1mTg, T is the rescheduling time horizon
p Passenger origin–destination (OD) pair index, p 2 P, P is the set of passenger OD pairs in the broken

train f �. Each passenger OD pair refers to a group of passengers who have the same origin and
destination stations

f Train index, f 2 F, F is the set of all trains
w Random scenario index, w 2 W, W is the set of all scenarios

Input parameters
f � Broken train index, f � 2 F
Favai Set of available following trains, which can be rescheduled to serve the disrupted passengers, FavaiCF
Af Set of arcs that train f may use, Af CA
Ab Set of arcs between two consecutive stations, AbCA
As Set of arcs in stations, AsCA
df , i, j Scheduled running (dwelling) time of train f to travel through arc (i, j)

qmax
f , i, j Maximum extra running (dwelling) time for train f on arc (i, j)

h Safety time interval (headway) between two consecutive trains
of Origin node of train f
df Destination (sink) node of train f
ESTf Predetermined earliest start time of train f at its origin node
ATf Predetermined arrival time at the destination node of train f in the original timetable
vf Weight for train f, determined by the amount of undisrupted passengers originally traveling on train f
NPf The number of undisrupted passengers on board for following train f , f 2 F=ff �g
rf Available passenger-carrying capacity (available seats) in train f for the passengers of the broken train f �,

f 2 Favai

sf , i, j Extra running time for train f deceleration with an extra stop at arc (i, j) for passenger OD pair p getting
on or off the train

pf , i, j Extra running time for train f acceleration with an extra stop at arc (i, j) for passenger OD pair p getting
on or off the train

tf , i, j Extra dwelling time for train f stopping at arc (i, j) with an extra stop at arc (i, j) for passenger OD pair
p getting on or off the train

s Transfer node where passengers need to get off their original train and then (eventually) get on a
following train

dp Destination node for passenger OD pair p
hp Volume of passenger OD pair p

yw Occurrence probability of scenario w
Dstw Start time of disruption under scenario w
Detw End time of disruption under scenario w
bw Begin node of disruption under scenario w
ew End node of disruption under scenario w
e Weight for objective function
M A relatively large positive number

Decision variables
af , i,w Arrival time variable of train f arriving at node i under scenario w
orderf1, f2, i, j,w 0 to 1 binary train order variable: =1, if train f2 is scheduled after train f1 on arc (i, j) under scenario w;

=0, otherwise
yf , p,w Passenger reassignment variable, the number of passengers with OD pair p reassigned to the following

train f under scenario w
Df , p, i,w 0 to 1 binary train extra stop variable: =1, if train f needs to perform an unscheduled stop at node i for

passenger p, p 2 P, under scenario w; =0, otherwise
TTf , i, j,w Travel time for train f on arc (i, j) under scenario w
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TTf , k, i,w ø df , k, i +Df , p, j,w 3 sf , k, i,

8f 2 Favai, p 2 P, (k, i), (i, j) 2 Af :

k 2 N , i 2 N , j 2 fs, dpg,w 2 W

ð12Þ

TTf , k, i,w ø df , k, i +Df , p, k,w 3 pf , k, i +Df , o, j,w 3 sf , k, i,

8f 2 Favai, p 2 P, o 2 P, (q, k), (k, i), (i, j) 2 Af :

q 2 N , i 2 N , k 2 fs, dpg, j 2 fso, dog,w 2 W

ð13Þ

Order constraints:

orderf1, f2, i, j,w + orderf2, f1, i, j,w = 1,

8f1, f2 2 F, i, jð Þ 2 Af \ Ab : i, j 2 N ,w 2 W
ð14Þ

Track capacity constraints:

af2, i,w +(1� orderf1, f2, i, j,w)3 M.= af1, i,w + h,

8f1, f2 2 F, i, jð Þ 2 Af \ Ab : i, j 2 N ,w 2 W
ð15Þ

af2, j,w +(1� orderf1, f2, i, j,w)3 M.= af1, j,w + h,

8f1, f2 2 F, i, jð Þ 2 Af \ Ab : i, j 2 N ,w 2 W
ð16Þ

af1, i,w +(1� orderf2, f1, i, j,w)3 M.= af2, i,w + h,

8f1, f2 2 F, i, jð Þ 2 Af \ Ab : i, j 2 N ,w 2 W
ð17Þ

af1, j,w +(1� orderf2, f1, i, j,w)3 M.= af2, j,w + h,

8f1, f2 2 F, i, jð Þ 2 Af \ Ab : i, j 2 N ,w 2 W
ð18Þ

Passenger flow balance constraints:

X

f 2Favai

yf , p,w ł hp , 8p 2 P,w 2 W ð19Þ

Passenger-carrying capacity constraints:

X

p2P

yf , p,w ł rf , 8f 2 Favai,w 2 W ð20Þ

Mapping constraints between passenger reassignment
and train stop plan:

