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1.1   The global malaria problem 

Malaria kills at least one million people worldwide every year and 80% of the 
deaths occur in Africa south of the Sahara (RBM et al. 2005). According to a 
new estimate using a combination of epidemiological, geographical and 
demographic data, there were 515 million clinical episodes of Plasmodium
falciparum malaria (range 300 million„660 million) in the year 2002, 50% 
more than those reported by the World Health Organization (WHO) (Snow et
al. 2005). Malaria has become a major obstacle to economic growth in 
endemic developing countries (Gallup and Sachs 2001). 

In most endemic countries, there are inadequate human, logistics and 
financial resources and poor infrastructure to deal with the malaria problem. 
The Abuja Declaration issued by African Leaders in 2000 set a goal for the 
Roll Back Malaria (RBM) initiative to reduce malaria-related mortality in 
Africa by half by the year 2010, calling on governments, international 
organizations and communities to intensify the fight against this deadly 
disease (RBM 2000). To achieve this goal, it was recommended to 
significantly increase access to prompt and effective treatment and insecticide-
treated nets (ITNs) by those most at risk, and to intermittent preventive 
treatment (IPT) for pregnant women. Whether this ambitious goal will be 
realized is yet to be seen but there is a renewed international effort mainly 
through the Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM) 
to alleviate the problem of malaria in many countries (WHO/UNICEF 2003). 

Resistance to antimalarial drugs such as chloroquine and sulfadoxine-
pyrimethamine (SP) is a major problem in providing effective treatment in 
Africa. As a result, several African countries had changed their national drug 
policy and adopted the more effective artemisinin-based combination therapy 
(ACT) (RBM et al. 2005). However, the universal implementation of this 
policy is still at its early stages largely due to the imperative cost of these 
drugs which is about 10 times that of the traditional drugs. ITN distribution 
has increased, but the coverage is still very low in many countries. Many 
countries have also started implementing IPT for pregnant women (RBM et al.
2005).

1.2   Malaria transmission 

Before we discuss factors that determine the spatial and temporal distribution 
of malaria, it is necessary to consider the stages of the life cycle of the parasite 
that are relevant in the study of transmission of the disease. Among the four 
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species of the protozoan parasites of the genus Plasmodium that cause human 
malaria, P. falciparum is the most pathogenic and widely distributed in Africa. 
The other species (P. vivax, P. ovale and P. malariae) have limited 
distribution in Africa and are relatively less life-threatening. 

The life cycle of P. falciparum can be divided into three different phases, 
namely the sporogonic, exo-erythrocytic and erythrocytic cycles (Fig 1.1). The 
sporogonic cycle takes place within the mosquito vector and is affected by 
environmental factors. It is an important stage of the parasite•s cycle in terms 
of determining the probability of transmission. After the mosquito ingests 
blood with the male and female gametocytes, gametes will be formed within 
the mosquito•s midgut. The gametes unite to form the zygote. After 
transforming into an ookinete, it penetrates the wall of the midgut and 
becomes a round oocyst. The nucleus divides inside the oocyst repeatedly and 
a large number of sporozoites are produced. When the sporozoites are fully 
developed, the oocyst bursts. The sporozoites are released into the mosquito•s 
body cavity and migrate to the salivary glands. The time necessary for the 
development of the sporozoites varies with temperature and to a smaller extent 
with the species of the malaria parasite and with humidity, but in tropical 
temperatures it is generally about 8-15 days long. Sporozoites are the infective 
stage of the parasite and are injected with saliva when the mosquito next 
feeds. The parasites migrate to the liver cells where they multiply for 7-12 
days during the exo-erythrocytic cycle. The infected liver cell will burst, 
releasing merozoites into the bloodstream, where they invade the red blood 
cells and multiply again. The infected red cells are destroyed, the parasites 
invade fresh red blood cells and the erythrocytic cycle is repeated. During the 
erythrocytic cycle, gametocytes are also formed. 

A female Anopheles mosquito ingests blood which is necessary for 
maturation of eggs. The most important vector species in African highlands 
includeA. gambiae s.s., A. arabiensis and A. funestus. The former two species 
mainly breed in open, sun-lit, small and temporary rain pools and sometimes 
pools formed in streams and rivers resulting from draught conditions. A. 
funestus breeds in permanent water bodies such as swamps, ponds and edges 
of lakes.

The vector•s life cycle is mostly affected by the environment and is also 
obviously relevant in the study of malaria transmission. Mosquitoes have four 
different stages in their life cycle: the egg, larva, pupa and adult. The time 
taken for the aquatic stages to develop depends on temperature and nutritional 
factors in their environment. Development is shorter at higher temperatures. 
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Figure 1.1  Life cycle of Plasmodium falciparum.

Blood meals are generally taken every 2-3 days, followed by the laying 
of the next batch of eggs. The feeding frequency also depends on the ambient 
temperature. A larva hatches from the egg after about 1 or 2 days. There are 4 
larval stages or instars before the pupal stage. The duration of each aquatic 
stage depends to large extent on temperature. The survival or longevity of the 
adult female depends on humidity and temperature. 
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1.3   Malaria endemicity and transmission intensity 

According to the World Health Organization•s Terminology of Malaria and 
Malaria Eradication (WHO 1963), malaria is described as endemic •when 
there is a measurable incidence both of cases and of natural transmission over 
a succession of years.Ž Based on definitions formulated in the 1950s, malaria 
endemic areas have been classified according to spleen and parasite rates 
(WHO 1963; Snow and Gilles 2002). 

Classification of malaria endemicity 

The four levels of endemicity, in increasing order of transmission intensity, 
include: hypoendemic, mesoendemic, hyperendemic and holoendemic 
malaria.  

Hypoendemic areas. These are areas with very little malaria 
transmission. The spleen and parasite rates usually do not exceed 10% in 
children aged 2-9 years. Due to the low risk of infection, most of the 
populations in these areas lack effective immunity against the disease. 

Mesoendemic areas. These are areas with moderate transmission. Spleen 
and parasite rates range between 11% and 50% in children aged 2-9 years. 

Hyperendemic areas. These areas have intense seasonal transmission 
but not sufficient enough for a very high proportion of the population to 
develop protective immunity. Spleen and parasite rates are between 51% and 
75% in children aged 2-9 years. Adult spleen rates are usually high (>25%). 

Holoendemic areas. These have perennial, intense transmission resulting 
in a considerable degree of immunity outside early childhood.Spleen rates are 
over 75% in children 2-9 years but low in adults. Parasite rates are over 75% 
among infants 0-11 months. 

Macdonald suggested a more general classification of areas into two 
extremes of endemicity levels referred to as •stableŽ and •unstableŽ based on 
the intensity of transmission (MacDonald 1957). This classification integrates 
various epidemiological factors and can be used to broadly characterize 
transmission in malaria receptive areas. Areas with unstable malaria are 
mainly those with low or moderate transmission intensity, i.e. hypoendemic or 
mesoendemic areas. These can be affected by severe epidemics, often as the 
result of slight changes in environmental conditions conducive for vector 
breeding and survival as well as parasite development within the vector. 
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Transmission intensity and epidemic malaria 

Epidemic malaria has been defined as •an acute exacerbation of disease out of 
proportion to the normal to which the community is subjectŽ (MacDonald 
1957). An increase in incidence may or may not be labelled •epidemicŽ 
depending on the magnitude of the excess of cases, the rate at which the 
excess develops, and interpretation of previous data from which to calculate 
the •expectedŽ (Molineaux 1988). 

In order to illustrate the volatile conditions prevailing in areas of unstable 
malaria, it would be necessary to first consider different approaches of 
measuring intensity and simulate the dynamics of transmission using some of 
these approaches. Five interrelated measures of intensity have been used in the 
study of malaria transmission (Molineaux 1988): (a) the incidence rate 
(number of new infections occurring in a given population unit); (b) the 
prevalence rate (fraction of a population infected at a given point in time); (c) 
the entomological inoculation rate (EIR) (number of infective mosquito bites 
received per person per time unit); (d) the vectorial capacity (C ) (potential 
number of secondary cases originating per day from a primary case, assuming 
that the population is and remains fully susceptible); and (e) the basic 
reproduction number (0R ) (potential number of secondary cases originating 
from one primary case, assuming that the population is and remains fully 
susceptible; 0R  can be also expressed as C  multiplied by the number of days 
a case remains infectious, which is the reciprocal of the recovery rate). 

The vectorial capacity is an index that can also be considered as the 
capacity of a vector population to disseminate malaria in terms of the potential 
number of secondary inoculations originating per day from an infective 
person. Based on Macdonald•s expression for the basic reproduction number 
(MacDonald 1957), the formula for the vectorial capacity (C ) was given as 
follows by Garret-Jones (Garret-Jones 1964): 

p
pma

C
e

n

log

2

��
�               (1.1) 

                             
where m= density of vectors in relation to humans, a = number of blood 
meals taken on human per vector per day, p  = daily survival probability (or 
proportion of vectors surviving per day),  and n = incubation period in the 
vector or the length of the sporogonic cycle in days.  

According to Ronald Ross•s model, the human population can be divided 
into positive and negative fractions y  and y��1 , respectively (Molineaux 
1985). The negatives become positive at a rate which is the product of the 
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fraction positive multiplied by a contact rate which is equivalent to C ; and the 
positives become negative at a constant rate which is equivalent to the 
recovery rate per unit time (r ). The model can be represented as follows: 

     ttttt ryyCyyy ������� �� )1(1                             (1.2) 

where, ty = proportion of positives in the human population at time t  and C
and r  are as described above. Assuming that the situation is in equilibrium, 
Equation 1.2 can be used to derive a formula for y  as a function of C
(Molineaux 1985). At equilibrium, tt yy � ��1  and the added and subtracted 

terms should be equal; i.e. ttt ryyCy � �� )1( . After dividing both sides by ty ,
re-arranging the equation, and dropping the time subscript, we finally get: 

                                             C
r

y ��� 1                   (1.3) 

The endemic level y  reaches 0 for rC � . As 0rRC � , by substitution, 
we can also describe y  as a function of 0R :

      0

1
1

R
y ��� 

                                            (1.4) 

The relationship shown in Equation 1.4 is given in Figure 1.2. The endemic 
level (or prevalence) reaches zero for 10 � R . Malaria can be endemic only if 

0R is greater than 1. Close to this threshold, a small change in the equilibrium 
conditions produces a large change in the prevalence rate; far above the 
threshold, large changes in C  or 0R  produce little or no change in the 
prevalence rate. Close to the threshold malaria is naturally unstable, and there 
is a risk of epidemics; far above the threshold it is naturally stable. 

High endemicity levels characterize stable malaria. Fluctuations in 
incidence other than normal seasonal changes are not likely to be marked and 
epidemics are very unlikely to occur. The adult human populations in areas 
with stable malaria usually show a high level of immunity to malaria, and 
therefore only children are often at risk of severe disease and death due to 
malaria. Effects of changes in weather conditions (e.g. temperature) have little 
or no effect on transmission. 
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Figure 1.2   The relationship between the prevalence rate of malaria ( y ) and the 

basic reproduction number ( 0R ), based on Ross•s malaria model (Molineaux 

1988) (putting r = 0.002). 

In contrast, areas with unstable malaria have low to moderate 
transmission. Fluctuations in incidence are likely to be very marked. Slight 
changes in transmission factors can lead to major epidemics. All age groups 
are affected by the disease due to low level of immunity as a result of 
fluctuation in transmission or low intensity of transmission. 

In practice, however, there are several situations which cannot easily fit 
into these two broad classes, and thus it would be useful to consider a 
continuum of transmission situations. For example, in the unstable type, there 
are areas with highly seasonal but intensive transmission with more or less 
predictable pattern each year associated with occasionally explosive 
epidemics, and areas characterized with highly seasonal and very little or no 
transmission for several years. Areas with intense seasonal transmission can 
sometimes also be affected by true epidemics followed by successive 
abnormally dry periods (De Meillon 1950). 

Geo-referenced highland areas affected by epidemics in the past have 
been identified in some countries in the Horn of Africa and Eastern Africa in 
order to study their altitudinal ranges and climate profiles in an attempt to 
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produce spatial risk maps (Cox et al. 1999). After extensive studies involving 
published and unpublished literature and topographic and climatic profiles of 
affected localities, a generally satisfactory method of characterizing areas with 
similar average annual climate has been used for risk classification. For 
example, in Kenya, areas where epidemics occurred in the past lie within an 
altitudinal range of 1,500„2,600 metres, with mean altitude of about 1,900 
metres. However, mapping of epidemic risk using altitude alone was not 
satisfactory as it suggested that areas which have never been affected appeared 
to be at high risk. On the other hand, by using means and variance of annual 
rainfall and temperature profiles of the epidemic-affected localities produced 
better fitting risk maps (Cox et al. 1999). These maps are available for a 
number of countries with highland malaria at www.mara.org.za and 
www.himal.uk.net.

1.4   Epidemics and their precipitating factors 

The burden of epidemic malaria in Africa 

African highlands have been frequently affected by malaria epidemics that had 
devastating mortality consequences among populations with little or no 
immunity to the disease. According to WHO and UNICEF sources, an 
estimated 110 million people are at risk of malaria epidemics in Africa and 
110,000 of these die of the disease each year (WHO/UNICEF 2003). Others 
attribute 12 million malaria episodes and 155,000„310,000 malaria deaths to 
epidemics in the absence of timely control measures (Worrall et al. 2004). At 
times, a single large-scale epidemic can cause very high mortality rates among 
affected populations. As an example, a major epidemic in Ethiopia in 1958 
resulted in an estimated 3 million cases and 150,000 deaths within a 6 month 
period (Fontaine et al. 1961). Major epidemics have been reported in the past 
two decades from several African countries including Ethiopia, Kenya, 
Uganda, Zimbabwe, Botswana, Mozambique, Madagascar, Swaziland and 
South Africa (Nájera et al. 1998).

In areas with seasonal malaria, epidemics usually occur during the main 
transmission season, super-imposed over the normal seasonal increase 
(Garnham 1948). This phenomenon makes early detection of abnormal 
situations difficult. Malaria epidemics have also affected normally non-
malarious highlands (as the result of abnormal increase in temperature) 
(Freeman and Bradley 1996), drought affected areas (when vectors breed in 
intermittent streams) (van der Hoek et al. 1997; Nájera et al. 1998), and arid 
lowlands (following abnormally high rainfall or flooding) (Brown et al. 1998). 
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Typology of epidemics 

It is essential to characterize epidemics and to study their usual causes to 
design strategies for prevention and control. This would help in determining 
the appropriate early warning/surveillance and response systems that suit the 
particular epidemiological situations. The following epidemic types have been 
broadly identified based on disturbance patterns of equilibrium conditions 
(Nájera et al. 1998; Nájera 1999): (a) Epidemics that follow temporary 
disturbance of a stable hypoendemic equilibrium, which would eventually 
return to the previous endemicity level; (b) Epidemics resulting from major 
changes in the eco-epidemiological system, which result in a shift towards a 
new equilibrium; and (c) Epidemics that follow interruptions of control 
measures which had kept malaria in a •controlledŽ equilibrium. 

There are several factors leading to the various types of epidemics. 
Increased vectorial capacity (due to natural or man-made causes), immigration 
of infectives to receptive areas, immigration of non-immunes to malarious 
areas, and drug resistance have been identified as the major epidemic 
precipitating factors (Molineaux 1988). Probably the least predictable of these 
is the increase in vectorial capacity due to changes in weather conditions, 
mainly resulting in the first type of epidemics affecting areas with low 
endemicity. For example, excess or deficit rainfall and increased temperature 
may increase vector emergence as availability of breeding places may 
increase. Inappropriate water management in irrigation schemes and 
deforestation also increase the vectorial capacity through increased availability 
of breeding sites. Deterioration of malaria control operations in the 1980s and 
1990s and resistance of the parasites to drugs may have also contributed to 
increase of malaria in many areas, leading to the second type of epidemics, in 
which some of these areas have attained a higher equilibrium of transmission. 
Malaria has established itself in several highland areas which were previously 
considered non-malarious due to absence of transmission for several years. 
Epidemics resulting from interruption of previously well-managed control 
programmes have also affected some countries. In Madagascar, deterioration 
of malaria control activities has contributed to a major epidemic in 1987-88 
(Mouchetet al. 1998). 

El Niño Southern Oscillation and epidemics 

Studies have shown the existence of a strong relationship between El Niño and 
malaria epidemics in different parts of the world. El Niño is a periodic 
climatic phenomenon that affects weather patterns in many areas around the 
world and is associated with warmer than average sea surface temperature 
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(SST) in the eastern equatorial Pacific Ocean. Epidemics were shown to be 
more prevalent in a year with a wet monsoon following a dry Niño year during 
the period 1868-1943 in Sri Lanka (Bouma and van der Kaay 1996). The same 
relationships have been shown to exist in Columbia, where malaria cases 
increased by 17% during an El Niño year and by 35% in post-El Niño year 
(Bouma et al. 1997). Based on these observations, it was proposed that such 
El Niño-malaria relationship can be used to predict high- and low-risk years 
for malaria in Columbia. In Venezuela, a study using data between 1975 and 
1995 showed that malaria mortality and morbidity increased by more than 
36% in post-El Niño years (Bouma and Dye 1997). In Uganda, abnormally 
high rainfall caused by El Niño in 1997 resulted in a severe epidemic (Kilian 
et al. 1999). A number of published findings have appeared during the last 
five years on possible causes of both short- and long-term increases in malaria 
episodes in areas with unstable transmission. More reports have continued to 
confirm the association of epidemic malaria with El Niño events in many parts 
of the world. As an example, in Columbia, researchers have analyzed malaria 
data for the period 1980-1997 to present evidence that the El Niño 
phenomenon intensifies the annual seasonal malaria transmission cycle 
(Poveda et al. 2001). Several reports have already produced consistent 
findings regarding the association between El Niño and malaria in the coastal 
regions of Venezuela and Columbia (Kovats et al. 2003). 

Effects of climatic factors 

Temperature affects malaria transmission in various ways (Craig et al. 1999). 
An increase in temperature results in shortened sporogonic period of the 
Plasmodium parasite within the vector up to about 30oC. Mean daily 
temperatures above 30 oC will have a negative impact on the survival of the 
vector. On the other hand, increased temperature is also known to accelerate 
the development period of the aquatic stages of the vector. 

The effect of temperature on duration of the sporogonic cycle in days (n )
has been studied and quantified (Detinova 1962; Molineaux 1988). For P.
falciparum, the relationship between n  and mean temperature t  in degrees 
Celsius is given as: 

mintt
T

n
��

�    30min ���� tt    (1.5) 

         
where T = 105, 111 and 144 for P. vivax, P. falciparum and P. malariae
respectively, and mint = 14.5 for P. vivax, 16 for P. falciparum and P.
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malariae. Shortening of the sporogonic period as the result of increase in 
temperature up to 30oC leads to increased transmission as the parasite is more 
likely to attain an infective stage before the vector dies. If we denote the 
probability of the vector•s survival through one day as p , then the probability 

of survival of the vector through the sporogonic period n  would be np .
Analysis of 76 years of data from Zimbabwe has shown that higher than 

average mean September temperatures were associated with an increase in the 
severity of malaria in the following year (Freeman and Bradley 1996). Studies 
in Madagascar have also indicated that minimum temperatures during 2 
months at the start of the transmission season (when there is a high human-
vector contact)  can account for most of the variability between years (Bouma 
2003).

In the semi-arid or arid lowlands, heavy rain or floods can cause a major 
outbreak of malaria, especially in areas in the vicinity of large rivers. Such an 
outbreak has affected the low-lying semi-arid areas in north-eastern Kenya in 
1998 following a major rainfall and floods (Brown et al. 1998). Spatial and 
temporal variations in rainfall determine the nature and scale of malaria 
transmission in highland areas. Abnormal rainfall events have been shown to 
precipitate malaria epidemics even in wetter areas„as evidenced by 
epidemics in Uganda, Kenya and Ethiopia (Cox et al. 1999). The effect of 
rainfall is inherently linked to that of humidity, which has a particularly 
significant effect on the longevity of adult vectors. In Uganda, rainfall during 
and following the 1997 El Niño was much higher than normal, and rainfall 
anomaly (difference from the mean) was positively correlated with vector 
density one month later, and it was concluded that heavier than normal rainfall 
associated with El Niño may have initiated the epidemics (Kilian et al. 1999; 
Lindbladeet al. 1999). In Wajir, an arid area in north-western Kenya, it has 
been shown that it takes three months before the malaria incidence reaches a 
peak following a significant rainfall (Hay et al. 2001). This shows that it is 
straightforward to use rainfall alone in epidemic early warning. A remote 
sensing system already in place for famine early warning can be used for 
monitoring rainfall anomalies for malaria epidemic surveillance in such areas. 
The data is available in public domain on the Internet in near real-time at the 
Africa Data Dissemination Service (ADDS) web site 
(http://igskmncnwb015.cr.usgs.gov/adds/).