Df , p, j,w 3 rf ø yf , p,w, 8f 2 Favai, p 2 P, j 2 fs, dpg,w 2 W

ð21Þ

Df , p, j,w ł yf , p,w, 8f 2 Favai, p 2 P, j 2 fs, dpg,w 2 W

ð22Þ

Robust passenger reassignment constraints:

yf , p,w = yf , p,w�1, 8f 2 Favai, p 2 P,w 2 W : w.1 ð23Þ

All the above constraints work for every scenario w.
Constraints (2) and (3) are capacity loss constraints to
ensure that the broken train occupies the arcs (from
the start node to the end node of disruption) during the
whole disruption horizon. The start node of the

disruption corresponds to a station node. We assume
that the disruption cannot start in the middle of the run
between stations or during stops. Constraints (4) and (5)
are space–time network constraints. Constraints (4) are
needed to make sure that every train will depart from its
origin station after its earliest departure time. The earliest
departure time is consistent with the planned departure
time from the origin station. Constraints (5) ensure the
time transition within arcs. It means that the arrival time
at node i is no less than the arrival time at node j within
arc (i, j). Constraints (6) give the calculation method of
the travel time on each arc for each train. Constraints (7–
13) enforce the required maximum and minimum run-
ning and dwelling times. Constraints (7) make sure the
running time and dwelling time no more than the maxi-
mum value. The available following trains are limited to
add the extra stops only if they serve the disrupted pas-
sengers, by constraints (8). The latter constraint is an
additional limitation on the maximum running time in
stations. If one train goes through a station (i.e., the
planned dwelling time is 0min, df , i, j = 0), then if no extra
stop is added (

P
p2P Df , p, j,w = 0), the rescheduling dwell-

ing time should be 0min; if the planned dwelling time is
more than 0min, constraints (8) are not restrictive. The
maximum dwelling time is then limited by constraints (7).
Constraints (9) guarantee the running time and dwelling
time no less than the scheduled time. Constraints (10)
guarantee the minimum dwelling time for disrupted pas-
sengers embarking or disembarking. Constraints (11)
ensure the minimum running time with acceleration for
arc (j, k) owing to an extra stop at arc (i, j). Constraints
(12) make sure the minimum running time with decelera-
tion for arc (k, i) owing to an extra stop at arc (i, j). If
one train is added with two stops at two consecutive sta-
tions (q, k) and (i, j), the minimum running time for arc
(k, i) should be considered with extra running time for
acceleration and deceleration at the same time, by con-
straints (13).

Constraints (14) guarantee that trains cannot take
over each other in the section between two consecutive
stations. Constraints (15–18) ensure that the number of
trains occupying arc (i, j) is less than the capacity of arc
(i, j). We note that there can be more than one train tra-
veling on each track segment between two consecutive
stations as long as the minimum time interval (headway)
between trains is satisfied at any time.

Constraints (19–22) are formulated for passenger
reassignment. Constraints (19) require that the total
number of passengers in the OD pair p assigned to the
following trains is no more than the total passenger
demand of OD pair p. Constraints (20) guarantee that
the available seat capacity of each train is not violated.
Constraints (21) and (22) make sure that once a follow-
ing available train f is assigned to serve disrupted
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passengers of a passenger OD pair p, this train must stop
at the transfer node s and their destination node dp. In
this work, the transfer station is the one just after the dis-
ruption location, where the disrupted passengers will
wait for the following trains.

Constraints (23) formulate the RTSC constraints,
which ensure that the same train stopping plan is
enforced for each train under the different disruption
duration scenarios. These constraints impose the robust-
ness of dispatching solutions.

Solution Approaches

We next describe the three approaches proposed in this
paper: One-stage approach (O), Multi-stage approach
(M), and Stochastic approach (S). The two latter
approaches can solve the problem in presence of dynamic
information and uncertainty.

O: One-stage approach with perfect disruption infor-
mation refers to the ideal case in which the exact
disruption duration is known a priori, and no further
re-planning is needed. This is an extreme (often

non-realistic) situation, which helps to benchmark other
approaches. In the one-stage approach, the set of all sce-
narios only includes one scenario, that is, W = w0f g, the
occurrence probability of this scenario is 1, that is,
yw0

= 1.
M: Multi-stage approach with the dynamic and ran-

dom disruption information refers to the case in which
the exact disruption duration is not known at the begin-
ning of the disruption, and the information becomes
more precise with time. Optimistic estimation (M-O),
Pessimistic estimation (M-P) or Expected value informa-
tion (M-E) of the disruption duration is adopted at the
first stage. Trains are rescheduled according to the esti-
mated duration. When the new information is available,
re-planning work will be performed with the updated dis-
ruption duration. Also, some of the train paths resched-
uled at the previous stages have been achieved and will
be the inputs when re-planning.

Figure 3 illustrates a traffic situation to further discuss
the approach M. The disruption is assumed to happen at
time point 1, and the second stage starts at time point
37. In M-O, we have an optimistic estimation of the

Figure 3. Illustrative example for various settings of approach M: (a) first stage for M-O with an optimistic estimation of duration as
40 min, (b) first stage for M-P with a pessimistic estimation of duration as 70 min, (c) second stage for M-O with an exact duration of
50 min, and (d) second stage for M-P with an exact duration of 50 min.
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disruption duration fixed to 40min at the first stage. The
rescheduled plan is shown in Figure 3a with the dotted
lines. With a consideration of the disruption duration of
50min at the second stage, trains a and b have departed
from Station A before time point 37, so the part of their
paths before time point 37 cannot be changed at the sec-
ond stage, as shown by the full line in Figure 3c. In M-P,
a pessimistic estimation of the disruption duration, that
is, 70min, is adopted at the first stage. The correspond-
ing rescheduling solution for the first stage is reported in
Figure 3b, where no trains have departed from Station A
at time point 37, and they will depart after the start time
of the second stage, no matter how long the disruption
duration will be. Figure 3d shows the second stage in M-
P with the disruption duration of 50min.

S: Stochastic optimization approach with robustness
consideration. With this approach, we consider the case
in which there is a strict correlation between the solu-
tions obtained for different scenarios. In other words,
with a robust approach, we guarantee the same stopping
plan for each following train and the same number of
passengers assigned to the same following trains, under
different scenarios. That is, after the dispatcher deter-
mines the revised train stopping plan and passenger reas-
signment strategy, for any scenario which has been taken
into account, trains will have the same stops at the same
stations, and the same number of disrupted passengers
will be assigned to the same following trains, which still
strictly ensures the running (dwell) time, headway inter-
vals, and limited train capacity. Without the robust train
stopping plan, the dispatcher has to frequently re-adjust
and continuously change stopping plans, which could
make the station organization difficult in response. Each
scenario is considered with a known disruption duration,
and the disruption duration is subject to a known distri-
bution. This means that the scenarios are independent,
and each scenario has a probability.

Based on the example shown in Figure 3, we aim to
conceptually introduce approach S. Let us consider that
for Train a, there are two alternative stopping plans, I
and II, and stopping plan III and IV can be rescheduled
for Train b, as shown in Table 2. The delay shown here

is caused by extra stops, including extra running time for
deceleration and acceleration, and extra dwell time for
passengers embarking. The available seat capacity values
for Train a and b are all 40.

We consider that the duration is subject to a normal
distribution. The mean of the duration is 50min.
Consequently, the range of the duration is [35, 65], under
the principle of ‘‘3s’’ with standard deviation s=5. For
simplicity, here we select two scenarios: (1) scenario w1

with a duration of 44min and an occurrence probability
of 78%, and (2) scenario w2 with a duration of 60min
and an occurrence probability of 22%. We know that in
scenario w1, Train a and b departing from Station A are
delayed by 20min and 0min, respectively. In scenario
w2, Train a and b departing from Station A are delayed
by 36min and 10min, respectively. Table 3 reports the
solutions under robust train stopping plan and normal
train stopping plan, which corresponds to approach S
and O, respectively. If the normal train stopping plan
strategy is considered, Train b uses stopping plan IV
under scenario w1, and a different stopping plan III
under scenario w2. If the robust train stopping plan strat-
egy is enforced, Train b selects stopping plan IV under
both scenarios. If we consider an equal weight for the
two objectives, the robust train stopping plan strategy
causes less objective value by 20.912 20.14=0.77, com-
pared with the normal train stopping plan strategy,
which can be viewed as the cost of the robust train stop-
ping plan.

Numerical Experiments

Instance Description

The test bed is based on a part of the Beijing–Shanghai
high-speed railway: the line from Nanjing South Station
to Shanghai Hongqiao Station, including eight stations.
The timetable used in our experiments is a real one for
the year 2018. The resulting mathematical formulation is
solved by IBM CPLEX Optimization Studio 12.8.0.0 on
a computer with Intel(R) Xeon (TM) CPU E7-4850 v4
@ 2.10GHz and 256GB memory.

Table 2. Stopping Plans and Delay Caused by Extra Stops for Train a and b

Stopping plan Station B Station C Station D Delay (min)

Train a (C = 40)
I O x O 0
II O O x 7
Train b (C = 40)
III O x O 7
IV O O x 14

Note: C = available seat capacity.
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Disruption information: We assume that one train
named G1 fails on the track segment between Nanjing
South Station and Zhenjiang South Station at 19:19, and
the next service of Train G1 will be canceled. The dura-
tion of this failure is subject to a normal distribution.
The mean of the shorter duration and the longer dura-
tion is 50 and 65min, respectively, that is, m1 =50 and
m2 =65. Consequently, the range of the shorter duration
and longer duration is [35, 65] and [50, 80], respectively,
under the principle of ‘‘3s’’ with standard deviation
s=5.

Passenger information: There are four passenger OD
pairs on Train G1 with the following destinations:
Changzhou North Station, Suzhou North Station,
Kunshan South Station, and Shanghai Hongqiao
Station. The passenger volume of these four pairs is 80,
160, 80, and 580, respectively. The total passenger
demand is 900.

Traffic information: We know the real original timeta-
ble for the following trains of Train G1, named G2 to
G20, which have different pre-planned stops. Train G20
is the last one operated during the day. The safety time
interval (headway) between two consecutive trains is set
to 3min, h=3. The extra running time for train decelera-
tion and acceleration with an extra stop are set to 3min
and 2min, respectively, sf , i, j =3 and pf , i, j =2. The min-
imum dwelling time for disrupted passengers embarking
and disembarking is set to 3min, tf , i, j = 3.