Studies on the effects of relative humidity (RH) on malaria vectors are 
limited. A laboratory-controlled study has shown that the maximum longevity 
of A. culcifacies in India was recorded between 60% and 80%, indicating that 
both low and excess humidity is detrimental to the vector especially at high 
temperatures (Pal 1943). Longevity was found to depend on both temperature 
and RH and their interaction. There is also interaction with rainfall and this 
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indicates the complex relationship existing among the three meteorological 
factors as well as between these factors and malaria and malaria vectors. 

During the first two months of 1998, an epidemic affected the highlands 
of south-western Uganda which have normally low or moderate transmission. 
The increase in P. falciparum malaria in these highlands was attributed to the 
increased and prolonged rains in the last quarter of 1997 caused by El Niño 
Southern Oscillation (Kilian et al. 1999). A close correlation between peak of 
rainfall and peak of malaria incidence was observed with a lag of 2-3 months 
between them. 

In Sri Lanka, temperature and relative humidity are favourable for 
malaria transmission throughout the year. Failure of the monsoon rains 
reduced rivers and streams in the wet zone of the country to stagnant pools of 
water which became ideal breeding grounds for A. culcifacies and caused two 
major epidemics in 1934-35 and 1967-68 (van der Hoek et al. 1997). In the 
dry zone, seasonal peaks in malaria occur 2 months after the peaks of rainfall. 
Previously, it was thought that rainfall could be used for the forecast of 
abnormal incidence, but this study indicates that the relationship between 
higher than average seasonal rainfall and higher than average seasonal malaria 
incidence was not very strong (van der Hoek et al. 1997). For example, 
rainfall immediately before and during the 1986-87 epidemic was within the 
normal limits. The relationship between rainfall and malaria has been 
confounded by environmental changes, population movements and changes in 
malaria control measures. Thus it was concluded that monitoring rainfall alone 
is insufficient for malaria early warning in dry zones of Sri Lanka, and early 
detection of increased incidence remains the best warning. 

Man-made factors 

Land use changes have taken place in the highlands in East Africa during the 
last several decades. The gradual increase and extension of malaria into the 
highlands of Kenya is believed to be due to a multitude of factors, including 
development activities such as agriculture, expansion of transportation 
networks, increased movement of populations, and deforestation (Garnham 
1948). In Kericho, tea-growing highland area in Kenya, climate variables were 
found to explain seasonal patterns but inter-annual variations indicated the 
existence of a cyclical behaviour probably related to parasite and host 
population dynamics (Hay et al. 2001). It was suggested that early warning 
systems should incorporate such dynamics to deal with super-annual 
variations in epidemic risk. Extension of malaria into the highlands of Rwanda 
and Burundi has also been attributed to introduction of A. gambiae following 
swamp cultivation (Garnham 1948). A study carried out in the south-western 
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highlands of Uganda indicated that cultivation of natural swampy areas may 
have led to increased temperatures over the years, which may be responsible 
for elevated malaria transmission (Lindblade et al. 2000). Land use changes 
can alter the physical and chemical characteristics of mosquito breeding 
habitats. A study carried out in Kakamega forest in western Kenya (elevation 
1,500-1,700 metres) has indicated that the survivorship of A. gambiae larvae 
was dramatically reduced in forest habitats compared to habitats fully exposed 
to sunlight, suggesting that deforestation facilitates malaria transmission in the 
highlands. The average daily water temperature of the open habitats is also 
more than 3 oC higher than in the forest habitats (Tuno et al. 2005). 
Development activities that would result in ecological changes can cause 
increases in malaria transmission. In a study carried out in hypoendemic 
highlands of northern Ethiopia (1,800-2,225 metres) where small dams have 
been constructed for agricultural purpose, it was found that incidence of 
malaria in children in villages within 3 kilometres of the dams was 
significantly higher compared to those 8-10 kilometres away from the dams 
(Ghebreyesus et al. 1999). Brick-making, an important economic activity in 
western Kenya, has been linked to increased vector densities (Carlson et al.
2004).

1.5   Epidemic early warning, detection and response  

Early warning signals could help health services to take targeted and specific 
preventive measures prior to the onset of epidemics, and/or to take timely 
control measures. Malaria epidemic early warning is based on monitoring 
transmission risk indicators used to predict timing of an increase (such as 
abnormal weather conditions), and population vulnerability indicators used to 
predict severity of impact (such as loss of immunity due to recent history of 
low transmission) (Thomson and Connor 2001). Prediction of malaria 
epidemics using such factors can give lead-times of weeks to months, during 
which other surveillance activities can be enhanced and preventive and control 
measures targeting specific areas planned and implemented. 

Epidemic early detection involves recognizing the beginning of an 
epidemic situation by measuring changes in local disease incidence. Although 
this surveillance mechanism offers little lead-time (days to weeks) for 
preparation and implementation of preventive measures, it can lead to a rapid 
and effective response to avert or reduce peak morbidity and mortality. 
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Disease surveillance for epidemic early detection 

Disease surveillance and epidemic preparedness and response are among the 
priority areas identified under the plan of action adopted by African leaders at 
the Abuja Summit in April 2000 (RBM 2000).  The recommended approaches 
and activities include: (a) strengthening health information systems to ensure 
reliable reporting of malaria cases and deaths as part of the integrated disease 
surveillance system; (b) providing health information to health workers and 
policy makers for appropriate decision-making; (c) establishing an effective 
epidemic preparedness and response capability to detect and contain outbreaks 
as rapidly as possible; and (d) establishing an effective system to alert malaria 
control authorities and policy makers in other relevant sectors of new 
development projects, population movements, as well as environmental and 
climatic changes that could impact the malaria situation. Indicators selected 
for monitoring progress of epidemic preparedness and response include: per 
cent of malaria epidemics detected within 2 weeks of onset; and per cent of 
malaria epidemics properly controlled within 2 weeks of onset. 

The main goal of setting up an epidemic surveillance system is to build 
capacity of the health services to take timely preparedness, preventive and/or 
control measures. In most epidemic-prone African countries, the surveillance 
system has been weak, inefficient or incapable of detecting an abnormal 
malaria transmission at its early stage. This has been due to several factors 
including: lack of an efficient and standard system of reporting surveillance 
data; lack of a specific and sensitive outbreak detection algorithm; a long time 
lag between observed incidence at health facilities and transmission of data 
mainly as the result of monthly reporting systems; under-utilization of data at 
points of collection or at levels where action can be taken on time, this being 
due to traditionally centralized systems of surveillance; lack of the necessary 
knowledge and skills of local staff on the importance of surveillance data; 
manual processing of data because of a lack of the necessary computing 
equipment; and a lack of communication facilities between peripheral health 
services, districts and the central level. 

The health service reform during the last two decades to decentralize 
decision-making appears to have created the necessary platform for dealing 
with some of these problems. However, the disease surveillance systems in 
many countries still heavily rely on support from the central level. 

In eastern African countries, it is only during the last five years that 
Ministries of Health began rolling out their disease surveillance services to 
district levels. In many cases, such decentralized systems are still at their 
immature stages and a substantial overlap of activities exists within an unclear 
system for handling emergencies. Furthermore, the information system is not 
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well developed to enable districts to maintain effective, computerized database 
systems and to carry out the necessary analyses of the data they collect and 
use the results for action. Outbreaks used to be detected in many areas at or 
near their peak, by which time prevention or control measures have little 
impact on morbidity and mortality. 

Geographic information systems 

The use of geographic information systems (GIS) in studies involving the 
spatial distribution and intensity of transmission has been given a significant 
attention since the last decade mainly as the result of the so-called 
MARA/ARMA Collaboration Project, which was initiated by researchers 
across Africa to provide an atlas of malaria for the whole continent. The atlas 
contains relevant information for targeted implementation of malaria control 
based on parameters such as transmission intensity (www.arma.org.za). The 
malaria transmission intensity map was prepared mainly based on climatic 
determinants (Craig et al. 1999). 

Initially as part of the MARA/ARMA Collaboration, the Highland 
Malaria Project (HIMAL) was initiated to focus on epidemic malaria in the 
highlands. Epidemiological and climatic data were used to produce spatial 
epidemic risk maps for a number of countries including Ethiopia, Kenya, 
Tanzania and Uganda (Cox et al. 1999). These maps are useful for 
countries/districts to delineate areas at high, moderate or low epidemic risk so 
they may establish selective monitoring of epidemiological data in 
representative sites. However, temporal and dynamic risk maps are required to 
delimit areas for preventive or control measures to deal with actual epidemic 
events. Unless there is some form of dynamic risk models that can be 
continuously updated, countries still lack sufficient basis to take preventive 
measures, some of which are relatively expensive. 

Development of temporal risk maps for epidemic risk monitoring is a 
major research undertaking which involves detailed studies of epidemic 
precipitating factors. Such studies will be useful to develop models that may 
describe the genesis of epidemic malaria in different areas and situations, 
especially in highlands or highland fringes where slight changes in 
precipitating factors such as elevated temperature might result in severe 
outbreaks. Forecasting models will therefore be the basis for the development 
of temporal risk maps. 

However, the task of developing epidemic early warning methods has 
proved difficult especially for highland areas, and there are still no reliable 
forecast systems other than general warnings for large geographic areas 
following abnormal weather conditions.  
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Various attempts have been made to use climatic/environmental, remote 
sensing, entomological and morbidity data in epidemic prediction or early 
warning (Cullen et al. 1984; Connor et al. 1998; Lindblade et al. 2000; Hay et
al. 2001; Thomson and Connor 2001; Rogers et al. 2002). Onori and Grab 
have tested the theoretical impact of various factors that influence the level of 
transmission in epidemic-prone areas (Onori and Grab 1980). They concluded 
that inoculation rate is extremely sensitive to slight changes in survival rate of 
the vector and the period of the sporogonic cycle. Both these factors are 
influenced by changes in temperature, rainfall and humidity. Careful 
monitoring of meteorological factors would theoretically produce good early 
warning of epidemics. However, the accurate quantification of the effects of 
these variables requires more rigorous research. 

It is important to detect abnormal incidence well before it develops into a 
severe epidemic, in order to initiate timely prevention or control measures. 
Different techniques of recognition and early detection of malaria epidemics 
have been used, all based on the definition of the normal (or expected) 
incidence for a particular area and point in time. 

A method proposed by Cullen (Cullen et al. 1984) uses the previous five 
years of data to construct incidence profile for an average year. The alert 
threshold for each month is then determined as the mean plus 2 times the 
standard deviation. The WHO advocate the use of an upper normal limit„the 
third quartile (Hay et al. 2002). The Centres for Disease Control and 
Prevention (CDC) have developed a method which is based on the 
construction of an average for a particular month by using  incidence for that 
month, the previous month and the following month during the baseline years 
for detecting epidemics (CDC 1989; Stroup et al. 1989; Stroup et al. 1993). 
For example, the expected number of cases for May 2003 would be derived 
from the average of April, May and June cases from 1998 to 2002, inclusive. 
A ratio of present to past cases is calculated and then presented as a current-to-
past history graph, with values greater than one representing disease increases. 

The weak surveillance/information systems in many countries have led to 
delayed responses to epidemics. In many cases, compiled monthly morbidity 
data are of not much use for epidemic detection, and thus weekly data 
collection and analysis is encouraged to identify early abnormal situations. In 
many health facilities, there is insufficient baseline data to establish the 
•normalŽ levels for each week of the year upon which the system for detection 
of abnormal situations is based. The quality as well as quantity of the baseline 
data determines what is considered •normal•. Long-term trends due to 
treatment failures, population increase, etc. are also likely to affect the 
calculation of the •normal•. Due to these and other difficulties, the different 
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epidemic recognition/early detection methods have limited use. Improved 
systems are required to identify truly abnormal conditions. 

Following surveillance frameworks developed with national malaria 
control programmes and district health management teams in Eastern African 
countries, the Highland Malaria Project (HIMAL) has been developing 
systems for early warning and detection in the East African highlands 
focusing on building local capacity in epidemic management. This 
collaborative research project was launched in 2001 as part of the Gates 
Malaria Partnership in London School of Hygiene and Tropical Medicine 
(LSHTM). The project•s goals include creating and testing functional systems 
for epidemic early warning and detection incorporating district-level sentinel 
surveillance and predictive modelling using environmental data, remote 
sensing (RS) and GIS. Technical feasibility of early warning and early 
detection is evaluated to develop practical recommendations for affected 
countries. Meteorological, entomological, parasitological and clinical data are 
collected simultaneously on a continuous basis in four districts in Kenya and 
Uganda. A computer-based automated analysis of surveillance data has been 
established in the pilot districts (www.himal.uk.net).

Epidemic response 

Response to malaria epidemics should be as prompt as possible. The 
recommended epidemic control measures include mass fever treatment, 
management of severe cases and in the case of active and continuing 
transmission, vector control measures, in particular indoor residual spraying 
(IRS) with an effective insecticide (WHO 2004). However, resistance against 
traditionally inexpensive drugs such as chloroquine and SP by P. falciparum
has become a major obstacle in effectively using mass fever treatment due to 
costs of more effective drugs such as ACTs. The lack of effective and area-
specific early warning or prediction systems has also been a major 
impediment to the use of vector control measures such as IRS for prevention 
purposes well in advance of epidemic events. 

Longer term increase of malaria in the highlands in recent years might 
have non-climatic causes, including drug resistance of the parasite, with or 
without climatic causes, and it is essential to study the effects of these factors 
for more conclusive evidence. Nevertheless, current evidence appears to show 
that climate variability, resulting from climate change or El Niño conditions, 
plays an important role in causing short-term, but at times devastating, 
epidemics of the disease in these areas. Adaptation measures to reduce the 
consequences of epidemic malaria include developing effective surveillance 
systems and methods of prediction and early response. More research is 
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needed to fully understand the processes that trigger epidemic malaria in the 
highlands to develop robust early warning systems. 

1.6   Aim and research questions of the thesis

The general aims of the thesis are to (i) understand the effects of 
environmental risk factors for malaria epidemics in countries in the Horn of 
Africa and Eastern Africa, (ii) to develop and test malaria early warning and 
early detection systems in these areas and (iii) to discuss the implications for 
prevention and control. 

The thesis will try to address these aims through answering the following 
research questions: 

1. What is the state of the art of malaria epidemic early warning and the 
potential use of computer-based sentinel surveillance for early 
detection? 

2. How helpful are time series methods in forecasting malaria 
epidemics? 

3. How is variation in epidemic risk linked with environmental factors? 
4. Is biological reasoning useful in statistical modelling of 

environmental data for predicting malaria incidence? 
5. How should malaria epidemic prevention and control be linked to 

epidemic risk assessments and what are the challenges? 

1.7   Structure of the thesis 

This thesis focuses on: (a) epidemiological research to understand malaria 
epidemic precipitating factors and on the use of these factors in developing 
early warning systems in areas with unstable transmission; (b) research 
outputs of the performance of some time series methods with potential of 
forecasting incidence based on historical morbidity patterns, (c) operational 
studies to develop effective surveillance systems and algorithms for epidemic 
detection at their early stages; and (d) discussions on challenges and 
opportunities related to available epidemic response options within the context 
of affected countries. A special emphasis has been given to epidemics in the 
highlands of Ethiopia, Kenya and Uganda. 

Research question 1 on the state of the art of epidemic early warning is 
addressed in Chapter 2. Research question 2 on time series is dealt with in 
Chapter 3. The focus of Chapter 4 will be research question 3 on the link of 
environmental factors with epidemic risk, followed by Chapter 5 which 
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addresses the use of biological reasoning in statistical modelling of 
environmental data for predicting malaria incidence (research question 4). 
Research question 5 on the links between epidemic risk assessments and 
prevention and control measures and the associated challenges will be 
addressed in Chapter 6. Finally, the overall synthesis of the research questions 
and outcomes of the studies will be discussed in Chapter 7 with some related 
additional findings, within the wider context of other (past and on-going) 
studies in malaria epidemic management. 
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2.1   Summary 

Malaria epidemics have long been known to recur in the African highlands. 
Efforts to develop systems of early warning and detection for epidemics are 
outlined here with special emphasis on the Highland Malaria Project 
(HIMAL). This project has been conducting research on the operational 
implementation of a district-based surveillance and epidemic-monitoring 
system using a network of sentinel sites in four pilot districts of Kenya and 
Uganda. The potential use of weather monitoring as well as disease 
surveillance for effective early warning is being investigated. 
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2.2   Introduction 

The African highlands have been frequently affected by malaria epidemics, 
often with devastating morbidity and mortality consequences among 
populations with little or no immunity to the disease Garnham 1948; Lindsay 
& Martens 1998; Cox et al. 1999; http://www.lshtm.ac.uk/dcvbu/
himal/Documents.html). Epidemic malaria has been defined as •an acute 
exacerbation of disease out of proportion to the normal to which the 
community is subject• (MacDonald 1957). It is estimated that 110 million 
people are at risk of malaria epidemics in Africa and 110,000 of these die of 
the disease each year (WHO/UNICEF 2003). In the past decade, epidemics 
have been reported from several areas including Ethiopia, Kenya, Uganda, 
Zimbabwe, Botswana, Mozambique, Madagascar, Swaziland and South 
Africa (Loevinsohn 1994; Freeman and Bradley 1996; Malakooti et al. 1998; 
Mouchet 1998; Nájera et al. 1998; Kilian et al. 1999; Lindblade et al. 1999; 
Hay et al. 2003; Abeku et al. 2004). Early warning and detection systems are 
needed in these and other areas at risk, to reduce or avert the negative public 
health and economic impacts of epidemics (Nájera 1999; Thomson and 
Connor 2001; WHO/RBM 2001). Reasonably accurate warning signals could 
help health services to take targeted and specific preventive measures before 
the onset of epidemics. 

2.3   Terminology 

It is important to distinguish between different terminologies that have been 
used to describe activities for monitoring epidemic risk, including long-range 
epidemic forecasting, malaria epidemic early warning and epidemic early 
detection. These activities are sequential, complementary and have decreasing 
lead times with increasing accuracy (Cox et al. 1999; WHO/RBM 2001; Kuhn 
et al. 2004; WHO 2004) (see: http://www.int/globalchange/publications/ 
oeh0401/en/index.html and http://mosquito.who.int/docs/BamforthLeysin
report.pdf).

Long-range epidemic forecasting based on climate forecasting and El 
Niño Southern Oscillation indices has been proposed for the broad prediction 
of epidemic risk months in advance over large geographical areas. This allows 
time for resource allocation and general preparedness for an eventuality of an 
epidemic in the coming malaria season (Bouma and van der Kaay 1996; 
Bouma et al. 1997; WHO 2004).
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Malaria epidemic early warning is based on monitoring transmission risk 
indicators used to predict timing of an increase (such as abnormal rainfall 
and/or temperature), and population vulnerability indicators used to predict 
severity of impact (such as poor nutritional status, drug resistance, loss of 
immunity due to recent history of low transmission or high incidence of 
HIV/AIDS) (Nájera 1999; WHO/RBM 2001; WHO 2004). Prediction of 
malaria epidemics using such factors can give lead times of weeks to months, 
during which other surveillance activities can be enhanced, and preventive and 
control measures targeting specific areas can be planned and implemented. 

Epidemic early detection involves recognizing the beginning of an 
epidemic situation by measuring changes in local disease incidence. Although 
this surveillance mechanism offers little lead time (days to weeks) for 
preparation and implementation of preventive measures, it can lead to a rapid 
and effective response to avert or reduce peak morbidity and mortality 
(WHO/RBM 2001; WHO 2004). 

2.4   The Highland Malaria Project (HIMAL) 

HIMAL (http://www.himal.uk.net) is a continuation of work that produced 
spatial epidemic risk maps in the late 1990s as part of the Mapping Malaria 
Risk in Africa (MARA) collaboration (Cox et al. 1999). The distribution of 
malaria epidemic risk in the highlands of East Africa was modelled on the 
basis of climate parameters and known historical distribution of epidemics. 
Results suggested that highland epidemics tend to occur within defined 
altitudinal ranges, which vary by country primarily as a function of latitude. 
However, efforts to map epidemic risk on the basis of these ranges proved 
unsuccessful and demonstrated that altitude on its own is a poor indicator of 
the likelihood of epidemics. More-reliable estimates of epidemic risk could be 
obtained using representative climatological profiles for epidemic-prone 
localities in each country and by classifying risk according to how closely 
annual climate patterns matched those of known epidemic-prone areas (Cox et
al. 1999). 