The trade-off between these two objective components
will be an interesting problem. Dispatchers can set the
weights for these two objectives according to the actual
situation. If they would like to transport as many dis-
rupted passengers as possible, a relatively larger weight
can be set for the maximization of the saved passengers.
Conversely, if they consider the train operation a prior-
ity, a relatively larger weight can be set for the minimiza-
tion of the total train delay. Pareto-optimal solutions
can be identified by means of the weighted-sum method
with the normalization (21). In this paper, we will not
occupy too much space to discuss the trade-off problem.

An equal weight e=0.5 for the two objective functions
is considered, to illustrate the methodological contribu-
tion. The value of big-M cannot be less than the time for
the rescheduling period. Here, we set M equal to 400.

Computation Time Versus Instance Size

In this section, all experiments are performed by
approach S, which considers the strict correlation among
different scenarios at one stage. Compared with other
approaches, it will be more difficult to obtain the optimal
solution with approach S. Therefore, we choose
approach S to test the efficiency of our approach. The
efficiency of our method is assessed by varying the num-
ber of trains, that is, from two to 20 trains, to be resched-
uled in the network. Trains are included to be
rescheduled according to their departure sequence from
Nanjing South Station in the original timetable. The time
horizon for rescheduling will get longer when the number
of trains varies from two to 20. When 20 trains are
included, the rescheduling time horizon is 4 h, which is
comparable to the travel time required if passengers take
another transportation mode from Zhenjiang to
Shanghai. We consider that if the disrupted passengers
wait for an available seat for a longer time than this
acceptable time, they will claim a refund on their train
tickets and choose another transportation mode.
Scenarios are selected symmetrically. Here we test differ-
ent disruption durations, including 35, 40, 44, 47, 49, 51,
53, 56, 60, and 65min, with corresponding probabilities
of 0.002, 0.028, 0.1, 0.17, 0.2, 0.2, 0.17, 0.1, 0.028, and
0.002.

Under fixed orders, the train order in the original
timetable is kept; no reordering is optimized. Under flex-
ible order, the train order can be changed, namely opti-
mized, to serve the purpose of the problem. We set 1 h of
computation time to the solver. The computational
assessment is reported in Figure 4. There are two indica-
tors: one related to the time required to find the best-
known solution (gray curves), and the other one related

Table 3. Statistics for Solutions under Approach S and O

Robust train stopping plan (approach S) Normal train stopping plan (approach O)

Scenario w1 (78%) Scenario w2 (22%) Scenario w1 (78%) Scenario w2 (22%)

Plan number #P Delay (min) Plan number #P Delay (min) Plan number #P Delay (min) Plan number #P Delay (min)

Train a I 40 20 I 40 36 I 40 20 I 40 36
Train b IV 40 14 IV 40 24 IV 40 14 III 40 17
Total NA 80 34 NA 80 60 NA 80 34 NA 80 53
Z (80 3 0.5 2 34 3 0.5) 3 0.78 +

(80 3 0.5 2 60 3 0.5) 3 0.22 = 20.14
(80 3 0.5 2 34 3 0.5) 3 0.78 +

(80 3 0.5 2 53 3 0.5) 3 0.22 = 20.91

Note: #P = number of saved passengers; NA = not available.
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to the total computation time (black curves). If we obtain
the global optimal solution within 1 h of computation
time, the difference between these two curves is the time
required to prove optimality, for example the instances
of six or eight trains. Table 4 presents the following
quantitative information on the investigated instances:
including the number of scenarios (#w), number of
trains (#f ), passenger demand (D), total available seat
capacity for the disrupted passengers (C), the number of
decision variables including train arrival time (#a), train
order (#order), passenger reassignment (#y), train extra
stop (#D) and travel time (#TT), and information of
objectives (Z) (the optimal solution can be obtained
within the computation time of 1 h).

From Figure 4 and Table 4, we conclude that the
model can easily solve case (b) with fixed orders, as the

train order decision variables are much more than others,
and it is thus simple searching for an optimal solution
when we do not consider train reordering. Practitioners
like fixed order because they can better understand the
consequences, and it will have less impact in planning the
resource occupation downstream. Having a fixed order is
sometimes needed, for instance, if a route has been
already set, and to achieve a flexible order the signal and
route locking must be reset. It should be explained that a
feasible solution can be obtained easily even for the
instances which involve more trains with the flexible
order. For example, we can get a feasible solution within
a few seconds for the instance with 16 trains shown in
Figure 4a. The first feasible solution is 146.888, with a
gap of 59.996% compared with the best know solution
within the computation time of 1 h. Moreover, we can

Figure 4. Computation time for instances of different sizes: case (a) flexible orders and case (b) fixed orders.

Table 4. Number of Decision Variables and Objectives for Investigated Instances

#w = 10, D= 900 Decision variables Objectives

#f C #a #order #y #D #TT Z for case (b) Z for case (a) Improve-ment

2 60 280 280 40 80 150 14.746 14.746 0
4 180 560 1120 120 240 410 63.392 67.897 4.505
6 280 840 2520 200 400 670 105.130 109.859 4.729
8 420 1120 4480 280 560 930 168.724 173.624 4.900
10 510 1400 7000 360 720 1190 207.860 212.752 4.892
12 630 1680 10080 440 880 1450 261.925 266.818 4.893
14 730 1960 13720 520 1040 1710 308.145 313.040 4.895
16 860 2240 17920 600 1200 1970 362.985 367.190 4.205
18 1000 2520 22680 680 1360 2230 380.130 384.305 4.175
20 1110 2800 28000 760 1520 2490 380.060 381.375 1.315
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get a feasible solution of 354.214 within the computation
time of 180 s. The gap is 3.534%, accordingly. The com-
putation time can be set according to the actual opera-
tion situation, and the best-known solution within this
limited computation time will be obtained. The optimal
objective value of case (a) with flexible orders increases 0
to 4.900 compared with case (c) with fixed orders. In the
investigated instances with different train numbers, the
reordering between G2 and G3, and between G2 and G4
departing from Nanjing South Station always happens in
most scenarios, whereas the reordering between any
other two trains is only decided in a few scenarios. We
can conclude that most of the improvement of flexible
orders results from the reordering decisions between G2
and G3, and between G2 and G4. This can also explain
the almost constant improvement of the objective as the
number of trains increases. It will be significant to find
out the key reordering decisions in the process of resche-
duling to obtain a better solution within a short compu-
tation time.

From Figure 5, we can see that the number of reorder-
ing is different under different scenarios in one instance.
When the disruption duration gets longer, more trains
will be disturbed and more reordering will happen to
reduce the total train delay. It should be noted here
because of the maximum extra dwell time set to 6min,
and the headway set to 3min, it will not happen that one
train dwells at one station for a long time to give chances
to other trains to overtake.

For the instance with #f = 4, the reordering happens
between trains G2 and G3, and between trains G2 and
G4, departing from Nanjing South Station in the sce-
nario with the disruption duration of 49min. For the
instances with #f =16 and 18, the reordering only hap-
pens between trains G2 and G3 in the same scenario.
Train G4 is rescheduled with more extra dwell time and
stops in these instances. This is why the reordering does
not happen between trains G2 and G4 in the instances
with #f =16 and 18. The number of train reordering
actions in a solution does not necessarily relate to the
number of trains.

For the instance with #f = 6 and 8, the reordering
happens between trains G2 and G3, and between trains
G2 and G4 departing from Nanjing South Station, in the
scenario with the disruption duration of 56min. Besides,
the reordering happens between trains G4 and G5, and
between trains G4 and G6 departing from Nanjing
South Station, in the scenarios with the disruption dura-
tion of 60 and 65min. As for the instance with #f = 8,
two more reorderings happen between G4 and G7, and
between G4 and G8, departing from Nanjing South
Station, in the scenarios with the disruption duration of
60 and 65min. For the instances with #f = 10 and 14,
the reordering happens between trains G2 and G3, and

between trains G2 and G4, departing from Nanjing
South Station in the scenarios with the disruption
duration of 56, 60 and 65min. From the experiments,
increasing the disruption duration results in an increas-
ing number of train reorderings when the amount of
trains is small. The number of train reordering actions
in a solution does not necessarily relate to the disrup-
tion duration.

Table 5 presents detailed results for investigated
instances, including the number of saved passengers,
total weighted train delay, and the number of extra stops
for transporting disrupted passengers. It shows that most
extra stops are rescheduled at the transfer station for dis-
rupted passengers to embark, and mostly trains are
rescheduled to serve the disrupted passengers with desti-
nations consistent with the pre-planned train stops, to
avoid the extra running time caused by the extra stops.
Moreover, when the number of trains is less than 18, the
total available seat capacity is less than the passenger
demand. The number of saved passengers depends on
the total available seat capacity. When the number of
trains increases to 18, the total available seat capacity is
more than the passenger demand. The number of saved
passengers equals the passenger demand. All disrupted
passengers can be saved for a timetable with enough
available seat capacity (22). Not all following trains
require the addition of extra stops or dwell times to
transport the disrupted passengers, while the available
seat capacity of some following trains is enough for satis-
fying the passenger demand. Therefore, the following
trains, with pre-planned stops at the transfer stations or
destination stations of disrupted passengers, will be more
likely to be rescheduled to serve the disrupted passengers,

Figure 5. Number of reordering under different scenarios in
investigated instances.
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with the aim to decrease the train delay resulting from
extra stops or dwell times. In the considered instance
with 20 trains (G1–G20), Train G19 (which has a pre-
planned stop at the transfer station) is rescheduled to
transport the disrupted passengers, while in another
instance with 18 trains (G1–G18), Train G19 is not
involved. The reduction of the number of extra stops in
the above-mentioned instance with 20 trains is compen-
sated by an additional travel time for the disrupted
passengers.