The current phase of the HIMAL project began in 2001, and aims to 
create and test functional systems for malaria early warning and early 
detection, incorporating district-level surveillance and predictive modelling 
using environmental data, remote sensing (RS) and geographical information 
systems (GIS). As well as addressing the technical feasibility of early 
warning, the project will evaluate the current prospects for implementation 
from an institutional perspective, and will develop recommendations for 
ongoing data collection and proactive epidemic management strategies. 
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2.5   New approaches to epidemic monitoring 

A new surveillance system, introduced in October 2002, comprises a network 
of 20 sentinel health facilities in four pilot districts: North Nandi and Gucha in 
Kenya, and Kabale and Rukungiri in Uganda. Geographically, these districts 
are partly or wholly prone to epidemics. It is extremely important to detect 
abnormal incidence in such areas as early as possible to initiate timely 
preventive and/or control measures. Disease surveillance systems in many 
developing countries, including those with unstable malaria, are usually based 
on monthly (and often irregular) reporting to the central authorities, and have 
resulted in delayed responses to epidemics (Hay et al. 2003). Monitoring 
morbidity data on a monthly basis is often of little practical use for epidemic 
detection because the temporal resolution does not allow an early 
response(Hay et al. 2003; Hay et al. 2003). Surveillance data from the sentinel 
sites within HIMAL are therefore reported to the District Health Management 
Team (DHMT) on a weekly basis. 

Different techniques have been suggested for the determination of 
thresholds that are predictive of a dramatic and unexpected increase in future 
cases. Most of these techniques are based on the definition of the •normal• (or 
expected) incidence for a particular area and point in time, with varying 
sensitivity and specificity (Cullen et al. 1984; CDC 1989; Stroup et al. 1993; 
Nájera et al. 1998; WHO/RBM 2001; Hay et al. 2002). Application of 
currently recommended epidemic detection algorithms in epidemic-prone 
settings has demonstrated that they lack required sensitivity and specificity, 
and the need to develop robust and reliable approaches to detection remains a 
significant research issue (Hay et al. 2002). 

Within HIMAL, a special database application is used at the district level 
for data entry and automated analysis, which includes a built-in incidence-
monitoring system for detecting aberrations based on week- and area-specific 
levels of disease incidence assessed against a baseline period of seven or more 
years. The epidemic onset detection method being tested is a modification of 
the Salmonella Potential Outbreak Targeting System (SPOT) developed in 
Australia (Stern and Lightfoot 1999). Incidence in a sentinel health facility 
during a baseline period is de-trended (after log transformation) to minimize 
possible bias caused by events such as malaria endemicity equilibrium 
changes, population growth and establishment of new health facilities in the 
catchment area of sentinel sites. Furthermore, the Loess de-trending method 
(Cleveland 1979; Makridakis et al. 1998) is used to ensure that outliers and 
abnormally high incidences during the baseline period would not affect the 
trend line fitted to the data. 
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The de-trended series is then smoothed using the 4253H-Twice method 
(Velleman and Hoaglin 1981). The mean for each week and an overall 
standard deviation are then calculated from the de-trended and smoothed 
series. An anomaly measure „ called the standardized departure „ is 
calculated by dividing the difference between the observed (de-trended log) 
number of cases and the mean for the particular week number by the overall 
standard deviation of the baseline. This measure reflects deviation from 
normal, yet taking into account the variability within the baseline data. Both 
the values and the trend of the standardized departure during the 12 most 
recent weeks are used to assess the degree of aberration. Values around zero 
indicate normal incidence and those above 1 are tentatively considered 
abnormally high, especially if there has been an upward trend in the anomaly 
during the previous weeks (Figure 2.1). 

Although a plot of the standardized departure gives an indication of the 
trend of incidence anomaly in several sites, it will also be necessary to use the 
site-specific incidence levels and to characterize objectively an epidemic 
situation for each area. Tentatively, an epidemic is flagged if weekly incidence 
exceeds both: (i) the week-specific mean plus one standard deviation (i.e. 
standardized departure value of 1); and (ii) the overall mean plus one standard 
deviation threshold. The week-specific expected values as well as the overall 
mean and standard deviation are dynamic and change over time depending on 
the underlying trend. A chart that allows visual inspection of weekly incidence 
together with the corresponding threshold values (Figure 2.2) is automatically 
generated by the database together with several other charts. This new 
epidemic detection method is explained further in Box 2.1. 

The surveillance approach being piloted by the malaria control 
programmes in Uganda and Kenya builds upon, and compliments, the 
standard health-facility-centred model used in many Health Management 
Information Systems (HMIS). Key differences between these systems are 
listed in Box 2.2. 
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Figure 2.1  Standardized departure from expected number of clinical malaria 
outpatients during Week 33 to Week 44 of 2003, at five sentinel health centers in 
the Kabale District, Uganda. The weekly points indicate the actual standardized 
departure values for each sentinel site and the corresponding lines have been 
smoothed to aide interpretation. An epidemic could be detected at Week 41 in the 
sentinel sites (except Bufundi), using this automated output from the Highland 
Malaria Project (HIMAL) database. Both the weekly trend (as in Mparo during 
Week 38 to Week 41, for example) and the level of the standardized departure 
are used to determine a developing epidemic. (A more objective definition of an 
epidemic using threshold values is given in Box 2.1 and Figure 2.2.) Key: black 
circle, Bufundi; white triangle, Kitanga; white square, Mparo; white diamond, 
Buhara; black triangle, Bukinda. 
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___________________________________________________________ 

Box 2.1  The Highland Malaria Project (HIMAL) epidemic detection system 

To describe the epidemic detection algorithm, suppose tX  = weekly number 
of (clinical) malaria cases seen at a sentinel surveillance site at time t ;

)1( ��� tet XLogY ; � Y  overall mean of the tY  series during the baseline 
period (which increases in length over time, but excludes the last 12 weeks); 

� tL  Loess trend line value at time t  estimated from the tY  series 
(Cleveland 1979; Makridakis et al. 1998); and � L  overall mean of the Loess 
trend line values.  

Then, the de-trended value corresponding to tY  is calculated as 

LLYY ttt ����� � . 4253H-Twice smoothing (Velleman and Hoaglin 1981) is 

then applied to the de-trended series to generate a new series, with a value 

tM  at time t . wtE , the expected value of  tY�  for week w  of the year at time 

t )52,...,2,1( � w , is given by the mean of all tM  values for week w  during 

the baseline years. Then, the standardized departure )( tD , the anomaly 

measure, is calculated as, SEYD wttt /)�( ��� , where S is the overall standard 

deviation calculated from the de-trended and smoothed baseline series. tD

can be plotted for several sentinel sites in a single chart as shown in Figure 
2.1.

Two threshold values (shown in Figure 2.2 plotted for each sentinel site 
separately with the original tX  series) are used to detect an epidemic (when 
both are exceeded). These are calculated in actual number of malaria cases 
after •re-trending• and back-transformation. The week-specific threshold for 
time t , 1)exp( ��������� SLLEK twtt , whereas the overall mean plus one 

standard deviation threshold, 1)exp( ��������� SLLYK tt .
____________________________________________________________________
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Figure 2.2  Historical morbidity pattern of clinical malaria between October 1995 
and March 2004 at Mparo Health Centre, Kabale District, Uganda. The series 
shown are the observed number of cases (thin solid line), the expected number of 
cases (thin broken line), the week-specific mean plus one standard deviation 
threshold (thick solid line), the overall mean plus one standard deviation threshold 
(thick broken line), and the standardized departure values (black dots with gray 
line). An epidemic is tentatively defined when weekly incidence exceeds both 
threshold values. The baseline period is from Week 39 of 1995 to Week 38 of 
2003.

2.6   Developing epidemic early warning systems 

Various attempts have been made to use climatic/environmental, RS, 
entomological and morbidity data for epidemic forecasting (Cullen et al.
1984; Connor et al. 1998; Lindblade et al. 2000; Hay et al. 2001; Thomson 
and Connor 2001; Abeku et al. 2002; Rogers et al. 2002) , but the science is 
far from complete. HIMAL has created a unique opportunity to carry out 
detailed longitudinal studies to explore the associations between selected 
meteorological, entomological and morbidity variables as an empirical basis 
for developing and testing predictive models. The temporal and spatial 
resolutions of the prospective studies will allow modelling of the malaria 
transmission system in relation to the genesis of epidemics. Locality-specific 
weekly determination of indoor resting densities of Anopheles vectors, 
together with continuous parasitological confirmation of clinical malaria using 
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rapid diagnostic tests, weather monitoring and RS data, will provide a strong 
platform for detailed analysis and modelling. 

___________________________________________________________ 

Box 2.2 . New surveillance approach for epidemic early detection 

�ƒ The District Health Management Team (DHMT), rather than the Ministry 
of Health at the central level, is the focus for data collation, analysis and 
interpretation. Whether this decentralized approach is better suited to 
effective epidemic control than prevailing centralized approaches 
remains to be seen and needs to be evaluated rigorously. 

�ƒ Data entry, organization and analysis, together with report generation, 
are all computer based. 

�ƒ A weekly system of surveillance has been introduced. This facilitates 
assessment of the relative sensitivities and specificities of early 
detection systems based on monthly and weekly reporting. Data from 
individual health facilities are analyzed and interpreted before any data 
aggregation is carried out. 

�ƒ The system makes efficient use of information from a small number of 
sentinel sites representing epidemic-prone geographical areas within a 
district, rather than attempting to monitor data from all health facilities. 

�ƒ Historical morbidity patterns are used as the basis for monitoring 
anomalies within prospective data, and the trend in the baseline is taken 
into account in the definition of epidemic situations using an objective 
and automated early detection algorithm. 

�ƒ The system incorporates a rapid dissemination mechanism for data, 
reports and feedback between sentinel sites, DHMT, the Ministry of 
Health and other relevant decision-making bodies, including district 
administrative authorities. In the case of a detected epidemic in one or 
more of the sentinel sites, the DHMT can rapidly look at incidence levels 
in other health facilities to delineate affected areas and select 
appropriate control measures, including mass or fever treatment and 
vector control. 

____________________________________________________________________

A partnership established between HIMAL and the Epidemio Project of 
the European Space Agency (http://www.epidemio.info) will make available 
Earth Observation (EO) data for daily maximum and minimum land surface 
temperature at a spatial resolution of 5 km, whereas dekadal (10-day) rainfall 
estimates and normalized difference vegetation index (NDVI) data, which are 
available at a spatial resolution of 8 km from the Africa Data Dissemination 
Service (http://edcw2ks21.cr.usgs.gov/adds/), will also be utilized. EO data 
available in the public domain are limited with respect to both temporal and 
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spatial resolution. One task of HIMAL is to evaluate the implications of these 
constraints in relation to efforts to model malaria transmission. 

Figure 2.3 . Epidemic-related factors and their relationships that are under 
investigation by the Highland Malaria Project. Prospective data are collected 
within the project to provide an empirical base for developing epidemic prediction 
models. Direct and indirect relationships between variables are represented by 
arrows with solid and broken lines, respectively. Although all indicated variables 
will be used in modelling transmission dynamics, meteorological (both ground and 
Earth Observation), in addition to morbidity data from sentinel health units, are 
variables that are most important for practical prediction. Abbreviations: EIR, 
entomological inoculation rate; NDVI, normalized difference vegetation index; RS, 
remote sensing. 

The locality-specific longitudinal data with high temporal resolutions for 
meteorological, entomological and malaria morbidity variables will be used to 
shed light on the complex relationships between these factors, through 
combinations of statistical, analytical (mathematical) and/or simulation 
modelling approaches (Figure 2.3). A model reflecting biological relationships 
between meteorological and morbidity variables using retrospective data from 
Ethiopia, which includes rainfall two and three months earlier, mean minimum 
temperature of the previous month and Plasmodium falciparum case incidence 
during the previous month, has been used to study the weather…malaria 



Chapter 2 

40

relationship and has indicated that a dynamic immunity mechanism is needed 
in prediction models (Abeku et al. 2004). Dynamic immunity might be 
incorporated in potential models through the use of proxy measures such as 
adult-to-child ratio of patients presenting at sentinel sites. In this respect, 
abnormally low incidence will also be monitored, as it might be a risk factor 
for future epidemics owing to the associated reduced immunity of the 
population.

2.7   Perspective 

Further validation and refinement will be made to the epidemic detection 
techniques being implemented within HIMAL through detailed analysis of 
morbidity data and comparison of different algorithms to develop a reliable 
surveillance system. Better insights into the practical use of weather variables 
as predictors of epidemics are desirable. In the medium term, the use of EO 
and morbidity surveillance data (with or without ground meteorological data) 
will be investigated for spatial and temporal prediction of epidemic malaria, 
potentially removing the need for intermediate entomological variables. The 
use of EO data for scaling-up risk models without recourse to ground-based 
meteorological data will also be assessed. This work is expected to provide 
regular assessments of epidemic risk in affected areas at different lead times, 
to which uncertainty measures are progressively attached to assist the relevant 
authorities in making sound decisions for effective, long-term management of 
epidemic malaria. 
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3.1   Summary 

The aim of this study was to assess the accuracy of different methods of 
forecasting malaria incidence from historical morbidity patterns in areas with 
unstable transmission. We tested five methods using incidence data reported 
from health facilities in 20 areas in central and north-western Ethiopia. The 
accuracy of each method was determined by calculating errors resulting from 
the difference between observed incidence and corresponding forecasts 
obtained for prediction intervals of up to 12 months. Simple seasonal 
adjustment methods outperformed a statistically more advanced 
autoregressive integrated moving average method. In particular, a seasonal 
adjustment method that uses mean deviation of the last three observations 
from expected seasonal values consistently produced the best forecasts. Using 
3 years• observation to generate forecasts with this method gave lower errors 
than shorter or longer periods. Incidence during the rainy months of June…
August was the most predictable with this method. Forecasts for the normally 
dry months, particularly December…February, were less accurate. The study 
shows the limitations of forecasting incidence from historical morbidity 
patterns alone, and indicates the need for improved epidemic early warning by 
incorporating external predictors such as meteorological factors. 
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3.2   Introduction 

Malaria affects mainly children in highly endemic areas where adults have 
(partial) immunity to the disease. In contrast, in areas of low endemicity, the 
disease may affect all age groups. In such areas, changes in weather conditions 
may lead to major epidemics. 

In Ethiopia, such epidemics have from time to time inflicted high 
mortality among the largely non-immune population. A well-documented 
major epidemic in 1958 resulted in an estimated 3 million cases of whom 
150,000 died (Fontaine et al. 1961). Such a large-scale epidemic has been 
known to return at some irregular intervals of years; for example, during the 
1980s and 1990s, severe epidemics were recorded in 1981, 1988, 1991, 1992 
and 1998. It had not been possible to forecast any of these events, especially in 
highland areas that were normally considered non-malarious or had very low 
transmission. As an example, in 1988, a major epidemic affected most 
highland areas in the country following normal or below normal transmission 
the previous year (manuscript in preparation). A similar epidemic in 1998 
resulted in high levels of mortality in highland areas where the disease had 
been absent for years. 

In areas with unstable transmission, setting up systems for epidemic early 
warning has become essential. The quantification and use in early warning of 
the effect of epidemic-precipitating factors such as weather patterns has been 
difficult in epidemic-prone areas where slight changes might cause 
devastating epidemics. Currently there are efforts to develop early warning 
systems that use weather monitoring and climate forecasts and other factors 
(Thomson and Connor 2001). In some countries, epidemics have been 
associated with the occurrence of the weather phenomenon known as the El 
Niño (Bouma and van der Kaay 1996; Bouma and Dye 1997). While 
predicting El Niño years is not a simple task, even such predictions would be 
too global in nature to be useful as an early warning in specific areas. 
Moreover, there are variations in the magnitude and timing of the effects of El 
Niño on malaria incidence according to geographical conditions. 

Specific forecasts of incidence would be helpful to local health services 
for appropriate preparedness and to take selective preventive measures in 
areas at risk of epidemics. In this study, we explore whether it would be 
possible to forecast malaria incidence from the patterns of historical morbidity 
data alone (without external predictors) while making use of the correlation 
between successive observations, and compare different methods of doing so 
in terms of the level of accuracy obtained. Our aim was to find out what 
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information can maximally be obtained from past morbidity trends and 
patterns which may be useful for prediction of future incidence levels, and to 
identify months or situations where additional information is needed most. We 
used monthly incidence data collected in areas with unstable transmission in 
Ethiopia.

3.3   Materials and methods 

Study areas and data 

We used historical monthly morbidity data from 20 areas in central and north-
western Ethiopia (Table 3.1). Data sets from seven areas comprised 
microscopically confirmed Plasmodium falciparum cases seen at malaria 
laboratories. The data set from one area (Finote Selam) comprised combined 
monthly reports of P. falciparum cases from a number of health facilities 
reporting to the Sector Malaria Control Office. Data sets from the remaining 
12 areas comprised unconfirmed clinical cases symptomatically diagnosed as 
malaria by trained health workers. We assume that fluctuations in the number 
of clinical malaria cases reflect proportional fluctuations in P. falciparum
cases. There are P. vivax cases regularly reported in most areas of the country, 
but compared with P. falciparum, their number shows little seasonal 
fluctuation.

The monthly morbidity data has an approximately lognormal distribution, 
and therefore the analysis was based on log-transformed series. We calculated 
relative (log) incidence (RI) in order to bring morbidity data from all areas to 
the same scale. The RI for month t (denoted tY ) was calculated as: 

A

Z
Y t

t

)ln(
� 

where tZ  is the number of cases in month t  and A  is the overall mean of the 
log-transformed series used for forecasts. The back-transformed number of 
cases is thus: )exp( tt AYZ � . The mean (A) differs for each series or sample. 
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Table 3.1 The 20 study areas with associated period and number of monthly 
observations used (n). The data used in the analysis include confirmed 
Plasmodium falciparum cases (areas 1…8) and clinically diagnosed malaria cases 
(areas 9…20). 

No Area/locality Type of health 
facility*

Period n

1 Bahir Dar (urban) ML Jul 90 … May 99 119
2 Finote Selam Sector MDTPs Oct 86 … Aug 95 107 
3 Nazret (urban) ML Sep 94 … Mar 99 55 
4 Nazret (rural) ML Sep 94 … Mar 99 55 
5 Debre Zeit (urban) ML Sep 94 … May 99 57 
6 Debre Zeit (rural) ML Sep 94 … May 99 57 
7 Zway (urban) ML Nov 94 … Mar 99 53 
8 Zway (rural)  ML Nov 94 … Mar 99 53 
9 Ambo Meda  HS Mar 93 … Jan 99 71 
10 Yifag  HS Mar 93 … Jan 99 71 
11 Chagni HC Jul 93 … Feb 99 68 
12 Chireti  HS Jul 93 … Feb 99 68 
13 Chara  HS Jul 93 … Feb 99 68 
14 Dangila  HC Jul 93 … Feb 99 68 
15 Tamuha  HS Jul 93 … Feb 99 68 
16 Estie HC Mar 93 … Jan 99 71 
17 Hamus Wenz  HS Jul 92 … Jun 97 60 
18 Debre Tabor HC Mar 93 … Jan 99 71 
19 Wereta  HS Jul 92 … May 98 71 
20 Azena HS Jul 93 … Feb 99 68 

*ML = malaria laboratory; MDTPs = malaria detection and treatment posts; HS = 
health station; HC = health centre. 

Forecasting methods 

The following methods were used to forecast RI m months in advance, i.e. to 
obtain the forecast for month mt ��  (denoted mtY ��

� ). The methods, ordered in 
degree of complexity, were compared in terms of their forecast accuracy. 
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Overall average 
This simple method uses the mean of the observed RI values as forecast value 
for all future months. The mean on the RI scale obviously takes the value of 1: 

1� � ��mtY

Seasonal average 
This method uses the historical average of each particular calendar month as a 
forecast for the same month in the future. In other words, the average of all 
observed RI values during the same calendar month in previous years will be a 
forecast value for all similar months in the future:  

mtmt AY ���� � �

Seasonal adjustment with last observation 
In this method, the seasonal average was corrected using the deviation of the 
most recent observation from its expected seasonal value to generate forecasts 
for future months. The object was to capture incidence trend during the most 
recent months: 

)(�
ttmtmt AYAY ����� ����

   
Seasonal adjustment with last three observations 
In this method, the seasonal average was corrected using the mean deviation 
of three most recent observations from their expected seasonal values to 
generate forecasts for future months. The object was to capture trend in 
incidence during the most recent months while reducing statistical variation: 
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The subscript it �� denotes a month i  lags before the (last) month t .

Autoregressive integrated moving average (ARIMA) 
The autocorrelation pattern in each series at different time lags was used to 
develop ARIMA models (Box and Jenkins 1976). A single equation ARIMA 
model states how any value in a single time series is linearly related to its own 
past values through combining two processes: the autoregressive (AR) process 
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which expresses tY  as a function of its past values, and the moving average 
(MA) process which expresses tY  as a function of past values of the error term 
e:

qtqtttptpttt eeeeYYYY ������������ ����������������� �T�T�T�I�I�I ...... 22112211

where the �I s and �Ts are the coefficients of the AR and MA processes, 
respectively, and p and q are the number of past values of tY and the error term 
used, respectively. 

Application of the ARIMA technique requires the series to be stationary 
(i.e. with constant mean and variance over time). A series with constant 
variance can be obtained by applying log and other types of transformation to 
the original series. A constant mean can be obtained by taking the first or 
higher order difference of the variable as necessary until the series becomes 
stationary. 

Seasonal and lag-1 differencing of the RI series (which were already on a 
log-scale) resulted in stationary series. The Akaike Information Criterion was 
used to compare goodness-of-fit among ARIMA models. 