Impact of Passenger Reassignment on Traffic Flows

In this section, a set of experiments is focused on analyz-
ing the properties of the studied problem. The impact of
passenger reassignment on traffic flows for each scenario
will be discussed. The duration of disruption is known in
each scenario. All experiments are performed by
approach O, which considers one scenario with the full
information of disruption duration at one stage.
Approach S and M keep the key point on solving the
problem of the dynamic and randomness of the disrup-
tion. Approach S limits the same passenger reassignment
strategy under different scenarios with different dura-
tions. With this consideration of robustness, the passen-
ger reassignment maybe not optimal for each scenario. It
may conclude a worse impact of passenger reassignment
on traffic flows than approach O. As for approach M,
some decisions are made at the first stage, which may
limit the optimality of the solution at the second stage.
It may also conclude a worse impact of passenger reas-
signment on traffic flows than approach O. The worse
impact of passenger reassignment on traffic flows owing
to the consideration of the dynamic and randomness of
the disruption is not what we would like to discuss, and

is obvious to understand. We would like to explore how
the passenger reassignment affects the traffic flow under
different durations. Therefore, we choose approach O in
this section.

The instance of 20 trains is considered here and the
duration of disruption varies from 35min to 80min.
Figure 6 presents the total train delay and the number of
saved passengers (y-axis, and size of the circles, respec-
tively) for varying duration of the disruption (x-axis)
under three conditions: the first condition (shown in
red circles) means train rescheduling optimized with pas-
senger reassignment, which is solved by considering
formulation (1–22). The second condition considers
non-optimized passenger reassignment (presented in
green circles), which means that the following trains
(G2–G17) with enough available seat capacity (C=920)
will stop at the transfer station (Zhenjiang) and

Table 5. Detailed Results for Investigated Instances

Instance

#w = 10, D = 900 Case (a) with flexible orders Case (c) with fixed orders

#f C #Saved passengers Weighted train delay #Extra stops #Saved passengers Weighted train delay #Extra stops

2 60 60 30.508 0 60 30.508 0
4 180 180 44.206 0 180 53.217 0
6 280 280 60.282 2 (2 + 0) 280 69.740 2 (2 + 0)
8 420 420 72.752 3 (3 + 0) 420 82.552 3 (3 + 0)
10 510 510 84.496 5 (5 + 0) 510 94.280 5 (5 + 0)
12 630 630 96.364 6 (6 + 0) 630 106.150 6 (6 + 0)
14 730 730 103.920 7 (7 + 0) 730 113.710 7 (7 + 0)
16 860 860 125.620 9 (9 + 0) 860 134.030 9 (9 + 0)
18 1000 900 131.390 10 (8 + 2) 900 139.740 9 (8 + 1)
20 1110 900 137.250 8 (7 + 1) 900 139.880 8 (7 + 1)

Note: In brackets presented in the column of the number of extra stops, the number before and after the symbol of ‘‘+ ’’ reports the number of extra

stops at the transfer station and destinations for transporting disrupted passengers, respectively.

Figure 6. Illustration for the two objectives as duration of
disruption increases.
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destination stations of every passenger OD pair
(Changzhou, Suzhou, Kunshan, and Shanghai) for
transporting all disrupted passengers (D=900). We
obtain the objective values by solving formulations (1–
22) and (24).

Df , p, i,w = 1,8f 2 G2, . . . ,G17f g, p 2 P, i 2 s, dp

� �
,w 2 W

ð24Þ

The third condition does not consider passenger reas-
signment (as for the example shown in Figure 2b), which
means that we optimize the disturbed train timetable by
formulations (2–18), and (25), as shown in yellow circles.
We obtain the number of saved passengers under the
optimized train timetable by solving formulations (2–22),
(26), and (27); here Z�1 indicates the minimum total train
delay.

Z1 =Min
X

w2W

yw 3
X

f 2F

vf 3 (af , df ,w � ATf ) ð25Þ

Z2 =Max
X

w2W

yw 3
X

p2P

X

f 2Favai

yf , p,w ð26Þ

Z1 = Z�1 ð27Þ

Table 6 shows total train delay ( f1) and the number of
saved passengers ( f2) under three conditions. We com-
pare train delay (for the same number of saved passen-
gers) of the first condition (Con1) with optimized
passenger reassignment and the second condition (Con2)
with non-optimized passenger reassignment, and use the
symbol, 2 f1 (Con1/Con2), to describe the decreased train
delay of Con1 compared with Con2. Moreover, we com-
pare the number of saved passengers of the first condition
with optimized passenger reassignment and the third con-
dition (Con3) without passenger reassignment, and the
symbol, f2 (Con1/Con3), is used to describe the increased
number of saved passengers of Con1 compared to Con3.

From the results in Figure 6 and Table 6, we can find
out that in the first and second conditions with the con-
sideration of passenger reassignment, shown in red and
green circles, all 900 disrupted passengers can be saved.
The optimized condition (red circles) can decrease the
total train delay of 40.70% to 71.82% compared with the
other one (green circles). The shorter the disruption dura-
tion, the larger is the decrease of the total train delay.