Assessment of forecast accuracy 

The last 12 observations in each area were used for validation of forecast 
accuracy of the different methods and are referred to as test observations. For 
each area and each method, we generated 12 predictions at prediction intervals 
of 1,2,ƒ,12 months for each of the 12 test observations. All predictions were 
made by using historical series of equal lengths, formed as subsets taken from 
the same series. For each prediction interval, average forecast error was then 
calculated. For example, in each area, the average 1-month ahead forecast 
error was calculated from all the 1-month ahead forecast errors produced for 
each of the 12 test observations. The average forecast error at prediction 
interval of m months ( m�H ) was calculated as: 

12
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where kmtY ,�� and kmtY ,
�

�� denote the observed and forecast values for month 

mt ��  in sample k . The above error was again averaged over 20 areas (by 
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taking the arithmetic mean) to obtain the overall average error (m�H ) of each 
method to forecast m months ahead. 

We used observation periods of 30-48 consecutive months (depending on 
the data available) to generate forecasts for comparing accuracy among the 
different methods. We also tested forecast accuracy of the different methods 
by varying the observation period from 1 to 4 years. This was only possible 
for 7 data sets with sufficient length. 

3.4   Results 

Malaria transmission in most areas was highly variable from season-to-season 
and year-to-year. As an example, data from Finote Selam area (the longest 
series) shows a clear seasonal and inter-annual variation in incidence (Figure 
3.1).

As was to be expected, forecast accuracy deteriorated as the prediction 
interval increased in the 20 study areas (Figure 3.2). This phenomenon, 
however, varied between methods: the most rapid deterioration of forecast 
accuracy with increasing prediction interval was observed for ARIMA, the 
slowest for the seasonal average method. The method using seasonal 
adjustment with mean deviation of last three observations almost consistently 
produced the lowest forecast error. This was true for most of the series (not 
shown). Up to about 9 months prediction interval, the average forecast error of 
this method was 0.22, i.e. 22% of the log mean number of cases in each area 
(95% CI: 0.17…0.27). The statistical sophistication of the ARIMA method did 
not result in better forecasts compared with the simpler methods. In most 
cases, the structures of the ARIMA models optimized for each series had 
similar structures, mainly consisting of both a non-seasonal and seasonal 
moving average or autoregressive parameters. 

The effect of using different series lengths in forecasting was assessed 
using the seven longest series, by varying the lengths between 1 and 4 years. 
The overall average performed particularly well for a short historical series (1 
year) and prediction intervals of up to 4 months (Figure 3.3a). This is partly a 
statistical phenomenon (only seven series were used) as forecast accuracy of 
the overall average method using 1-year data from all the 20 areas did not 
perform better than the seasonal adjustment method. Nevertheless, the shortest 
period of 1 year performed best for the overall average method, compared 
with longer periods. With the method using seasonal adjustment with last 
three observations, the average forecast error was minimal when lengths of 3 
years were used (Figure 3.3b). This was also true for the other seasonal 
adjustment methods (not shown). 
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Figure 3.1  Incidence of falciparum malaria reported from Finote Selam Sector 
during the period September 1986…August 1995, showing seasonal and year-to-
year variability of transmission. 

Figure 3.4 shows comparison of predicted and observed values in actual 
number of cases for 1- and 12-month ahead forecasts for all areas using the 
overall best method: seasonal adjustment with last three observations. Overall, 
1-month forecasts were better than 12-month forecasts (correlation 
coefficients between observed and predicted values were 0.50 and 0.45 at 1- 
and 12-month prediction intervals, respectively). It appears that incidence is 
less predictable during the dry season than during the wet season. The most 
predictable months in terms of incidence were the wet months of June…August 
as indicated by correlation coefficients between observed and predicted values 
(r = 0.66 and 0.75 at 1- and 12-month prediction intervals, respectively). The 
correlation coefficient during the usual malaria months of September…
November was 0.55 at 1-month prediction interval. The most unpredictable 
months (at 1-month prediction interval) were the normally dry months of 
December…February (r = 0.49). At 12-month prediction interval, the periods 
September…November and December…February were most unpredictable (r = 
0.28 and 0.31, respectively). 
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Figure 3.2  Accuracy of different forecasting methods calculated as average error 
of forecasts using 20 historical morbidity series. 30…48 months of observations 
were used to generate forecasts for each of the 20 areas. The errors are given on 
the relative (log) incidence (RI) scale. The methods are numbered in order of 
complexity. 
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Figure 3.3  The effect of varying series length on forecast accuracy, for two of the 
methods: (a) overall average and (b) seasonal adjustment with last three 
observations (only areas with at least 6 years of observations were used; these 
include: areas 1, 2, 9, 10, 16, 18 and 19 as given in Table 3.1). 
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A practical method of calculating forecasts using the seasonal adjustment 
with last three observations in a malaria epidemic early warning system (in the 
absence of a better method) is suggested in the Appendix. 

3.5   Discussion 

In this study, different methods were compared with forecast of malaria 
incidence from historical morbidity patterns in areas with unstable 
transmission to assess their potential use in epidemic early warning. The 
potential use of time series techniques, especially the ARIMA method, in 
epidemiological studies, disease surveillance and outbreak forecast, has been 
explored in some studies (Helfenstein 1991; Allard 1998). In our study, 
methods using seasonal adjustment were found to produce relatively better 
forecast of malaria incidence compared with the ARIMA method. Other 
studies have also indicated that the statistically advanced ARIMA models may 
produce very good fit to the data but in post-sample forecast, they would not 
be robust enough to handle a possible change in behaviour of the series 
(Makridakiset al. 1998). 

Seasonal adjustment which takes account of deviations from seasonal 
averages of the last three observations gave the best forecast compared with 
the other methods. This is because of the capability of the method to 
accommodate both seasonality and recent changes or trends at the same time. 
However, this method gave only about 20% improvement relative to the 
overall average and about 10% compared with the seasonal average method. 

There is always a balance between statistical accuracy and time trends. 
Very long series lead to relatively accurate averages, but they capture trends 
poorly. In contrast, very short series capture recent trends very well, but the 
averages they produce are relatively less accurate compared with those from 
longer series. All the methods used in this study differ in their sensitivity to 
length of the series used to generate forecasts. For example, the seasonal 
adjustment with last three observations performed best when 3 years• 
observations were used. On the other hand, the overall average method 
performed best with 1-year data. The results indicate the need for balancing 
short historical series (i.e. data closer to the prediction period) with long-
enough series to minimize random error. 
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Figure 3.4  Comparison of observed and predicted number of cases in the 20 
study areas using seasonal adjustment with the last three observations. (a) One-
month prediction interval and (b) 12-month prediction interval. 
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There is little doubt that external forces contribute significantly to 
variations in incidence levels. Several studies have shown that severe malaria 
epidemics are associated with changes in meteorological variables such as 
those resulting from EL Niño events (Bouma et al. 1996; Lindsay and Birley 
1996; Bouma and Dye 1997; Kilian et al. 1999). On the other hand, the fact 
that consistently better forecasts were obtained for shorter term forecasts 
indicates that there is also some contribution of the inherent pattern in the 
historical morbidity data that may be considered in multivariate models. In a 
time series analysis conducted in Kenya, Hay et al. (2001) have shown that in 
an area with unstable transmission, climate variables might have a significant 
contribution to malaria epidemics, but in areas with higher endemicity, there is 
a between-year signal that is not related to climate, and rather may be the 
result of basic dynamics of the disease. The authors therefore suggest that in 
such cases, systems for epidemic early warning that ignore parasite and host 
population dynamics are unlikely to be sufficiently robust to capture super-
annual variation in disease risk. 

Figure 3.4 illustrates the goodness-of-fit of 1-month ahead forecasts 
compared with those of 12 months ahead, using the overall best seasonal 
adjustment method. As is clear from Figures 3.2 and 3.3b, 1-month ahead 
forecasts are much better than longer prediction intervals. Nevertheless, in 
terms of epidemic early warning, the accuracy of forecasts is still not 
acceptable. For example, predictions for 100 observed cases may range 
approximately from 20 to 500 cases. 

The results of the present analysis show that simple methods such as 
seasonal adjustments perform as well as or even better than the more advanced 
ARIMA method, although they are themselves not accurate enough for 
forecasting abnormal incidence for use in an epidemic early warning system, 
especially during the dry season. The size of the forecast errors should also be 
cautiously interpreted as a result of gross underestimation of the true number 
of cases by health service data, especially during epidemics. An abnormal 
increase of malaria leads to excess cases visiting health facilities beyond their 
maximum capacity. Severe epidemics usually occur in remote rural areas far 
away from health facilities, and during such periods, health workers have to 
travel to those areas to distribute antimalarial drugs. Such house-to-house 
treatment of cases is normally not part of the reported morbidity data. In areas 
with highly unstable transmission, the use of external predictor variables (e.g. 
temperature and rainfall) together with past pattern of incidence, would 
probably lead to more accurate predictions of epidemics. Development of such 
models is under investigation. 
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Appendix 

We present below a practical suggestion for using the seasonal adjustment 
method which performed best in our study for forecasting malaria incidence using 
historical morbidity patterns. This procedure may be used (or adapted to local 
situations) by malaria control programmes in their epidemic early warning 
systems in the absence of better methods of forecasting epidemics. 

To generate forecasts, use the last 36 monthly malaria morbidity data (e.g. 
clinically diagnosed malaria cases, microscopically confirmed P. falciparum
cases) diagnosed at a health facility or groups of health facilities in a specific 
area, which may be a selected sentinel surveillance site (based on our study, 
series longer than 3 years may not account for time effects. Shorter series are not 
accurate enough to provide seasonal averages). 

Enter the data in a spreadsheet programme. In a new column, calculate the 
natural logarithms of each monthly observation. 

In a separate column, for each calendar month, calculate the •expected• 
seasonal average from the log-transformed series. For example, for the month of 
July, the mean from the three log-transformed observations during the three 
previous years will be the expected seasonal average for July. 

Now you have all the necessary information to forecast incidence in the 
future. If the last month for which you have observations is July, and you need to 
generate forecasts for the next 2 months (August and September), proceed as 
follows: 

Starting from July backwards, calculate the difference between each of the 
last three observations and their respective seasonal averages. 

Take the mean of the three differences (or deviations). 
To generate a forecast (on a log-scale) for August, add the mean deviation 

obtained above to the expected seasonal average for August. To generate a 
forecast for September, add the same mean deviation obtained above to the 
expected seasonal average for September. 
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Now you have forecasts on a log-scale, you need to back-transform your 
forecasts to the normal scale (i.e. number of cases). To do this, take the exponent 
of each of the (log-scale) forecasts. Finally, the obtained forecasts should always 
be interpreted with caution, as high degree of accuracy cannot be guaranteed. 
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4.1   Summary 

The aim of this study was to describe spatial and temporal variations in 
malaria epidemic risk in Ethiopia and to examine factors involved in relation 
to their implications for early warning and interpretation of geographical risk 
models. Forty-eight epidemic episodes were identified in various areas 
between September 1986 and August 1993 and factors that might have led to 
the events investigated using health facility records and weather data. The 
study showed that epidemics in specific years were associated with specific 
geographical areas. A major epidemic in 1988 affected the highlands whereas 
epidemics in 1991 and 1992 affected highland-fringe areas on the escarpments 
of the Rift Valley and in southern and north-western parts of the country. 
Malaria epidemics were significantly more often preceded by a month of 
abnormally high minimum temperature in the preceding 3 months than based 
on random chance, whereas frequency of abnormally low minimum 
temperature prior to epidemics was significantly lower than expected. 
Abnormal increases of maximum temperature and rainfall had no positive 
association with the epidemics. A period of low incidence during previous 
transmission seasons might have aggravated the events, possibly due to low 
level of immunity in affected populations. Epidemic risk is a dynamic 
phenomenon with changing geographic pattern based on temporal variations 
in determinant factors including weather and other eco-epidemiological 
characteristics of areas at risk. Epidemic early warning systems should take 
account of non-uniform effects of these factors by space and time and thus 
temporal dimensions need to be considered in spatial models of epidemic 
risks.
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4.2   Introduction 

Malaria mostly affects children in highly endemic areas with stable 
transmission. In areas with low or moderate endemicity, all age groups are 
affected and such areas are at a special risk of severe epidemics. Epidemic 
malaria has been defined as a periodic sharp increase in incidence that is 
clearly in excess of the usual, although the application of such a definition to 
actual situations is not always straightforward (MacDonald 1957; Molineaux 
1988).

Ethiopia is among the most affected countries by malaria epidemics, 
mainly due to its varying topographical and climatic features. The western, 
central and eastern highlands and highland-fringe areas along the Rift Valley 
are especially prone to periodic malaria epidemics. (Craig et al. 1999) have 
shown that large areas in the western and central Ethiopian highlands are 
unsuitable for malaria transmission in the average year, and a climate-based 
spatial model of epidemic risk of various areas of the country has been 
proposed (Cox et al. 1999). 

In most parts of Ethiopia, a short transmission season followed by a long 
interval of very low or no transmission results in little effective immunity 
acquired by the population. Distinct from the ••normal•• seasonal increase in 
many areas, major periodic epidemics have occurred in the country from time-
to-time. In 1958, an epidemic resulted in an estimated three million cases out 
of which 150,000 people died (Fontaine et al. 1961). Similar epidemics 
affected the country at varying intervals. 

In this study we describe the spatial and temporal variations in malaria 
epidemic risk in Ethiopia using retrospective morbidity and ground 
meteorological data and variations in possible precipitating factors in relation 
to their implications for future development of epidemic early warning 
systems and interpretation of geographically-oriented risk models. 

4.3   Materials and methods 

Data

Malaria morbidity data reported from Sector Malaria Control Offices 
(SMCOs) between September 1986 and August 1993 were used in the 
analysis (A sector is an area delineated for purpose of malaria control and 
covered approximately two to five districts, each with approximately 75,000-
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150,000 inhabitants). Data after August 1993 was not used due to changes in 
the organizational structure of the malaria control programme. The morbidity 
data comprised microscopically confirmed cases seen at Malaria Detection 
and Treatment Posts (MDTPs) located in catchment areas of SMCOs. 

A total of 50 sectors (out of 59) for which data was available for at least 
50 months were included in the analysis. All confirmed Plasmodium
falciparum, P. vivax, P. malariae or mixed infections with fever were defined 
as malaria cases and used in the study. For most of the sectors, compiled data 
was not available for the period September 1989-August 1990. On average 
data was available for 63 months out of the total 84 months. We assumed that 
among the confirmed cases reported by MDTPs monthly, the majority were 
diagnosed at malaria laboratories based at the SMCOs. Furthermore, in view 
of limited modes of transportation in rural areas, it is very likely that most of 
the malaria cases seen at a sector•s malaria laboratory originated from 
localities not far away from the base towns of the sectors. 

Data relating to rainfall, minimum and maximum temperatures of the 
base town of sector offices were obtained from the National Meteorological 
Services Agency of Ethiopia. Among the 50 sectors, 35 had meteorological 
data for detailed analysis concerning weather anomalies in relation to 
abnormal incidence. 

Statistical methods 

Abnormal incidence 

The monthly morbidity data have a lognormal distribution, and therefore 
analysis was based on log-transformed series. In about 3% of the observations 
where all examined patients were negative for malaria throughout the month, 
1 case was assumed instead of 0. For each sector and each calendar month, the 
historical average and standard deviation were calculated. Departure of the 
observed number of cases from the expected (geometric mean) for each sector 
and calendar month was standardised by dividing it by the corresponding 
standard deviation calculated separately for each sector and month. The 
resulting index represents the number of standard deviations by which 
observed number of cases departs from the expected and varies approximately 
between +2 and -2. An epidemic period was defined if observed log number 
of cases exceeded the expected plus one standard deviation for at least 3 
consecutive months. Similarly, a period of abnormally low incidence was 
defined if observed log number of cases was below the expected minus one 
standard deviation for at least 3 consecutive months. Sectors were 
subsequently grouped by year of epidemic onset. For sectors with double 
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epidemic episodes, the most intensive was used for group classification. 
Intensity was determined by the total ••excess•• departure beyond the 
(expected) mean plus one standard deviation limit. The groups were then 
described in terms of topography, geographic location, and climate, and the 
trend of the standardised departure index was explored over the study period. 

To study the association of epidemics with a period of abnormally low 
incidence during previous transmission seasons in relation to immunity status 
of affected populations (as a function of intensity of past transmission), we 
compared the normality of incidence 1 and 2 years before each epidemic 
onset. The previous years• period used for comparison included the onset 
month with 1 month before and after it. Data was available for 37 episodes 
during the previous year and for 30 episodes for the period 2 years earlier. 

Weather anomaly 

The trend of abnormal weather conditions (weather anomaly) was studied 
using a similar departure index used for studying abnormal incidence. For 
each sector and each calendar month, the ••expected•• mean and standard 
deviation of minimum and maximum temperature and rainfall were calculated 
from monthly weather records between June 1986 and August 1993. The 
mean and standard deviation of rainfall was calculated after cubic root 
transformation of the monthly records to obtain Normal distribution. For each 
month, an abnormal weather condition was defined for each variable if 
observed values were below -1 or above 1 standard deviation from the mean. 

In 35 sectors with weather data, the frequencies of abnormal 
meteorological variables were calculated for the period up to 3 months before 
the onset of each epidemic episode and each period of abnormally low 
incidence. These frequencies were then compared to expected frequencies of 
values beyond -1 or 1 from the Normal distribution during the 3-month 
periods. In case of a perfect Normal distribution, 15.9% of observations will 
exceed 1 standard deviation and the same percentage will be below -1 
standard deviation. This means that for periods of 3 months, we can expect 
40.5% to contain at least 1 month of abnormal weather: 

405.0)159.01(1 3 � ���� . The expected value can be somewhat different if the 
distribution is deviating from normal. By means of Chi-square testing with 1 
degree of freedom, we tested whether observed presence of abnormal weather 
in the 3 months preceding onset of an epidemic or a period of abnormally low 
incidence differed from expected. 
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4.4   Results 

Plasmodium falciparum infections constituted 68% of the total 920,836 cases 
reported from 50 sectors; most of the remaining were P. vivax infections. P. 
falciparum showed a higher degree of seasonal variation compared to P. vivax
(Figure 4.1). On average, the peak malaria month was October, following a 
smaller peak in July. In 88% of the 50 sectors, maximum incidence occurred 
between June and November. 

An example of the procedure used to identify periods of abnormal 
incidence is shown in Figure 4.2 with plots of the monthly observed and 
expected numbers of cases with the upper and lower limits of the mean 
plus/minus one standard deviation for one of the sectors„Asela. In this 
sector, July 1988-January 1989 was identified as an epidemic period. 

Forty-eight epidemic episodes were identified in various areas between 
September 1986 and August 1993. Half of these episodes were due to 
abnormal increases of both P. falciparum and P. vivax cases; 13 episodes were 
due to abnormal increase of P. falciparum and 11 due to P. vivax. Thus, 77% 
of the epidemic episodes involved P. falciparum.
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Figure 4.1  Seasonal variations in incidence of P. falciparum and P. vivax malaria 
in Ethiopia (September 1986 -/August 1993). 
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The study showed that epidemic episodes in specific years were 
associated with different areas that had specific geographic characteristics. In 
23 sectors (46%), incidence was abnormally low during the usual malaria 
season of 1986, but gradually increased from the second half of 1987 onwards. 
An unusual increase affected several sectors across the country, later to 
develop to a major epidemic covering a wide geographical area (4 sectors in 
1987, 21 sectors in 1988) (Table 4.1). In 1991 and 1992, other epidemics 
affected 14 other sectors. Double epidemic episodes were observed in nine of 
the sectors. According to the criteria used, incidence was considered 
••normal•• in 10 sectors during the period under study. 

Figure 4.2  Observed and expected number of malaria cases in Asela Sector. 
Data analysis was based on log-transformed observations; results are shown 
after back-transformation. No observations are available from September 1989 to 
August 1990. 
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The 1987 epidemic affected few areas in the western lowlands. The 1988 
epidemic was the most widespread, affecting the western and central 
highlands (Figure 4.3). Nearly three-quarters of the sectors affected in 1988 
were highlands classified under warm-temperate rainy climate (Gonfa 1996), 
with low annual mean temperature and high annual rainfall, with mean 
altitude of the base towns of nearly 2000 m (Table 4.2). 

On the other hand, the 1991 and 1992 epidemics affected the north-
eastern and eastern areas on both escarpments of the Rift Valley, areas in the 
vicinity of Lake Tana, some areas bordering the eastern and southern 
lowlands, and central and southern highland-fringe areas in the narrow portion 
of the Rift Valley (Figure 4.3). The base towns of sectors affected in 1991 or 
1992 were at significantly lower altitude compared to those affected in 1988 
(P = 0.006). 

Figure 4.3 Geographic and climatic distribution of sectors grouped according to 
year of onset of malaria epidemics during September 1986-August 1993. Map 
contours were adapted from (Gonfa 1996) and National Meteorological Services 
Agency of Ethiopia (1989). 
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Sectors with incidence considered •normal• during the period under study 
were located in areas bordering the dry north-eastern and the south-western 
sections of the Rift Valley, and the eastern arid lowlands (Figure 4.3). These 
areas are characterised by significantly less annual rainfall compared to those 
affected in 1988 (P = 0.01), and 1991-92 (P = 0.09). 

Meteorological data was available for 35 sectors out of the total 50. 
Among the 1988 group 15 sectors and among the 1991-92 groups 9 sectors 
had weather data. Average anomalies of incidence and weather variables were 
calculated for these groups separately (Figure 4.4a-d). In both areas affected in 
1988 and 1991-92, anomaly of malaria incidence gradually increased from 
very low levels in late 1986 to a peak in 1988, after which it declined sharply 
in 1989 to below normal levels (Figure 4.4a). In areas affected in 1991-92, 
incidence anomaly was still negative during late 1987 whereas it was already 
above normal in areas affected by the 1988 epidemic. 

Thirty of 37 episodes for which morbidity data was available a year 
before were preceded by normal incidence and 7 by a period of abnormally 
low incidence during the previous year. Furthermore, 18 of a total 30 epidemic 
episodes were preceded by normal incidence and 12 by a period of abnormally 
low incidence 2 years earlier. This was particularly evident prior to the 1988 
epidemic (Figure 4.4a). Similarly, although morbidity data was not available 
for most areas during the period September 1989-August 1990, reports from 
one sector (Finote Selam) indicated that incidence was much below normal 
during the period prior to the 1991 epidemic (not shown). 

During most of 1987 and 1988, minimum temperature was above normal 
in all areas (Figure 4.4b). In the sectors affected in 1988, minimum 
temperature anomaly was slightly higher than those affected in 1991-92 
during the peak months of the epidemic. The trend of minimum temperature 
anomaly before the 1988 epidemic followed different patterns in areas 
affected in 1991-92 compared to the 1988 group. A delay of several months 
was observed before anomaly started increasing in the 1991-92 group. 
Towards the end of 1988, this anomaly quickly came to normal and continued 
to drop further to abnormally low levels in a similar manner as incidence 
anomaly. From about mid 1989, minimum temperature anomaly started to rise 
again in all areas, and so did incidence anomaly. From 1991 onwards, 
minimum temperature anomaly was higher in the 1991-92 epidemic areas 
compared to the 1988 epidemic areas. Maximum temperature and rainfall 
anomalies followed similar trends in both the 1988 and 1991-92 groups 
(Figure 4.4c-d). 
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Table 4.1 Grouping of sectors in Ethiopia based on onset of epidemic episodes 
during September 1986-August 1993 

Group 
Time of epidemic 
onset (quarter and 

year) 
No. of 
sectors 

List of sectors 

II-87 1 Chagni 1987
(4 sectors) IV-87 3 Koladiba, Gambela, 

Awasa
II-88 5 DebreTabor, Fiche, 

Ambo, Jima, Yabelo 
III-88 8 Finote Selam, Gida 

Ayana, Nekemte, 
Dembidolo, Bedele, 
Bichena, Nazret, Asela 

IV-88 5 Alamata, Alem Ketema, 
Maji, Weliso, Robi

II-88, IV-88 1 Abomsa 
III-88, II-91 1 Mizan Teferi 

1988
(21 sectors) 

III-88, I-93 1 Gimbi 
1989
(1 sector) 

II-89, II-91 1 Bati 

III-91 2 Adis Zemen, Ginir 
IV-91 2 Mieso, Sawula 

1991
(5 sectors) 

I-91, IV-92 1 Arba Minch 
I-92 1 Metehara 
I-92, III-91 1 Delo-Mena 
III-92 3 Zway, Dila, Jinka 
IV-92 1 Hosaina 
IV-92, III-91 2 Bahir Dar, Weldiya 

1992
(9 sectors) 

IV-92, I-87 1 Aykel 
Normal during 
Sep 86-Aug 93 
(10 sectors) 

„ 10 Kombolcha, Efeson, 
Debre Zeit, Hirna, Harer, 
Alaba, Sodo, Mechara, 
Negele, Gode 

In the case of more than one episode, the most intensive was used to group 
sectors. 
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Epidemics were significantly more often preceded by a month of 
abnormally high minimum temperature in the preceding 3 months than based 
on random chance (Figure 4.5). The frequency of abnormally high minimum 
temperature during a 3-month period prior to 27 epidemic episodes was 51.9% 
compared to the expected 35.9% )082.0;02.3( 2

1 � � P�F , whereas the same 
frequency prior to abnormally low incidence was only 21.2% 

)080.0;06.3( 2
1 � � P�F . The frequency of abnormally low minimum 

temperature preceding epidemics was significantly lower than expected 
)033.0;52.4( 2

1 � � P�F . The results indicate that abnormally low and high 
minimum temperatures are associated with epidemics in a reverse way. On the 
other hand, abnormally increased maximum temperature and rainfall had no 
positive association with epidemics as their frequencies were below expected 
values of 42.2% and 41.0%, respectively. 

Table 4.2 Characteristics of sectors affected by malaria epidemics in 1987, 1988 
and 1991-92 in comparison with unaffected sectors. 

Characteristics Year of main 
epidemic 

Mean  (sd) n Std. error 
of mean 

1987 1394  (612)  4 305.9
1988 1996  (359) 21  78.4 
1991-92 a 1644  (325) 15  84.0 

Altitude (m) 

Not affected 1701  (534) 10  169.0 
1987 22.2  (4.3)  3  2.51 
1988 18.6  (2.4) 19  0.54 
1991-92 20.3  (2.3) 14  0.62 

Mean temperature 
(oC)

Not affected 20.2  (3.4)  8  1.21 
1987 1220  (341)  4  170.3 
1988 1310  (442) 20  98.8 
1991-92 1120  (348) 14  93.1 

Mean annual rainfall 
(mm)

Not affected 887  (289)  9  96.2 

           a Includes Bati Sector which was affected both in 1989 and 1991. 
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4.5   Discussion 

The study showed that different epidemics in specific years were associated 
with different areas that had specific geographic characteristics. The 1988 
epidemic affected the normally cool and rainy highlands, whereas most of the 
low-lying areas in southern and eastern parts of the country remained 
unaffected. On the other hand, epidemics in 1991 and 1992 affected highland-
fringe areas on the escarpments of the Rift Valley and in the southern and 
north-western parts of the country. Nearly all the epidemic areas in 1988 were 
not affected in 1991 or 1992, and conversely those affected in 1991 or 1992 
were free of epidemics in 1988, indicating a changing risk pattern over time. 

Although a detailed exploration of the statistical associations between 
possible precipitating factors and epidemics is not the subject of the present 
paper, the study indicates that aberrant conditions in weather phenomena, in 
particular abnormal increase in minimum temperature, might have led to 
abnormal increases in incidence coupled with lack of immunity in affected 
populations probably resulting from low levels of incidence in pre-epidemic 
periods. We have previously demonstrated that incidence in areas with 
unstable transmission may not be predicted well from historical morbidity 
patterns alone (Abeku et al. 2002). In the highland areas at risk, monitoring 
minimum temperature as well as recent trends in incidence could provide a 
basis for epidemic early warning. Detailed quantitative analysis of the effect 
of meteorological and other precipitating factors as determinants of epidemics 
is necessary in developing prediction models and this work is currently 
underway. Highland areas above 2000 m altitude have been frequently 
referred to as •non-malarious• in Ethiopia; although at times they have been 
affected by more severe epidemics resulting in higher mortality compared to 
moderately malarious areas. The presence of the Rift Valley across Ethiopia is 
a significant factor in the epidemiology of malaria in the country. Seasonal 
transmission is sustained from year to year in the warm lowlands of the valley. 
In these areas, seasonality is mainly a function of rainfall alone and/or 
temperature. In the presence of reservoirs of infection in the Rift Valley, the 
surrounding highlands and highland-fringe areas can be affected by severe 
epidemics when weather conditions, especially temperature, become 
favourable for transmission in populations with low immunity. Schaller and 
Kuls (Schaller and Kuls 1972) have reported that epidemic-prone 
hypoendemic zones of malaria occurrence are mainly at altitudes between 
1600 and 2000 m. The 1958 epidemic also affected highlands between 1600 
and 2150 m elevation (Fontaine et al. 1961). A climate-based model of 
malaria distribution has indicated that large areas in the western and central 
Ethiopian highlands are unsuitable for malaria transmission in the average 
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year. An extensive review of the history of malaria epidemics in Ethiopia and 
a climate-based spatial model of epidemic risk of various areas of the country 
has been presented by (Cox et al. 1999). These maps give important insights 
regarding the magnitude of epidemic risks in different areas, but their use and 
interpretation should take into account the temporal variation of the 
geographic risk pattern as described in the present study. 

Factors such as increased drug resistance by P. falciparum, insecticide 
resistance by vectors, civil war, population migration, and changes in the 
quality and coverage of health service interventions might have contributed to 
the severity of the observed epidemics. Drug or insecticide resistance usually 
cause gradual increases in incidence over several years. The levels of drug 
resistance by P. falciparum and DDT resistance by the major vector 
Anopheles arabiensis were low in the 1980s in Ethiopia (Teklehaimanot 1986; 
Abose et al. 1998), although in the 1990s resistance to chloroquine increased, 
probably contributing to later epidemics. It has been also reported that high 
population migration towards the end of the civil war in relation to spreading 
chloroquine-resistantfalciparum malaria might have played a role in the 
localised epidemics of 1991 (Mengesha et al. 1998). 

Changes in weather conditions probably played major roles as the cause 
of most of the severe epidemic episodes in Ethiopia. The present study shows 
that any abnormal increase in minimum temperature is very likely to lead to 
malaria epidemics in Ethiopian highlands. In the lowlands, rainfall might play 
a significant role in determining the risk of malaria epidemics. The main cause 
of the 1958 epidemic was suggested to be unusually high rainfall and 
abnormally high temperature and humidity which prevailed in the highlands 
(Fontaineet al. 1961). On the other hand, epidemics in years of deficient 
rainfall have been noted (Covell 1957). Epidemiological observations made in 
February„April 1994 in Sodo area, southern Ethiopia have shown that 
epidemics also affected the highlands as the result of an abnormally extended 
dry season (unpublished report, Ministry of Health, Ethiopia). During such 
events, vectors breed extensively in pools of intermittent rivers and streams, 
and heavy rainfall tends to interrupt transmission by destroying mosquito 
breeding sources. In Debre Zeit, central Ethiopia, the years and months with 
increased temperature and decreased rainfall were associated with El Niño 
events, which were in turn associated with increased malaria incidence (Tulu 
1996).
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Figure 4.4  Anomalies of malaria incidence and meteorological variables in areas 
affected by epidemics in 1988 and 1991-92. (Weather data was available for 15 
out of 21 sectors and 9 out of 15 sectors for the 1988 and 1991-92 groups, 
respectively). 
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Figure 4.5  Observed and expected frequencies of abnormally high and 
abnormally low values of weather variables for at least 1 month during a 3 month 
period before: (a) epidemic episodes, and (b) abnormally low incidence. 
Significant differences at 5% and 10% significance levels between observed and 
expected values (Chi-square test) are indicated with the x-axis labels as ** and *, 
respectively. (Abbreviations: Min. temp. =/minimum temperature; Max. temp. 
=/maximum temperature). 
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This study showed that epidemics in specific years were associated with 
specific geographic patterns, indicating spatial as well as temporal variations 
of risk. Epidemic risk is a dynamic phenomenon with changing geographic 
pattern according to temporal variations in precipitating factors including the 
interplay of weather anomalies, topography and other eco-epidemiological 
features. Weather anomalies (especially increased minimum temperature) 
during the late 1980s and early 1990s might have caused the identified 
epidemics, but their impact showed high degree of variation between areas 
with differing epidemiological features. Low immunity status in the 
populations affected due to abnormally low incidence during transmission 
seasons prior to the epidemic events probably aggravated the effects of 
weather anomalies and resulted in high morbidity levels. The challenge to 
health services in Ethiopia is to develop a capacity for epidemic early warning 
that takes into account non-uniform effects of various precipitating factors by 
space and time. 
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5.1   Summary 

This study was conducted to quantify the association between meteorological 
variables and incidence of Plasmodium falciparum in areas with unstable 
malaria transmission in Ethiopia. We used morbidity data pertaining to 
microscopically confirmed cases reported from 35 sites throughout Ethiopia 
over a period of approximately 6-7 years. A model was developed reflecting 
biological relationships between meteorological and morbidity variables. A 
model that includes rainfall 2 and 3 months earlier, and mean minimum 
temperature of the previous month and P. falciparum case incidence during 
the previous month was fitted to morbidity data from the various areas. The 
model produced similar percentages of over-estimation (19.7% of predictions 
exceeded twice the observed values) and under-estimation (18.6% were less 
than half the observed values). Inclusion of maximum temperature did not 
improve the model. The model performed better in areas with relatively high 
or low incidence (>85% of the total variance explained) than those with 
moderate incidence (55%-85% of the total variance explained). The study 
indicated that a dynamic immunity mechanism is needed in a prediction 
model.  The potential usefulness and drawbacks of the modelling approach in 
studying the weather-malaria relationship are discussed, including a need for 
mechanisms that can adequately handle temporal variations in immunity to 
malaria. 
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5.2   Introduction 

Epidemic malaria remains a major public health concern in highland and arid 
areas in tropical countries (Lindsay and Martens 1998; Nájera et al. 1998). 
Changes in weather conditions probably played a major role as the cause of 
most of the severe epidemics. Increased temperature in cooler environments 
shortens the parasite•s life cycle within the vector, thus increasing 
transmission probability before the mosquito vector dies (MacDonald 1957; 
Molineaux 1988). Increased temperature would also increase the rate of 
mosquito emergence from breeding places, and in the presence of rainfall 
increased humidity results in longer survival of the vector to transmit the 
parasite (Hay et al. 2000). Rainfall also affects the abundance of mosquito 
breeding sites. 

In the Ethiopian highlands, several large-scale epidemics have been 
reported since the 1950s. In 1958, an estimated 150,000 people died during a 
widespread epidemic of malaria in the highlands (Fontaine et al. 1961). 
Several epidemics have been reported since then. Abnormal transmission of 
unusual proportions has affected the highlands and highland-fringe areas in 
1988 and 1991-92 which was associated with abnormally increased minimum 
temperature (Abeku et al. 2003). More recently, epidemics have occurred in 
the highlands during the second half of the last decade; in particular a 
widespread epidemic in 1998 was largely attributed to an El Niño event 
(unpublished data). The association of abnormal weather conditions and 
increased malaria incidence has been reported in several studies. In the Punjab 
province of India, epidemics were shown to be significantly more prevalent in 
a year with a wet (high) monsoon rainfall following a dry El Niño year than in 
other years, while in Sri Lanka, epidemics were significantly more prevalent 
during El Niño years, when the same south-west monsoon tends to fail 
(Bouma and van der Kaay 1996). In Venezuela, malaria significantly 
increased in the year following an El Niño event (Bouma and Dye 1997). 

Currently there is a need for systems for epidemic early warning in areas 
at risk (Myers et al. 2000; Thomson and Connor 2001). Previously, we have 
demonstrated that incidence in areas with unstable transmission may not be 
predicted well from historical morbidity patterns alone even when a 
statistically more sophisticated ARIMA (autoregressive and integrated moving 
average) method is used (Abeku et al. 2002). In areas with highly variable 
transmission, the use of predictor variables such as temperature and rainfall 
together with past patterns of incidence might lead to more accurate 
predictions.
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The aim of this study was to quantify the effects of meteorological 
factors on malaria incidence in areas with unstable transmission using a 
statistical model based on theoretical reasoning. On the basis of biological 
arguments, we derived a linear mixed model for monthly data including 
rainfall, temperature and incidence of confirmed Plasmodium falciparum
cases reported from 35 sites across Ethiopia. We also tested whether extending 
the model by including more variables would significantly improve the basic 
model. Moreover, we compared the performance of the basic model with 
methods that use historical morbidity patterns for studying the impact of 
weather variables on incidence after one month interval.  

5.3   Materials and methods 

Data used for analysis 

We used malaria morbidity data (microscopically confirmed cases) reported 
from 35 Sector Malaria Control Offices (SMCOs) throughout Ethiopia 
between September 1986 and August 1993. A sector is an area delineated for 
the purpose of malaria control and covers 2-5 districts, each with 
approximately 75,000 to 150,000 inhabitants. The malaria cases were seen at 
Malaria Detection and Treatment Posts (MDTPs) located in catchment areas 
of SMCOs, which are supposed to report to their respective SMCOs every 
month. We assumed that among the confirmed cases reported monthly, the 
majority were diagnosed at malaria laboratories which were based at the 
SMCOs. Most of the other MDTPs (e.g. health centres, hospitals, etc.) 
irregularly report to SMCOs and when they do, the reports constitute only a 
small proportion of the total confirmed cases in each sector. Furthermore, in 
view of the limited modes of transportation in rural areas, it is very likely that 
most of the malaria cases seen at a sector•s malaria laboratory originated from 
localities not far away from the base town of the sector. 

During September 1986…August 1993, on average 320 confirmed malaria 
cases were reported per sector per month.  P. falciparum and P. vivax
constituted 68.7% and 31.3% of the total 604,589 malaria-positive cases, 
respectively. To study the seasonal pattern of malaria at different altitudes, the 
sectors were grouped as •highlands• (above 1750 m, n = 18) and •lowlands• 
(1750 m and below, n = 17). Both groups have a similar seasonal pattern of 
incidence (Figure 5.1a) with a peak in P. falciparum incidence in October (P.
vivax showed much less inter-seasonal variation). The high degree of 
seasonality of falciparum malaria is closely associated with seasonal variation 
in rainfall and temperature. Weather data between January 1950 and 
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December 1998 (monthly rainfall, and minimum and maximum temperatures) 
and altitudes of base towns of the SMCOs were obtained from the National 
Meteorological Services Agency of Ethiopia (Table 5.1). In most areas, the 
main rainy season is between June and September with peak rains falling in 
July and August (Figure 5.1b). On average, the highland sectors received more 
rainfall than did the lowlands. Average daily temperature in the highlands 
ranged from 17.1 oC in December to 19.5 oC in April, whereas in the 
lowlands, it ranged from 20.7 oC in December to 30.6 oC in March. Mean 
monthly minimum and maximum temperatures differed (as expected) between 
highlands and lowlands (Figure 5.1c). Minimum and maximum temperatures 
also show different patterns of seasonal variation. During the rainy months, 
maximum temperature declines while minimum temperature remains 
unchanged. After September, minimum temperature gradually falls to a 
minimum value in December, while, in contrast, maximum temperature 
increased after September to a peak in March. 

Data transformation and imputation 

To obtain approximate Normal distribution, log and cube-root transformations 
were applied to incidence and rainfall data, respectively. Monthly minimum 
and maximum temperature data were assumed to have Normal distribution. 
Prior to log transformation, a value of 1 was added to all monthly number of 
cases to avoid transformation problem which arises in the case of 0 values. 

Before fitting models, missing values of rainfall and temperature were 
imputed using linear interpolation (for gaps of up to 5 months) or by taking 
seasonal average values (for gaps of more than 5 months). The value of a 
missing data point for month t (i.e. tX ) was estimated as: 
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where tX  is the seasonal average (of the transformed series) for the 
corresponding calendar month, m is the number of missing observations from 
the last observed value up to time t and n is the lead time to the next observed 
value in the •future•. Of the data points relevant to the basic model (described 
below), the percentage imputed values of rainfall and minimum temperature 
were 12.7% and 15.8%, respectively. 