Table 6. Values of Two Objectives for Investigated Conditions

Instance Con1 Con2 Con3 Comparison

Dur (min) f 1 f 2 f 1 f 2 f 1 f 2 2f 1 (Con1/Con2) (%) f 1 (Con1/Con3) (%) f 2 (Con1/Con3) (%)

35 102 900 362 900 22 290 71.82 78.43 67.78
40 112 900 367 900 34 330 69.48 69.64 63.33
45 127 900 379 900 44 250 66.49 65.35 72.22
50 133 900 391 900 57 210 65.98 57.14 76.67
55 153 900 411 900 86 210 62.77 43.79 76.67
60 199 900 434 900 114 210 54.15 42.71 76.67
65 233 900 473 900 159 580 50.74 31.76 35.56
70 254 900 506 900 194 370 49.80 23.62 58.89
75 295 900 549 900 248 530 46.27 15.93 41.11
80 354 900 597 900 291 410 40.70 17.80 54.44

Table 7. Detailed Results for First Group of Experiments

O M-O M-E M-P S

Dur (min) #ES #RR #ES #RR #ES #RR #ES #RR #ES #RR

35 8 1 8 1 8 3 8 3 8 2
40 8 1 8 1 8 3 8 3 8 3
44 8 3 8 1 8 3 8 3 8 2
47 8 3 8 3 8 3 8 3 8 3
49 8 3 8 3 8 3 8 3 8 3
51 8 4 8 2 8 4 8 4 8 4
53 8 4 8 2 8 4 8 4 8 3
56 8 4 8 2 8 4 8 4 8 4
60 8 7 8 6 8 7 8 7 8 6
65 8 8 8 6 8 8 8 8 8 5

Note: #ES = number of extra stops; #RR = number of reorderings.
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Comparing the optimized condition with passenger reas-
signment (red circles) and the condition without the con-
sideration of passenger reassignment (yellow circles), the
total train delay increases 17.80% to 78.43% as a result
of the passenger reassignment; meanwhile, the number of
saved passengers increases 35.56% to 76.67%. It can be
concluded that the increased train delay for the passenger
reassignment decreases with the increase of the duration
of the disruption. In other words, the negative impact of
the passenger reassignment on the total train delay
decreases when the duration of disruption increases.
Meanwhile, the total number of disrupted passengers
who get to their destination is significantly different
between these two conditions.

The gap between the train delays of the first and sec-
ond conditions is more or less constant as the duration
of the disruption increases. This is caused by the similar
extra stops in instances with different durations of the
disruption in the first condition. All extra stops are the
same in instances in the second condition. The reschedul-
ing targets to maximize the number of saved passengers.
In each instance in the first condition, most trains are
rescheduled to stop at the transfer station for disrupted
passengers to embark. Extra stops at corresponding des-
tinations are needed, which is not influenced too much
by the duration of the disruption. There is also evidence
about this explanation in Table 7.

Performance of Approach O, Approach M, and
Approach S

In this section, two groups of experiments are designed
to investigate the performance of approaches proposed
in this paper. The instance of 20 trains is considered here.
In the first group, shorter disruption durations varying
from 35 to 65min are considered, and the optimistic,
expected, and pessimistic estimations of the duration are
35, 50, and 65min, respectively. In the second group, we
pay attention to a longer disruption durations varying
from 50 to 80min, and the optimistic, expected, and pes-
simistic estimations of the duration are 50, 65, and
80min, respectively. The second stage for approach M
starts at 19:49, 30min after the beginning of the disrup-
tion. Ten scenarios with the probability of 0.002, 0.028,
0.1, 0.17, 0.2, 0.2, 0.17, 0.1, 0.028, and 0.002 are consid-
ered in these two groups of experiments. Figure 7 shows
the objective function value and computation time for all
approaches, that is, O, M-O, M-P, M-E, and S. The
objective function value for approaches O and M is cal-
culated according to the probability occurrence of 10 sce-
narios. For each scenario, we consider the objective
function value of approach O as normalized to 1,
whereas the other approaches’ objective function value
takes a relative value to approach O’s value. It should be
noted that here we present the optimal solution obtained

Figure 7. Relative objective value and computation time for different approaches: (a) first group of experiments and (b) second group of
experiments.
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within the computation time of 1 h, and the computation
time required to find the best-known solution.

From the results of Figure 7, approach O outperforms
approach S in every scenario in relation to the objective.
The reason for this is that approach O has perfect infor-
mation on the disruption. As for approach S, the RTSC
plan forces the same extra stops for the same disrupted
passengers under different scenarios. However, a differ-
ent passenger reassignment scheme is computed for
approach O compared with approach S. Approaches M-
E and M-P perform better than approach M-O, because
more decisions are fixed in the first stage for approach
M-O, while these are determined in a later stage for
approaches M-E and M-P. Combined with Table 7, the
difference of the number of extra stops rescheduled for
disrupted passengers among these three approaches is
not too much. The same number of disrupted passengers
are served by the following trains in approach O, M, and
S. The difference of the objective among these three
approaches depends on the total weighted train delay
time. As for the computation time, for the shorter dura-
tion, approach O is similar to approach M, because even
two stages are needed in approach M, while some of the
decisions have been limited in the second stage resulting
in a smaller number of decision variables. A significantly
longer computation time for approach S is the robust-
ness cost. For the longer duration, three approaches have
a similar computation time and the robustness cost is
less. The duration of the disruption is also key to the
computation time.