Chapter 5 

78

Figure  5.1 Seasonal variations in (a) incidence of Plasmodium falciparum and P. 
vivax malaria; (b) rainfall; and (c) temperature, in •highlands• (>1750m) and 
•lowlands• (�d1750m) in Ethiopia. 
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Theoretical Reasoning 

In areas with low malaria endemicity, the number of new malaria cases in 
month t (denoted as It) can be considered to depend on the number of new 
cases in the previous month multiplied by the vectorial capacity during the 
previous month (vectorial capacity is defined as the average number of 
secondary malaria cases potentially disseminated in a susceptible population 
by vector mosquitoes per day from a single primary case). This is due to the 
fact that nearly all newly infected individuals develop clinical illness as a 
result of lack of immunity. In areas with high endemicity, many people are 
(partially) immune and (mostly) not clinically ill, but still infectious; only 
people who lack sufficient immunity would visit health facilities for treatment, 
and this means that the number of new cases is mainly determined by vectorial 
capacity in the previous month alone. The minimum generation time 
(sometimes referred to as the •incubation interval• „ i.e. the duration of a 
complete gametocyte-to-gametocyte cycle or the time from take-up of 
gametocytes by the vector until production of gametocytes by the next host 
after transmission), normally has a length of approximately one month in 
tropical temperatures, and this corresponds to the monthly character of the 
data used for analysis. These considerations can be generalized in the 
following equation: 

11 ����� t
b
tt CaII ,                (5.2) 

wherea and b are area-specific constants, and 1��tC  is vectorial capacity in 

month 1��t . If b  is (close to) 0, we have 1��� tt aCI  as expected in areas with 

high endemicity. On the other hand, if b is (close to) 1, we have 11 ����� ttt CaII
as expected in areas with low endemicity. 

tC  is defined as the product of mosquito density in relation to the human 

population (Mt) and vectorial capacity per mosquito (tW ) in month t :

                                                 ttt WMC � .                     (5.3) 

We assume Mt depends on rainfall during the previous 2 months and some 
area-specific constant M, and that there are enough mosquitoes present to 
generate an infinite number of offspring, whereby the presence of breeding 
sites is the limiting factor. Rainfall will be represented as amount during a 
particular month relative to average annual total for each area. Our assumption 
for taking rainfall relative to the annual total was that absolute rainfall is not 
so important but the consequences of rainfall in terms of number (and 
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duration) of mosquito breeding sites are important. These consequences differ 
strongly among areas (depending on vegetation, soil type, presence of rivers, 
topography etc.) and therefore there cannot be an absolute relationship 
between rainfall and vector abundance. For example, if absolute rainfall would 
be used then a doubling of rainfall in a relatively dry area would have 
relatively little impact, as the difference involved is small. Thus, the effects of 
this doubling would be underestimated. In a very wet area, these effects would 
be overestimated. Thus we have: 
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where 1��tR  and 2��tR denote rainfall in months t-1 and t-2, respectively, R is an 
area-specific average annual rainfall, and 1�E and 2�E are statistical coefficients 
of rainfall relative to annual total in months 1��t and 2��t , respectively, to be 
estimated from data. 

Vectorial capacity per mosquito tW  in eqn (5.3) was assumed to depend 
to a large extent on temperature, and was represented by the sum of a linear 
and a quadratic term of average minimum temperature (T) after a preliminary 
exploration of the likely effect of temperature; hence, we can write: 

                      )exp( 2
43 ttt TTW �E�E ��� ,                              (5.5) 

where 3�E  and 4�E are statistical coefficients of tT and 2
tT , respectively, to be 

estimated from data. 
At higher temperatures, the sporogonic cycle of the malaria parasite 

within the mosquito would be shortened, increasing the probability of 
transmission (as the parasite would be more likely to be transmitted before the 
mosquito vector dies when the duration of the cycle is shortened). 
Temperature also has an effect on the length of the aquatic cycle of the 
mosquito, but in the present model, the effect on the parasite has been 
emphasized (and thus Mt assumed to depend entirely on rainfall as described 
in eqn (5.4)). In this regard, the effect of rainfall (a factor for mosquito 
production) was also made to precede that of temperature (a factor that acts on 
the parasite prior to transmission). 

After substitution we get: 
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Resulting statistical model 

After taking (natural) logarithms, eqn (5.6) can be re-written as a linear mixed 
model for each sector i as follows: 
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Here )log()log( iii aM ��� �D  denotes the sector-specific intercept, and 

it ,�H  is a normally distributed random error with mean 0 and variance 2�V . This 
model describes the area-specific (log) incidence in month t as a function of: 
(1) (log) incidence in the previous month; (2) rainfall 2 and 3 months earlier; 
and (3) average minimum temperature in the previous month. In eqn (5.7), 
between-sector differences in average incidence and in the effect of previous 
incidence were accounted for by the random (sector-specific) intercept i�D  and 

the slope ib (i.e. parameter of previous incidence). The effects of rainfall and 
temperature were assumed identical across sectors. Using the MIXED 
procedure of the SAS/STAT® software of the SAS System Version 8.2 (SAS 
Institute Inc., Cary, NC 27513, USA), we estimated the intercept i�D  and the 

slope ib  of )log( ,1 itI ��  as sector-specific random effects, and 

321 ,, �E�E�E and 4�E , as fixed effects from the data (SAS Institute, Inc. 1999; 
Verbeke and Molenberghs 2000). This procedure can handle problems related 
to spatial and temporal autocorrelations in the data set during estimation of 
model coefficients and their variance. 

In order to judge the quality of the predictions, the model was also 
extended to include more meteorological variables at different lags. 
Likelihood ratio tests were performed to test the goodness-of-fit of the various 
extensions in comparison to the basic model given in eqn (5.7). Also, variance 
as explained was used to reflect the goodness-of-fit per sector. Predictions 
were considered not good enough if they exceeded twice the observed values 
(over-estimation) or were less than half the observed values (under-
estimation). Gross under-estimation in relation to missing epidemic events 
which was considered more important than over-estimation was also studied 
using a threshold value of 200 cases per month per sector, and the results were 
compared to other simpler models not using weather data, including a simple 
method using incidence of the previous month as a forecast value for the 
current month and a seasonal adjustment method that uses values of 3 
previous months (Abeku et al. 2002). 
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5.4   Results 

The estimates of coefficients in the basic model represented by eqn (5.7), 
estimated from data from the 35 sectors, are given in Table 5.2. All included 
effects were statistically highly significant except rainfall 3 months earlier 
which was significant at the 10% level. Area-specific intercepts and incidence 
in the previous month are given in Table 5.1. The area-specific effect of 
incidence in the previous month (i.e. term bi in model (5.7)) showed little 
variation between sectors, with a mean of 0.72 (95% CI: 0.69…0.75). Three-
quarters of the sectors have values of the coefficient between 0.65 and 0.80. 

Observed and predicted values of the basic model are shown in Figure 
5.2. The model produced similar percentages of over-estimation (19.7%) and 
under-estimation (18.6%). Especially high incidence values showed a good fit 
in the model. Detailed analysis of the under-estimation problem showed that 
about 10% of the observations were under-estimated by more than 200 cases 
per month, and about 5% were under-estimated by 400 cases per month. It 
was also found that sectors with normally high and low number of malaria 
cases had better fits than did sectors with moderate number of cases (Figure 
5.3). For most areas, the amount of variance in incidence explained by the 
model exceeded 80%, and for nearly half of the 35 sectors this proportion 
exceeded 90%. The model performed better in areas with relatively high or 
low incidence (>85% of the variance explained) than in those with moderate 
incidence (55%-85% of the variance explained). 

The various extensions of the basic model are given in Table 5.3 with 
their respective likelihood ratio tests for goodness-of-fit in comparison to the 
basic model. In general, there was no significant improvement when 
maximum temperature was included. Due to the fact that rainfall relative to 
annual total in the previous month, and the quadratic terms of rainfall relative 
to annual total 2 months and 3 months earlier significantly improved the 
model, these factors were used in an extended model which improved the 
model significantly (Table 5.3). However, in terms of prediction and 
percentage under- or over-estimated observations, virtually no improvement 
was obtained with the various extensions of the basic model, including the 
extended model. 
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Figure 5.2  Goodness-of-fit of the linear mixed model: observed vs model-
predicted values given in number of Plasmodium falciparum cases. Each dot 
represents a month and a site (n = 2,067). The diagonal parallel lines indicate 
prediction values twice observed values (upper line), equal to observed values 
(middle line) and half the observed values (lower line). (Of the predictions, 19.7% 
were twice the observed values and 18.6% were less than half of the observed 
values; furthermore, 10.2% of all observations were grossly underestimated „ 
i.e. greater than 200 cases per month per sector). 
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Table 5.1 Characteristics of the 35 study areas (sectors) and area-specific 
random effects of the basic linear mixed model fitted to log-transformed 
Plasmodium falciparum incidence data reported during September 1986-August 
1993.

Average daily 
temperature (oC) 

Sector
Alti-
tude
(m)

Minimum Maximum

Annual 
rainfall 
(mm)

Mean
monthly 
no. of 

falciparu
m malaria 

cases

Intercept

Coefficient of 
Loge(incidence) 

in previous 
month

Abomsa  1800 15.3 28.2 960 706 -0.92 0.78
Adiszemen 1550 10.9 28.3 1315 63 -0.91 0.71 
Alaba  1750 11.2 26.9 1032 252 -0.71 0.82 
Alamata  1580 14.8 29.9 754 302 -1.13 0.77 
Alemketema  2280 12.6 24.8 1174 30 -1.18 0.68 
Ambo  2130 11.4 25.2 1024 6 -1.36 0.57 
Arba Minch  1290 15.1 29.9 839 569 -0.92 0.75 
Asela  2350 8.5 21.0 1208 264 -0.79 0.76 
Awasa  1750 12.2 26.7 953 101 -1.05 0.69 
Bahirdar  1770 11.5 26.6 1466 263 -0.79 0.76 
Bati  1660 13.0 28.3 873 382 -1.12 0.80 
Bedele  2030 12.0 25.2 1793 12 -1.20 0.50 
Chagni  1620 12.3 27.7 1762 177 -0.96 0.75 
Debretabor  2690 9.4 22.2 1565 65 -0.83 0.70 
Debrezeit  1900 11.5 26.2 861 260 -1.00 0.79 
Dembidolo  1850 13.0 25.0 1225 98 -0.81 0.64 
Dila  1500 11.3 27.8 1323 26 -1.01 0.67 
Fiche  2750 7.70 20.2 1211 40 -0.87 0.70 
Finoteselam 1900 11.8 27.3 1129 96 -1.11 0.75 
Gambela 480 18.6 35.8 1228 609 -1.02 0.76 
Gode 295 22.5 34.8 262 44 -1.00 0.57 
Harer 2100 13.5 25.2 713 276 -1.38 0.84 
Hirna 2050 12.2 25.6 1041 14 -1.21 0.69 
Hosana 2200 10.4 22.5 1186 37 -0.92 0.67 
Jima 1725 11.1 26.9 1506 20 -1.13 0.67 
Jinka 1480 15.7 27.0 1268 70 -1.15 0.68 
Kombolcha 1903 11.8 25.9 1049 663 -1.33 0.86 
Metehara 960 17.5 32.7 543 544 -0.82 0.73 
Mizanteferi 1370 15.5 27.4 2180 44 -1.54 0.70 
Nazret 1622 14.0 27.9 861 291 -0.95 0.75 
Negele 1544 13.2 25.8 764 24 -1.19 0.65 
Nekemte 2080 12.2 23.7 2089 130 -0.98 0.71 
Sodo 2020 13.1 24.3 1263 370 -1.20 0.81 
Weliso 2000 11.8 24.8 1203 106 -1.05 0.74 
Zway 1640 13.5 26.4 757 426 -1.01 0.78 
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In terms of percentage of observations grossly under-estimated (>200 
cases per month per sector), using the previous month•s incidence as a 
prediction was surprisingly slightly better than the basic model (9.1% vs
10.2%). However, in terms of percentage of •not good enough• predictions, 
the basic model performed better (38.3%) than the model using previous 
month•s incidence (42.9%) (Table 5.4). The alternative model based on the 
seasonal adjustment method was slightly worse than both the basic model and 
the previous month•s incidence prediction (Table 5.4). 

5.5   Discussion 

This study showed an association between monthly meteorological and 
malaria morbidity data in areas with unstable transmission using a statistical 
model based on theoretical reasoning. This linear mixed model, which 
includes rainfall 2 and 3 months earlier and mean minimum temperature in the 
previous month entered as fixed effects and incidence in previous month 
entered as a random effect, was fitted to malaria incidence data from 35 areas 
throughout Ethiopia. The model•s fit was generally good especially in areas 
with high (and to some extent low) monthly incidence. 

The model performed relatively poorly in areas with the mean number of 
cases per months between approximately 50 and 300. This may be due to the 
fact that only in high and low endemicity areas the immunological status of 
the population is constant (high and low, respectively). These observations 
indicate a need to incorporate in a prediction model dynamic or temporally 
varying immunity levels. Although the model was motivated using 
immunological arguments and takes account of spatial variations in communal 
immunity levels across areas, it does not incorporate varying levels of 
immunity over time, to handle, for example, a consequence of recent 
outbreaks on incidence. Nevertheless, the developed theory of varying 
immunity is speculative and needs further study. It should be noted also that 
incidence and immunity levels interact in such a way that one leads to the 
other and models for epidemic early warning need to include such 
interactions. In an attempt to incorporate the level of immunity in forecasting 
incidence, the spleen rate has been used as a proxy to immunity status of the 
population in epidemic early warning in India, although this approach did not 
appear to help in providing an adequate basis for accurate forecast (Swaroop 
1949). In terms of prediction, the present model, however, performed better 
than our best model that was devised previously based on historical incidence 
patterns alone (Abeku et al. 2002). This indicates that weather variables are 
essential components in a model used for epidemic prediction. Potentially 
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confounding factors that affect transmission such as the level of drug resistant 
P. falciparum and the use of insecticides in malaria control in Ethiopia were 
ignored in the model, as (simple) prediction was our objective and the role of 
confounding factors was of less importance than in epidemiological studies of 
causation.

Table 5.2 Estimates of the fixed parameters of the basic linear mixed model fitted 
to log-transformed Plasmodium falciparum incidence data reported from 35 
sectors in different parts of Ethiopia during September 1986-August 1993. 

Effect Estimate (S.E.) P

Mean intercept (�D) -1.04  (0.22) <0.0001 
Mean log (P. falciparum incidence in previous 
month) (b ) 0.72  (0.02) <0.0001 
Rainfall relative to annual total 2 months earlier 
( 1�E) 4.12  (0.49) <0.0001 

Rainfall relative to annual total 3 months earlier 
( 2�E ) 0.81  (0.49) 0.098

Minimum temperature in previous month ( 3�E )  0.19  (0.03) <0.0001 
(Minimum temperature in previous month) 
squared ( 4�E ) -0.0045 (0.0012)  0.0001 

The 95% CI for the estimates of the coefficient of incidence in the 
previous month (0.69…0.75) indicated a uniform value for most areas in the 
country. This is in concordance with the fact that most sectors in Ethiopia 
have similar endemicity levels. The individual effect of each of the predictor 
variables was investigated in the present study using model estimates for 
which the best fit was obtained, while keeping the other variables constant. 
Increased minimum temperature resulted in increase in incidence up to a 
threshold limit of approximately 23 oC, after which increase in minimum 
temperature ceased to have an effect on incidence. Around 14 oC, an increase 
in minimum temperature of 1 oC resulted in 8% increase in incidence. The 
exponential effect of rainfall associates with a 3% increase in incidence for 
every 1% increase in rainfall. 
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Table 5.3 Comparison of goodness-of-fit of the basic model to its extensions by 
adding more predictor variables (n = 2,067 and -2 log likelihood of basic model = 
5,290.1).

Although more detailed studies are still required to thoroughly 
understand the impact of meteorological variables in the genesis of epidemics 
in different areas, it seems that the effect of rainfall varies from sector to 
sector depending on prevailing temperature and other epidemiological factors. 
Previously, an inverse relationship was found between rainfall and incidence 
in southern Ethiopia in drought-associated epidemics due to breeding of vector 
mosquitoes in pools formed in river beds and streams (unpublished data). 
Abnormally high rainfall is causative factor for epidemics in lowlands and 
fringe areas bordering lowlands. In the cooler highlands, temperature 
(especially minimum temperature) has a more profound role in determining 
malaria transmission. A drop in temperature has been shown to be associated 

Test for 
significance of 
improvement
over basic model Additional factor 

to the basic model Estimate  S.E. 
2
1�F P

Minimum temperature 2 months earlier -0.0047 0.0149     9.3    0.002 

Maximum temperature in the previous 
month 0.0048 0.0095   0.2  0.655 

Maximum temperature 2 months earlier 0.0080 0.0099    0.6  0.439 

Rainfall relative to annual total in the 
previous month   2.364    0.498  22.3 <0.001

(Rainfall relative to annual total 2 
months earlier) squared

  21.913    6.240  12.2 <0.001

(Rainfall relative to annual total 3 
months earlier) squared 

  20.996    6.335  10.7  0.001 
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with interruption of transmission in the highland sectors of Ethiopia (Abeku et
al. 2003). In the hypoendemic highlands, temperature exerts its effect on 
transmission mainly as the result of shortened sporogonic cycle of the parasite 
within the vector, and to some extent also by accelerating larval development 
and frequency of blood feeding by the vector.  

Table 5.4 Comparison of different models in terms of percentage of 
•unacceptable• predictions (greater than twice or less than half observed values) 
and percentage of observations grossly underestimated (i.e. greater than 200 
cases per month) (n = 2,067). (The seasonal adjustment model was based on 
(Abeku et al. 2002).)

In a study conducted in Rwanda, Loevinsohn (1994) showed that changes 
in malaria incidence at health facilities were significantly associated with 
rainfall while temperature predicted incidence best at higher altitudes. It was 
shown that a model that included log of minimum temperature 1 and 2 months 
earlier, and rainfall 2 and 3 months earlier fitted the health facility data 
adequately. In our study minimum temperature in the previous month included 
with its quadratic term usually gave adequate fits in the presence of the 
previous month•s incidence level. Incidence was not included as a predictor 
variable in the Rwandan study, but in our model we have shown that it is 

Model

Predictions
>twice 
observed
values (%) 

Predictions
<half
observed
values (%) 

Observations
grossly
underestimated
(>200 cases per 
month) (%) 

Basic model [7] 19.7 18.6 10.2 

Extended model 19.2 18.0  9.7 

Alternative model: current 
month•s incidence = previous 
month•s incidence 

22.0 20.9  9.1 

Alternative model: seasonal 
adjustment 21.3 24.0 11.1
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highly significant as a determinant of incidence in the following month. 
Previously, we have shown that malaria epidemics in Ethiopia were 
significantly more often preceded by a month of abnormally high minimum 
temperature in the preceding three months than based on random chance 
(Abeku et al. 2003). In another observation made in Zimbabwe, Freeman & 
Bradley (1996) reported that rainfall has little effect on severity of malaria 
(assessed by comparing the numbers of malaria deaths and malaria-inpatients 
in any one year with respect to those in the preceding years), while 
temperature has an effect. In Uganda, Kilian et al. (1999) reported the 
existence of a close correlation between peak of rainfall and peak of malaria 
incidence with a time lag of 2-3 months between them. In a study conducted 
in central Ethiopia, Tulu (1996) reported that a rise in monthly mean 
minimum temperatures 2 and 3 months earlier was the strongest predictor of a 
rise in incidence. In the present study, the inclusion of minimum temperature 
of 2 or 3 months earlier did not improve the basic model and the effects were 
not significant whereas the effect of minimum temperature of previous month 
(already in the model) was strongly significant. 

Figure 5.3 Goodness-of-fit of the model (measured in R2 values) as a function of 
mean monthly number of Plasmodium falciparum cases in each sector. 
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To test whether changes in the weather variables have different effects on 
incidence in highlands and lowlands, we carried out a stratified analysis by 
dichotomizing altitude into high (>1,750m) and low (�”1,750m) and including 
in the model interaction terms between meteorological and the dichotomized 
altitude variables. The altitude variable and all the interactions with the 
weather variables did not have significant coefficients, and the inclusions did 
not improve the basic model; the main results of the study remained 
unchanged. This is probably due to either absence of difference in effects of 
meteorological variables at different altitudes or due to the already included 
temperature variables in the model as temperature is strongly negatively 
correlated with altitude, thus indirectly taking account of the effect of altitude. 

Climate-based distribution of malaria transmission and infection risk 
models for Africa has been proposed (Craig et al. 1999) and spatially 
predictive models have been prepared for epidemic-affected areas of Africa 
(Cox et al. 1999). The present study has indicated how the association 
between some meteorological factors and incidence may be modeled in a 
continuing effort to develop epidemic early warning systems in highland areas 
for temporal prediction. 

Satellite-derived remote sensing (RS) data are potentially useful for 
monitoring malaria epidemics, although in some cases they may not provide 
accurate spatial proxies to actual ground meteorological measurements. The 
relative accuracy of RS and spatial interpolation (SI) of data from 
meteorological stations has been assessed for the prediction of spatial 
variation in monthly climate across Africa (Hay and Lennon 1999). It has 
been found that SI was a more accurate predictor of temperature, whereas RS 
provided better surrogate for rainfall. On the other hand, it has been shown 
that Normalized Difference Vegetation Index (NDVI) in the previous month 
correlated consistently with malaria incidence across three sites in Kenya (Hay 
et al. 1998). Although there is obviously no direct causal link between NDVI 
and malaria cases to use it as a variable in the current model, the relationships 
between this and other RS data, ground meteorological records and malaria 
incidence in the highlands need to be further investigated, for possible use in 
similar models. A detailed study has been initiated to investigate such 
relationships with epidemic malaria in four highland districts in Kenya and 
Uganda, as part of the Highland Malaria Project (HIMAL) 
(www.himal.uk.net). 

The present analysis showed that a statistical model based on theoretical 
reasoning is a good starting point to understand the role of abnormal weather 
variables in triggering epidemics in the highlands or highland fringe areas, and 
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that the impact of the effects of these variables in terms of morbidity outcomes 
may depend on several factors including communal immunity and number of 
pre-epidemic parasite reservoirs in the population. 

Prediction of incidence several months in advance will require major 
adaptation of the current model, for example, by making use of predicted 
values of the predictor variables themselves. However, it is anticipated that the 
accuracy of such prediction would deteriorate after a few months, compared to 
the (already moderate) performance of one month prediction. Further 
validation is also needed by fitting the model to new data sets to estimate 
random effects by using optimal estimates of the fixed parameters. Ways to 
improve forecasts by making use of past patterns of incidence and other 
variables and/or by combining seasonality and weighted forecasts of different 
methods in relation to population immunity levels are currently under 
investigation. In terms of prediction of malaria incidence using the basic 
model, although the main contribution comes from previous month•s 
incidence, the weather parameters included are highly significant and values 
of their coefficients meet our expectations. Also, we have demonstrated that 
inclusion of maximum temperature is not important at all. Nevertheless, the 
study shows that prediction rules derived from simple and straightforward use 
of monthly weather variables alone might not produce accurate forecasts. In 
addition, it may be important to study the weather-malaria relationships in 
some more details using time series of weather, morbidity and entomological 
variables at intervals of less than a month. The modelling approach used in 
this study has shown the most important variables that need to be considered 
in developing a malaria epidemic early warning system in areas where 
communities are at risk of sudden increase in transmission due to slight 
changes in the precipitating factors.  
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6.1   Summary 

Malaria epidemics affect many highland and semi-arid areas, often resulting in 
high morbidity and mortality of the largely non-immune populations. Most 
interventions to prevent or contain epidemics are associated with challenges 
facing countries with limited resources. Effective prevention is particularly 
difficult in the highlands, where predictive accuracy of indicators is not 
sufficiently high to allow decisions involving expensive preventive measures 
such as indoor residual spraying of insecticides. Current advances in 
geographical information systems have proved useful in stratification of 
highland areas to guide selective targeting of interventions, including barrier 
application of insecticides in transmission foci to protect spread of infection. 
In arid areas, early warning methods based on seasonal climate predictions 
have been recently proposed based on a strong association between rainfall 
and epidemic events. Response to malaria epidemics should focus on early 
recognition of epidemics and rapid deployment of mass drug administration or 
mass fever treatment using relatively inexpensive artemisinin-based 
combination antimalarials such as artesunate-amodiaquine. Vector control 
measures including indoor residual spraying should be recommended only if 
abnormal transmission is anticipated with high probability and if such 
measures can be selectively implemented at an early stage of an outbreak. 
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6.2 Introduction

Epidemic malaria continues to be a major threat to several areas in Africa, the 
Americas, Asia, and some parts of the Middle East (Nájera et al. 1998; 
WHO/RBM 2001). The most affected regions are highlands and arid areas 
where populations lack effective immunity. Rapid response is essential to 
reduce the adverse consequences of epidemics. This is possible where 
effective surveillance systems are in place for close monitoring of disease 
incidence for early recognition of anomalous situations. 

Early warning systems prior to the stages when increases in disease 
incidence are obvious may potentially be useful to reduce disease burden 
resulting from epidemics. However, there are a number of challenges 
associated with the accuracy of early warning or detection methods, and the 
associated decisions on interventions. These will be discussed in subsequent 
sections within the context of current research findings relevant to epidemic 
malaria and capacities of epidemic-prone countries in implementing the 
interventions.

6.3   Highlands and semi-arid areas 

Areas that are usually at risk of malaria epidemics can be classified as either 
highlands or (semi-) arid desert fringes. In most cases, epidemics follow 
abnormal weather conditions, often in combination with other causes, 
including increased resistance of the parasite to antimalarial drugs, population 
movement due to seasonal labour and civil unrest, and reduced malaria control 
operations, in particular the cessation of regular vector control (Molineaux 
1988).

In highland areas, transmission is unstable due to fluctuations in 
temperatures which are normally low (Cox et al. 1999). Temperature affects 
the duration of the sporogonic development of the Plasmodium parasite within 
theAnopheles vector and the development, survival and feeding frequency of 
the vector. Most of the epidemics affecting highlands that support short, 
annual, transmission are superimposed over normal seasonal increases, a 
phenomenon that makes early detection difficult. Other areas experience 
occasional transmission in specific years with more pronounced levels of 
morbidity and mortality, and significant spatial and temporal variations 
(Abeku et al. 2003). On top of the explosive epidemics, highland areas in 
Africa have also exhibited an increasing trend of malaria transmission in 
recent years (Shanks et al. 2000). This trend has significant implications for 
choosing response mechanisms. 



Chapter 6 

96

Arid or desert fringe areas are characterized by warm climate, and 
abnormal malaria transmission is associated with anomalous rainfall causing 
increased vector breeding and survival. In Botswana, more than two-thirds of 
the variability observed between years in malaria incidence during January-
May could be explained by variation in rainfall during December-February 
(Thomson et al. 2005). A major epidemic that affected arid areas in north-
eastern Kenya in January-May 1998 was shown to have been caused by 
abnormal rainfall and floods during November-December 1997 (Brown et al.
1998). In these areas, monitoring of rainfall can provide a fairly accurate 
forecast of transmission risk (Grover-Kopec et al. 2005; Thomson et al. 2005; 
Thomson et al. 2006). 

6.4   Preventive interventions 

Response actions can be triggered following early warning or detection signals 
at different lead times, ranging from months to weeks, based on the nature of 
the indicators used (WHO/RBM 2001; WHO 2004). The type and targets of 
interventions depend on the forecast probability, available resources and the 
timing of the events or available lead time. In most cases, highly accurate 
forecast is not possible as yet (e.g. in highlands); hence emphasis should be 
placed on improving surveillance for early detection of abnormal incidence to 
minimize delays in responding (Teklehaimanot et al. 2004). 

Control programmes are usually faced with uncertainties regarding 
decisions on whether routine (seasonal) preventive measures should be 
employed in areas known to be at risk due to their geographic characteristics, 
or alternatively, whether developing mechanisms for rapid response is a better 
strategy. In epidemic situations, sound decisions have to be made rapidly, 
while at the same time resources have to be used economically. Regular IRS 
on a yearly basis may be an unnecessary waste of resources in most highlands 
with substantial inter-annual variability of incidence. The obvious issue in 
applying IRS on an annual basis is therefore weighing the risk of wasting 
expensive resources against the probability of abnormal transmission. In 
Madagascar, annual IRS was restored during 1993-98 to reverse the spread of 
epidemic malaria that reappeared following re-colonization of the central 
highlands by A. funestus, which previously disappeared following effective 
control campaigns (Jambou et al. 2001; Curtis 2002; Romi et al. 2002). After 
5 years of spraying DDT mostly in areas between 1000 m and 1500 m 
altitude, vector density and malaria prevalence rates were significantly 
reduced. Annual IRS campaigns in the 1950s in the epidemic-affected 
highlands of Kenya have also produced similar results (Roberts 1964; Roberts 
1964). Planning selective application of insecticides for a limited number of 
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years in areas most at risk of unstable transmission, followed by focal use as 
and when required, is probably worth considering, in particular in areas 
bordering endemic lowlands or in transmission foci in valleys in the 
highlands.

Valleys in highlands have been repeatedly shown to be the source of 
infection for surrounding populations in a number of studies. A survey in an 
altitudinal transect in the Usambara mountains in Tanzania has shown the 
importance of local topography in explaining variations in splenomegaly 
among residents (Balls et al. 2004). Not surprisingly, altitude correctly 
predicted 73% of households where an occupant had an enlarged spleen or 
not. Inclusion of land where water is likely to accumulate within 400 m of 
each household significantly improved predictions in areas between 1000 m 
and 1200 m altitude where malaria is unstable. In western Kenyan highlands, 
indoor density of vectors has been shown to be negatively associated with 
distance from swamps (Minakawa et al. 2004). On the other hand, human 
activities such as brick-making have created important breeding sites for 
anopheline vectors (Carlson et al. 2004). A spatial analysis of the distribution 
of P. falciparum in the highlands of Kenya has indicated that prevalence of 
infection and parasite densities both decreased with distance from the valley 
bottoms (Munyekenye et al. 2005). These foci maintain low levels of 
transmission through the dry periods and are a potential source of infection 
when weather and other conditions favour widespread outbreaks in 
surrounding highlands. Selective (annual) spraying of these valley bottoms 
and areas in the vicinity of man-made transmission sources may provide 
protection to the populations in the highlands. 

The potential use of geographical information systems (GIS) and remote 
sensing (RS) techniques to map transmission foci and risk factors and to guide 
targeting of interventions has been extensively reviewed (Hay et al. 2000; 
Myers et al. 2000). Spatial epidemic risk maps have been proposed for 
highland areas in the Horn of Africa and East Africa based on the climate 
profiles of epidemic-affected localities (Cox et al. 1999). Although static 
spatial maps are useful for general stratification of areas and have been used to 
design regular interventions (e.g. annual IRS) in countries such as Madagascar 
(Jambou et al. 2001), South Africa (Booman et al. 2000) and India (Singh et 
al. 1990), different geographic areas have been shown to be at risk of 
epidemics in different years based on prevailing conditions (Abeku et al.
2003).

Several international collaborative efforts have been initiated in the past 
few years to develop and test temporal risk maps based on rainfall anomalies 
using remote sensing technologies, with special applicability in arid areas 
(WHO 2002; Grover-Kopec et al. 2005). Rainfall anomaly maps that are 
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continually updated every 10 days are now available over the Internet from the 
web sites of the Famine Early Warning Systems Africa Data Dissemination 
Service (http://igskmncnwb015.cr.usgs.gov/adds/) and the International 
Research Institute for Climate and Society http://iridl.ldeo.columbia.edu/
maproom/.Health/.Regional/.Africa/.Malaria/). The operational use of these 
technologies for early warning of transmission and selective application of 
preventive interventions and preparedness interventions is yet to be fully 
evaluated, although encouraging results have been documented in southern 
Africa, especially in Botswana (WHO 2002; DaSilva et al. 2004; Grover-
Kopec et al. 2005). Following the high predictability of inter-annual variations 
in malaria incidence provided by rainfall variability in Botswana (Thomson et 
al. 2005), an early warning system with a longer lead time was proposed, 
which provides probabilistic forecasts of anomalously high or low incidence 
in the desert-fringe setting based on seasonal precipitation forecasts from a 
multi-model ensemble climate predictions (Thomson et al. 2006). Although it 
has been claimed that the system can add up to four months of warning over 
methods using observed precipitation, its sustainable applicability to target 
preventive measures remains to be seen. 

In highlands, monitoring temperature anomaly can provide crude 
forecasts.  Studies carried out using data from Ethiopia indicate that major 
epidemics in the 1980s and early 1990s were significantly more often 
preceded by a month of abnormally high minimum temperature during three 
months before the onsets than would be expected by random chance (Abeku et 
al. 2003). Similarly, in Zimbabwe, temperature was found to be associated 
with severity of epidemics (Freeman and Bradley 1996). Studies involving 
concomitant longitudinal follow-up of weather patterns, vector densities and 
malaria incidence are currently on-going in highland sites in Kenya and 
Uganda to describe the mechanisms of epidemics (Abeku et al. 2004).   

On the other hand, a number of studies have shown the association of 
epidemic malaria with El Niño Southern Oscillation (ENSO) events in many 
parts of the world (Kovats et al. 2003). For example, analysis of malaria data 
from Colombia for the period 1980-1997 appears to indicate that El Niño 
events intensify the annual seasonal transmission cycle (Poveda et al. 2001). 
Prediction based on ENSO indicators may prove useful for the purpose of 
ensuring availability of resources at national levels, in particular drugs and 
insecticides, as it provides relatively long lead times (WHO 2004). 



                Response to malaria epidemics                                        

    99 

6.5   Rapid assessment 

Capacity to detect abnormal transmission at its early stages is essential for 
effective and rapid containment of epidemics. An important aspect of such a 
capacity is the existence of an efficient disease surveillance system. It has 
been demonstrated that a computer-assisted, weekly sentinel surveillance can 
be set up at district levels and early detection of epidemic events is technically 
feasible (Abeku et al. 2004). 

Preparatory actions that have to precede the actual interventions include 
confirmation of the outbreak reports, assessing the magnitude and 
geographical extent of the increase, prioritising areas, and deciding on the 
types of interventions required. These steps, however trivial they might seem, 
are nevertheless essential and have to be taken within the shortest possible 
time. In most cases, simple rapid assessment methods are sufficient to make 
the necessary decisions. As an example, in an epidemic that affected Uasin 
Gishu District in Kenya, school absenteeism was used as an indicator to 
determine priority areas for mass fever treatment (Some 1994). 

More advanced techniques that are economical, powerful and rapid can 
also be implemented, especially if sampling procedures are adopted in 
advance of an epidemic event. Lot quality assurance sampling (LQAS) with 
single- and double-sampling plans has been proposed for surveys involving 
determination of interventions in communities that deserve priority actions in 
terms of their disease prevalence (Lemeshow and Taber 1991). This method 
involves choosing a combination of sample sizes and a critical prevalence 
level beyond which an intervention is recommended, with the required 
statistical power and critical level. For example, in Madagascar, this procedure 
was tested by comparing it to a conventional sampling plan to select areas 
where prevalence rate among school children was %15�t 1, in which case the 
area was to be a candidate for some specific action (Rabarijaona et al. 2001). 
A plan in which 2 individuals were found positive among a random sample of 
36, denoted as (36,2), classified communities correctly with 100% sensitivity 
and 94% specificity. Rapid diagnostic tests (RDTs) can be used in such 
surveys (WHO 2004). 

The use of IRS for epidemic control should only be considered if 
continuation of transmission is anticipated over a long period (e.g. epidemics 
that occur before the rainy season or at the start of the transmission season) 
                                                  
1 A second threshold value of %5�� was also used to determine areas with low 
prevalence. 
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and if it can be implemented rapidly at the early phase of an epidemic. 
However, the main challenge is that, currently, few countries have the 
capacity to organize and implement IRS. 

There is no sufficient evidence to use insecticide-treated nets (ITNs) for 
epidemic prevention and control, so their use is limited to situations where 
their availability and rapid implementation is possible „ such as in refugee 
camps (WHO 2004). Larval control may have a limited role in some 
situations, for example, in arid areas, with well-defined mosquito breeding 
sites after rainy periods, or in man-made sites such as wells and water storage 
tanks. Larviciding is probably effective where water bodies cannot be 
eliminated due to essential economic activities such brick-making  (Carlson et 
al. 2004).

Occasionally, widespread epidemics affect large geographical areas such 
as those experienced in the highlands of Ethiopia (Fontaine et al. 1961; Abeku
et al. 2003). In such situations, it would be difficult, if not impossible, to carry 
out a large scale preventive IRS operations even if an early warning system is 
in operation. Health services need to focus on more feasible measures such as 
strengthening preparedness by stocking drugs and diagnostic materials, close 
monitoring of changes in morbidity, sensitising communities to seek prompt 
treatment, classifying areas according to their risk levels and making 
contingency plans to rapidly deploy mobile treatment teams. 

6.6   Mass drug administration and mass fever treatment 

Mass drug administration (MDA) is the presumptive treatment of the entire 
affected population with a therapeutic dose of an antimalarial, whereas mass 
fever treatment (MFT) refers to treatment of febrile cases only. These 
approaches usually involve deployment of mobile treatment teams in affected 
areas, and availability of sufficient and appropriate antimalarials. 

Where reliable early warning systems are not in place due to technical, 
logistics or other reasons, stocking of contingency antimalarials in health units 
across areas at  risk prior to known transmission seasons can be an alternative 
approach. Epidemics tend to occur during those seasons, which mostly follow 
the rainy period (Abeku et al. 2003). Areas historically known to be most at 
risk should be identified from reports and/or based on suitability of 
environmental characteristics for unstable transmission to prioritize health 
units for drug distribution. If available, spatial maps may be utilised for 
classification of areas, including those of the MARA (Mapping Malaria Risk 
in Africa) or Highland Malaria Projects (Cox et al. 1999; Craig et al. 1999). In 
the absence of usable maps, there are proposed proxy measures such as adult-
to-child ratios of patients attending health facilities, especially admission 
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cases. This approach has been used in Kenya to study stability of malaria in 
the highlands (Hay et al. 2002). Admission cases were classified into two age 
groups: below 15 years of age (•children•) and 15 years and above (•adults•). 
Based on the age structure of the developing country populations, the adult-to-
child ratio of hospital admissions approached unity for an unstable malaria 
situation, where adults are as likely as children to be at risk of severe and 
complicated malaria. 

MDA has been used alone or in combination with IRS for the prevention 
and control of malaria in various settings. The primary objective of this 
measure in epidemic control context is to reduce the human reservoirs of the 
parasite by reducing infectiousness to vectors, while providing at the same 
time curative and prophylactic benefits to treated individuals. Antimalarials or 
combinations of antimalarials with schizontocidal and gametocytocidal effects 
should be used to have the desired effects on transmission. In the past, 
primaquine was given in combination with 4-aminoquinolines for its effect on 
gametocytes. In an endemic area in Tanganyika (part of the present day 
Tanzania), the repeated use of amodiaquine and primaquine combination 
significantly brought down transmission by reducing the sporozoite rates  
(Clyde 1961). Repeated MDA with proguanil, a prophylactic antimalarial with 
gametocytocidal activity, has been shown to have a significant impact on 
transmission in the highlands of western Kenya in the late 1940s (Strangways-
Dixon 1950). Although many MDA trials failed to interrupt transmission, 
most succeeded in considerable reduction in parasite prevalence, and some 
showed marked transient effects on morbidity and mortality (von Seidlein and 
Greenwood 2003). There were, however, deficiencies in study design, as 
many of the early studies relied on comparing intervention and control 
villages of insufficient sample sizes. 

On the other hand, using MFT as an important rapid measure has been 
proposed for epidemic control rather than using MDA for the entire 
population (WHO 2004). Attaining a high coverage is crucial, and 
epidemiologically relevant questions in this regard include the practicality of 
diagnosing fever cases in emergency situations and whether a large enough 
proportion of the population can be treated in this way so as to have a 
considerable impact on transmission. In Ethiopia, the Ministry of Health 
guidelines recommend rapid sampling of households and determining the 
proportion of occupants with illness in the previous seven days; a cut-off value 
of 50% would then be used to decide whether to employ MFT or MDA  
(Abose et al. 1999). 

Recently, the introduction of combination therapy with artemisinin 
derivatives, which have been shown to have gametocytocidal effects led to the 
hypothesis that their use for MDA on a large scale might be a potential 
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malaria control measure (von Seidlein and Greenwood 2003). Artemisinin-
based combination therapy (ACT) drugs have been shown to have a moderate 
effect on transmission by reducing the duration of gametocyte carriage and the 
proportion of mosquitoes that are infected by carriers (Bousema et al. 2006). 
In The Gambia, children treated with the combination of chloroquine (CQ) 
and artesunate (AS) were significantly less infectious to mosquitoes than 
children treated with CQ alone (Drakeley et al. 2004). It was also found that 
treatment with the combination containing AS significantly reduced the 
prevalence and density of gametocytes, as well as the duration of gametocyte 
carriage, although the effect was transient as it did not prevent emergence of 
mature gametocytes at day 28 following treatment (Drakeley et al. 2004). 
Another study in an area with highly seasonal but intense transmission in The 
Gambia showed that MDA with a single dose of AS combined with 
sulfadoxine-pyrimethamine (SP) failed to interrupt transmission overall but 
incidence in treated villages was significantly lower than in the control 
villages in the first two months (von Seidlein et al. 2003). This failure of 
MDA to interrupt transmission was attributed to the high entomological 
inoculation rate in the area. Nevertheless, it appears that MDA with a full 
therapeutic dose of ACT can play a major role in the control of epidemics and 
in the control of malaria in areas with short transmission season (von Seidlein 
and Greenwood 2003). 

Treatment of fever cases, whether at health facilities or in epidemic 
control, presents the challenge of balancing costs in time and other resources 
on the one hand and accuracy of clinical diagnosis on the other. This 
diagnostic method is particularly less accurate in areas of low endemicity 
compared to highly endemic areas (Chandramohan et al. 2001), although there 
is a tendency of an increase in sensitivity and specificity during transmission 
seasons (Muhe et al. 1999). As a result, over-diagnosis of malaria in areas of 
low transmission remains a major problem, especially when expensive ACT 
drugs are to be used for treatment of fever cases. Furthermore, surveillance 
systems that rely entirely on data generated from health facilities without 
laboratory confirmation can lead to false epidemic alerts (unpublished data). 