For the first group of experiments considering the
shorter duration, shown in Figure 6, approach O also
outperforms approach M, because in approach O the
timetable is rescheduled in a single stage with full infor-
mation, without the need to consider the effects of the
rescheduling actions performed in other stages. In
approach M, we determine the input data for the second-
stage rescheduling according to the results obtained from
the first-stage rescheduling. In relation to approach M-
O, before the start time of the second stage, trains G2
and G3 have departed from Nanjing and the departure
order for these two trains has been determined (in other
words, the train departure times and sequencing deci-
sions cannot be changed in the second stage). Similarly,
in approach O, when the disruption duration time is 35
and 40min, Train G2 departs before Train G3, which is
the same as the order of these two trains in the original
timetable. Approaches O and M-O thus compute the
same solution for these two scenarios, while approach O
outperforms approach M-O in the other scenarios, where
the reordering decision of G2 and G3 departing from
Nanjing is made. In the first-stage solutions of approach
M-E, Train G3 has departed from Zhenjiang. Other
trains should depart from Zhenjiang after 19:49 (start

time of the second stage) in the second stage. Compared
with the solution of approach O stated above, approach
O outperforms approach M-E under the disruption dura-
tion of 35 and 40min, while for other scenarios, these
two approaches have the same solution. In the first stage
of M-P, no train departs before 19:49. The train depar-
ture time and sequencing decisions will thus be taken at
the second stage, and all trains will depart later than
19:49. However, in approach O, some trains depart from
Zhenjiang earlier than 19:49 when the disruption dura-
tion time is 35, 40, and 44min. Therefore, approach O
computes a better solution than approach M-P when the
disruption duration time is 35, 40, and 44min, while the
same solution is computed for the other scenarios.

Comparing Figure 7, a and b, approach M (M-O, M-
E, and M-P) has a better performance in the second
group of experiments than the first group of experiments.
For most scenarios, approach M can obtain the same
solution as the approach O. The reason for this perfor-
mance regards the start time of the second-stage resche-
duling that is relatively earlier than the end time of
disruption for the second group of experiments. This
means that a few decisions have been fixed at the end of
the first stage. Only in M-O is G3 departing from
Zhenjiang before 19:49 determined at the end of the first
stage. We can conclude that the solution quality signifi-
cantly depends on when we get accurate information on
the disruption duration.

Conclusions and Future Research

This paper proposes a mixed-integer linear programming
formulation for the train rescheduling problem with pas-
senger reassignment under one rolling stock breakdown
in a railway system with a seat-reserved mechanism. All
affected passengers should be reassigned to the following
available trains, which have to be rescheduled with the
addition of extra stops for offering a new service to the
disrupted passengers. However, not all disrupted passen-
gers may be served by the following trains, thus causing a
high cost for the train operating company. In this paper,
we also consider a dynamic and stochastic environment,
in which RTSC constraints are set up to guarantee the
same extra stops for the same disrupted passengers under
different disruption duration scenarios. The resulting sto-
chastic problem is solved by various approaches with dif-
ferent types of information.

Computational experiments on the ‘‘Beijing–Shanghai’’
high-speed railway example show that the proposed model
and solution methods can be used to identify the robust
optimized train timetable and passenger reassignment
scheme effectively and efficiently. The train-ordering deci-
sion is a key factor for the computation time. Conclusions
made from the experimental results also describe how the
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passenger reassignment strategy influences the traffic. The
longer is the disruption duration, the relatively less is the
negative impact on train delays. If disruptions last for a
long time, adding extra stops is not worse than keeping
the timetable stopping plan, while more passengers can be
saved by this train rescheduling measure. As for the differ-
ent approaches, approach O always outperforms the other
approaches. However, approach S can be more effective
under a dynamic and stochastic environment, as the same
stopping plan and passenger reassignment is performed,
thus limiting the complexity of reorganizing the passenger
management at busy stations. However, the computation
time for approach S is significantly long, and it seems to
be not applicable to manage large case studies. Although
approach M performs worse than approach O, it deals
with the dynamic and random information and passen-
ger reassignment. As these features are managed with
much less computation time than approach S for a
relative short duration of the disruption, approach M
is significant more scalable than approach S. For a lon-
ger duration, the robustness cost of the computation
time is not significant for approach S.

In future research, the station capacity constraints can
be combined into the proposed model. This can be mod-
eled in several ways; see for example Zhan et al. (26) and
Gao et al. (27). As a result of some broken trains, the
optimization of rolling stock circulation could be reorga-
nized to ensure a better utilization of rolling stock in the
whole railway network. Further research should also be
dedicated to the bi-objective characteristic of the studied
problem, where the weight setting for the objectives
should be discussed.
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