RDTs can be easily implemented in field conditions with minimal 
training. Their cost-effectiveness in epidemic situations in relation to the use 
of ACT has been recently compared with presumptive treatment using a 
model based on actual cost data (Rolland et al. 2006). The study showed that 
the threshold prevalence beyond which the RDT-based treatment becomes 
more expensive than presumptive treatment is 21% for artesunate-
amodiaquine (AS-AQ) and 55% for artemether-lumefantrine. During 
epidemics, the percentage of highland populations infected or incubating 
infection is usually higher than the threshold for AS-AQ. A recent study in 
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western Kenyan highlands showed that nearly 44% of the sampled population 
were infected over a 10-week period during an epidemic, with adults and 
children similarly affected (John et al. 2004). These observations indicate that 
relatively less expensive ACT drugs such as AS-AQ can be cost-effectively 
used in MFT without laboratory confirmation. For large scale epidemics when 
most of the population are either infectious or incubating the infection, MDA 
with such relatively cheaper ACT distributed once or repeated within 1-2 
weeks can have a significant impact on transmission. 

The choice of treatment sites largely depends on the magnitude of the 
epidemic. Treatment at existing health facilities should be given special 
attention, and national and district health services should ensure that essential 
drugs for the treatment of both uncomplicated and severe malaria are in stock. 
In many situations, mobile treatment centres will be required to cover rural 
areas far from health facilities. It has been demonstrated that rapid deployment 
of manpower and logistics is feasible once the appropriate resources are in 
place, as in, for example western Kenya, where mobile treatment teams could 
be assembled in one week through a provincial health system to control an 
outbreak in Uasin Gishu District (Some 1994). 

6.7   Conclusion 

Malaria epidemic prevention and control requires rapid and coordinated 
efforts. While many countries still need to improve their technical and 
logistics capacity to deal with high demands in resources, recent technological 
advances in spatial analysis and risk-mapping, availability of satellite-derived 
rainfall estimates and anomalies, computer-assisted surveillance systems and 
effective antimalarials should be utilised for better targeting of interventions to 
effectively contain epidemics. In arid areas, early warning methods using 
actual or probabilistic prediction of seasonal climate have been proposed for 
implementation of prevention measures. Research is on-going to develop 
better predictive models for epidemics in highland areas, but monitoring 
anomalies in weather patterns, especially minimum temperatures, may provide 
good indicators. IRS and other vector control measures may be used in special 
situations where selective and timely application is feasible. The use of 
relatively inexpensive ACT drugs such as AS-AM in MDA or MFT should be 
a primary strategy for rapid transmission reduction in epidemic situations. 
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The main objectives of this thesis were to understand the environmental 
factors that trigger malaria epidemics, to test methods of epidemic forecast, to 
develop a new surveillance system for early detection of epidemics, and to 
discuss and recommend epidemic response strategies suitable for areas at risk 
of unstable transmission.  We focused on African highlands, paying particular 
attention to three countries: Ethiopia, Kenya and Uganda. 

In receptive highland areas, epidemic malaria characteristically exhibits a 
dramatic increase in morbidity and mortality, leaving little time to organize 
response measures by health services unless a strong surveillance mechanism 
is in place for early recognition of abnormal transmission. Detection of 
epidemics in their early stages is an important service that needs to be set up 
in areas known to be at risk of unstable transmission. Furthermore, effective 
preventive measures are possible only if there are systems that would help 
health services to anticipate abnormal transmission. 

In subsequent sections, we will discuss how the research questions posed 
under Chapter 1 were addressed in the studies carried out as part of this thesis. 
Results of some additional analyses of data collected from epidemic-prone 
areas will also be presented. We will answer the research questions in the light 
of the findings and discuss their implications within the overall context of 
research on epidemic surveillance and response. We will also present 
additional results related to some of the challenges of setting up sentinel 
surveillance systems and studies on proxy measures for dynamic communal 
immunity and their potential use in incidence prediction models. Due to the 
implications of the current upward trends of malaria in some areas, we will 
discuss the impact of long-term climate change and climate variability on 
malaria in the highlands. Finally, we will provide general conclusions and 
recommendations in relation to epidemic prediction, detection, preparedness, 
prevention and control. 

7.1   Answering the research questions

What is the state of the art of malaria epidemic early warning and the 
potential use of computer-based sentinel surveillance for early detection? 

There has been a significant progress in the development of malaria epidemic 
early warning systems, and especially detection of epidemics at their early 
stages is technically feasible using computer-based sentinel surveillance 
(Chapter 2). We have described a new district-based sentinel surveillance 
system comprising weekly reporting and automated analysis which we have 
been piloting in four East African highland districts. As part of this 
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computerized system, we developed a new algorithm for the detection of 
abnormal incidence after removing trends from the baseline. The site-specific 
expected incidence and threshold values are allowed to change from week to 
week based on seasonality of transmission and from year to year based on 
underlying trends. The baseline is also allowed to be dynamically changing in 
length as more data is realized, resulting in a novel approach to detect 
anomalies even in the presence of potential biases such as gradual changes in 
the number of patients presenting at sentinel sites, which are not directly 
related to changes in transmission intensity and may be caused by other 
factors including new health units in the vicinity of the sites or changes in 
population density. 

The system has the capacity to produce automated analysis reports on a 
weekly basis which can then be readily viewed by health staff at district levels 
and used for action. Analysis and interpretation of surveillance data has been 
decentralized and computer-generated reports are disseminated by the district 
health management teams to stakeholders including central level Ministries of 
Health. The previous surveillance systems of epidemic diseases in most 
countries relied on transmission of manually compiled data to central 
Ministries of Health, which were hardly used for early detection of outbreaks 
due to severe delays in delivery of reports and analyses. We introduced a 
weekly system of reporting and analysis to increase the sensitivity of the 
epidemic detection system for timely control measures. The use of data from a 
few selected sentinel sites rather than too many sites (some of which might 
have similar epidemiological characteristics) also increased efficiency in terms 
of data entry and supervision for quality control. The selected sites are 
supposed to deliver weekly reports consisting of daily outpatient and inpatient 
data to the district level where they are entered into a computer for 
comprehensive automated analysis.  

The performance of different statistical methods has been compared in 
terms of their sensitivity and specificity in epidemic detection (Hay et al.
2002). None of the previously implemented methods possess some of the 
important features of the new system, especially those related to de-trending 
of the temporally changing baseline data. One of the main technical 
constraints of the new system is the accuracy of clinical diagnosis of malaria 
cases, as it is based on data generated through this process rather than the 
scanty data on microscopically confirmed cases. The potential use of the rapid 
diagnostic tests in sentinel sites for surveillance purposes should be further 
investigated to address this issue. The system also requires some set-up costs 
in each epidemic prone district, including compilation of baseline data and 
installation of computer hardware and software.  
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Developing the technical and logistical capacity of districts to optimally 
use the data collected at selected health facilities, essential for timely 
recognition of abnormal transmission and taking prompt action, has been 
shown to be feasible. Ways of integrating the new approach with the overall 
epidemic disease surveillance activities in the health services and its wider 
scale implementation is being explored. 

Developing epidemic forecast capacities of countries where preparedness 
and preventive measures can reduce the morbidity and mortality burden 
resulting from unstable transmission remains to be a major focus from public 
health point of view. The effectiveness of epidemic response measures 
depends on the degree of preparedness of health services to detect abnormal 
signals, the actual lead time left for taking control measures and their capacity 
for implementation within the remaining time (Nájera 1999). Practical 
epidemic forecasting on the basis of scientific studies was probably 
implemented first in India in the 1920s and 1930s (Swaroop 1949). The 
forecasting method developed by C. A. Gill was based on information 
pertaining to rainfall, enlargement of spleen among school children, economic 
conditions and the variability of incidence in individual localities recorded in 
previous years. 

Research is still on-going to develop robust forecast models based on 
environmental variables. The use of climate forecasts, rather than observed 
weather data, would give longer lead times for preparedness. However, it has 
been claimed that seasonal climate forecasts did not anticipate heavy rainfall 
which preceded an epidemic in the western Kenyan highlands in 2002 (Hay et
al. 2003). Accuracy of seasonal climate forecasts varies according to 
geographical region, season and year, and such forecasts cannot be completely 
accurate and should always be issued in probabilistic terms as above, below, 
or near normal (Thomson et al. 2003). More recently, a system of forecasting 
probabilities of anomalously high and low incidence of malaria based on 
seasonal climate predictions has been implemented in Botswana (Thomson et
al. 2006). 

As part of the HIMAL Project, high temporal resolution data on 
confirmed cases of P. falciparum malaria, entomological parameters including 
indoor densities of the main vectors and meteorological data have been 
collected on a longitudinal basis to closely study factors responsible for 
triggering epidemic malaria in the highlands. Detailed statistical studies are 
being carried out on the associations between these parameters and their 
interactions with dynamic communal immunity, to develop incidence 
prediction models which could be used for dynamic risk mapping.  



    General discussion   

109

How helpful are time series methods in forecasting malaria epidemics? 

A relatively simple time series method based on adding to •futureŽ expected 
seasonal values the average deviation of incidence during the previous three 
months from month-specific expected means gave the most accurate forecasts, 
especially when the means were calculated based on three years of baseline 
data (Chapter 3). We presented a comparative study of using various time 
series methods for forecasting incidence of cases. Statistical sophistication 
was found to be not always desirable and may, contrary to expectations, lead 
to inferior performance in terms of accuracy when past morbidity patterns 
alone are used for forecasting. We found that a special seasonal adjustment 
method produced better forecasts compared to the more advanced ARIMA 
technique. This is most probably due to over-fitting of data, which means that 
simpler methods are robust to slight chance variations. The best-performing 
seasonal adjustment method uses the expected mean for any specific month 
together with the average deviation of the observed incidence values during 
the last three months from their expected values. 

Like all univariate methods, the so-called Box-Jenkins approach (Box 
and Jenkins 1976) to time series analysis (or ARIMA modelling) does not take 
into account the biological basis of the process that gave rise to a series. It is 
rather based on attempts to identify best-fitting models to describe a past 
pattern. One of the basic assumptions is that the past pattern will not change 
during the forecast period. This assumption cannot always be met. On the 
other hand, most malaria series have strong seasonal components which can 
be adequately handled by ARIMA models through seasonal differencing. As 
stationarity is an essential requirement in building ARIMA models, most 
malaria series are made stationary after applying both seasonal and lag-1 
differencing. However, differencing can have a great effect on the behaviour 
of the forecasts. It has been observed that for seasonally differenced data with 
lag-1 differencing, the long-range forecasts will follow a linear trend, 
extrapolating the trend at the end of the data series if no constant was fitted 
(Makridakis et al. 1998). If the constant has been included, the long-range 
forecasts will follow a quadratic trend. In either case, the forecast variances 
will diverge very quickly and as a result, prediction intervals will also diverge 
quickly. It is recommended that differencing should be done as few times as 
possible.

Using de-trended series for the calculation of the expected seasonal 
values in the best performing model may produce better forecasts. Future 
expected values can also be made to depend on the predicted underlying trend 
using linear extrapolation. The seasonal adjustment method may be used as a 
probabilistic risk prediction method by calculating confidence (or prediction) 
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intervals around the forecast values. This may be done by calculating 
separately for each lead time the root mean squared errors from a •trainingŽ 
data set. The 95% confidence interval will then range between tt EF 96.1��
and tt EF 96.1�� , where tF  is the forecast value for time t  and tE is the 
corresponding root mean squared error. 

The best performing seasonal adjustment method may be used in 
combination with other forecasting methods based on weather variables. It has 
been shown that forecasts calculated by taking (weighted) averages of values 
obtained from two or more methods are more accurate that the individual 
forecasts (Makridakis et al. 1998). The seasonal adjustment method may also 
be readily implemented in areas where other predictor variables are lacking as 
a rough guide for preparedness. In all cases, it is important to bear in mind the 
basic implicit assumption of this method that recent deviations from the 
expected means will continue to be observed in the future months. 

How is variation in epidemic risk linked with environmental factors? 

A study on the spatial and temporal distribution of epidemic events in Ethiopia 
indicated that epidemics affected different areas in different years and 
abnormal increase in meteorological variables (especially minimum 
temperature) played a major role in triggering epidemics (Chapter 4). Studies 
are on-going to understand in more detail the association of epidemic-related 
environmental and entomological factors. The general framework of this 
association has been proposed to incorporate meteorological, entomological 
and confirmed morbidity variables as well as a potentially useful proxy for 
dynamic immunity (Chapter 2).  

Close inspection of past morbidity records to identify epidemic years, and 
then studying what was particular about the weather patterns in the months 
that preceded the epidemics could provide a basis for monitoring the next 
occurrence of similar combination of factors that may herald a new epidemic 
(A. Beljaev, personal communication). Our analysis of recorded epidemics in 
relation to weather anomalies in preceding months has indicated that abnormal 
increase in minimum temperature was an important determinant (Chapter 4). 
In another study carried out in Ethiopia, it was found that minimum 
temperature was associated with malaria cases in cold districts, whereas in 
most of the hot districts the association was not significant  (Teklehaimanot et 
al. 2004). In the highlands of Rwanda, minimum temperature predicted 
incidence of cases best at higher altitudes where there was a remarkable 
increase in malaria (Loevinsohn 1994). In Madagascar, minimum temperature 
during two months at the start of the malaria transmission season accounted 
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for most of the variability in incidence between years, suggesting the 
importance of using data corresponding only to months when the human-
vector contact is greatest (Bouma 2003). 

The 48 reported epidemic episodes from the different areas in our studies 
for which data was available between September 1986 and August 1993 were 
not associated with abnormal rainfall or maximum temperature. However, 
there is a possibility that abnormally high rainfall could have caused 
epidemics in arid and warm lowlands. On the other hand, an abnormally high 
rainfall following the El Niño event of 1997-98 has caused epidemics in the 
highlands of Uganda (Kilian et al. 1999; Lindblade et al. 1999). In Ethiopia, it 
has been reported that rainfall was associated with increase in malaria cases in 
hot areas at relatively short lags, while a delayed association was observed in 
cold districts (Teklehaimanot et al. 2004). The use of rainfall data for early 
warning of epidemics, especially in arid areas such as in north-eastern Kenya, 
is currently feasible through the use of remote sensing data provided through 
the African Data Dissemination Service of the Famine Early Warning System 
(Hay et al. 2001). We have also observed instances where epidemics of 
malaria affected some highland areas in southern Ethiopia as a result of a 
rainfall deficit following a drought condition (unpublished data). In the 
highlands, rainfall deficit can cause epidemics due to vector breeding in pools 
formed in river beds. 

Is biological reasoning useful in statistical modelling of environmental data 
for predicting malaria incidence? 

Statistical modelling of the effects of factors including weather variables, 
vector breeding, parasite development and population (communal) immunity 
based on biological relationships of these variables has provided an important 
platform for developing further models for prediction of malaria incidence 
(Chapter 5). We formulated a statistical model on the basis of assumptions 
that take into account the transmission dynamics of malaria incidence, 
including the effects of temperature and rainfall on the vectorial capacity and 
the varying degrees of health facility attendance by patients from areas with 
differing transmission intensity or communal immunity. This gave rise to a 
linear mixed model in which the incidence in the previous month entered into 
the model with area-specific coefficient (random effect) depending on the 
expected endemicity level. The external predictor variables (rainfall and 
temperature) were assumed to have fixed effects. The resulting linear mixed 
model included rainfall 2 and 3 months earlier and temperature in the previous 
month together with incidence in the previous month. This model explained 
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most of the variation in incidence and formed the platform on which more 
detailed models could be developed. 

The effects of environmental variables on malaria transmission dynamics 
are various and complex. Our model included only minimum temperature and 
rainfall and did not include other variables such as relative humidity. 
Increased humidity has been reported to have caused epidemics in Venezuela 
and Argentina (Onori and Grab 1980). It has been shown that variations in 
relative humidity can have a remarkable impact on the longevity of vectors. 
Mosquito survival probability has a very significant impact on malaria 
transmission as the parasite is more likely to complete the sporogonic cycle in 
long-living vectors. The entomological inoculation rate is indeed extremely 
sensitive to slight changes in the survival rate and the sporogonic cycle (Onori 
and Grab 1980). Laboratory studies have indicated that the interaction of 
temperature and relative humidity affects survival of A culcifacies in non-
linear fashion. Optimum longevity  was observed with temperatures of 25 oC-
30 oC and relative humidity of 60%-80% under laboratory conditions (Pal 
1943). As temperature increases beyond 25 oC, vector survival declines. While 
such an increase has a negative impact on survival on one hand, it has, on the 
other hand, a positive effect on transmission as increased temperature shortens 
the sporogonic cycle. There is also interaction between temperature, relative 
humidity and rainfall. Although our model sheds light on the importance of 
the approach of formulating a statistical model on the basis of biological 
assumptions, more research is needed to model all the different interactions 
and effects of environmental factors in detail. 

Our model has only partly accounted for the variations in immunological 
status of populations as the result of transmission intensity. The prerequisite 
for the occurrence of an epidemic is the existence of a large number of non-
immunes who would be clinically ill when infected. Epidemics are unlikely to 
affect populations living in highly endemic areas, where most people have 
well-developed immunity; therefore, there is an inverse relationship between 
endemicity and epidemicity (Nájera et al. 1998). Disturbance of a previously 
existing equilibrium of the ecological system consisting of interacting 
populations of the parasite, the vector and the human host will give rise to 
epidemic situations. Our study indicates that the dynamics of immunity should 
be incorporated in incidence prediction models. This will require further 
studies to select suitable parameters to measure immunity or its proxy. 
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How should malaria epidemic prevention and control be linked to epidemic 
risk assessments and what are the challenges? 

The various elements of epidemic risk monitoring need to be associated with 
available prevention and control options through probabilistic forecasts and 
related decision systems that take into account resource constraints (Chapter 
6). Several issues related to challenges facing health services in epidemic-
prone areas in terms of taking effective preventive and control measures have 
been discussed, including current needs for practical epidemic early warning 
and dynamic risk mapping models, the constraints posed by parasite resistance 
to traditionally inexpensive antimalarials, as well as other problems. 

Overall, the research outputs of this thesis have led to the recognition of 
the need to implement effective epidemic management systems. As the direct 
outcome of this research, at least two countries (Kenya and Uganda) have 
indicated their keen interest to extend the outputs of the new surveillance 
system and detection algorithm piloted in four of their districts to other areas 
at risk. 

Risk assessment and early detection of epidemic situations are necessary 
for any prevention or control measures to have a significant impact in 
reducing the morbidity and mortality consequences. In the context of 
decisions that may have important economic impacts, all epidemic response 
measures should be planned in line with probabilistic warning signals 
provided by risk monitoring activities. Selectiveness and timeliness of 
response is of great importance in countries with resource constraints. Our 
study shows that setting up of strong surveillance systems for early detection 
of epidemics is technically feasible. This will be useful for taking timely 
measures to contain outbreaks of limited geographical coverage, but in the 
case of a widespread regional or nationwide epidemic affecting large areas, a 
system for early warning at longer lead times will be necessary for 
comprehensive preparedness. This calls for the need to attach decision making 
processes to activities such as seasonal climate forecasts or monitoring El 
Niño conditions, and using suitable models developed on the platforms laid by 
this research and other studies. 

The use of satellite-derived and interpolated rainfall estimates (available 
through the Internet from the Southern Africa Development Community 
Drought Monitoring Centre, the Famine Early Warning Systems Network or 
the International Research Institute for Climate Prediction websites) has been 
recommended for malaria epidemic early warning (Connor et al. 1998; 
DaSilvaet al. 2004). Although these provide useful information on a near real 
time basis, the geographical scale for which the products are available is either 
too large to take into account local variations in malaria epidemiology or too 
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sophisticated for use at lower levels of the health service systems, thus making 
specific prevention and control measures difficult. An early warning of 
regional epidemics may be recommended using such data at national levels for 
preparedness, but such warning is not generally useful for taking specific 
preventive measures according to area-specific needs. 

Non-climatic factors should also be considered in developing epidemic 
early warning systems. Civil unrest and economic crisis in many developing 
countries are also factors that have contributed to increasing the risk of 
epidemics (Nájera et al. 1998). The increasing trend of malaria in the western 
highlands of Kenya might have been due to drug resistance of the parasite 
(Malakootiet al. 1998). Even brick-making, an important economic activity in 
western Kenya, has been linked to increased vector densities (Carlson et al.
2004).

Current evidence shows that epidemic forecast and risk mapping is 
potentially useful for preparedness and prevention but more research is 
required to fine-tune the available models and to develop robust systems with 
minimal inputs of variables. 

It would be essential to consider a number of factors that would 
determine the effectiveness of prevention of control measures and the 
challenges facing developing countries at risk of epidemics (Chapter 6). The 
most important of the current challenges is the requirement for stocking the 
significantly expensive ACT drugs for both mass fever treatment and patient 
management at health facilities, and the need for more developed capacity for 
selective vector control. 

Seasonal preparedness is also an important prerequisite for effective 
epidemic management. Many mesoendemic areas show seasonality of malaria 
mainly based on the seasonal patterns of rainfall, temperature and humidity. 
Experience shows that malaria epidemics in these areas almost always occur 
superimposed over the seasonal increase during the peak malaria season(s). As 
a result, it has been recommended that improved planning and preparedness 
before the seasonal cycles should be given emphasis. Together with national 
level early warning, this approach provides a feasible strategy for epidemic 
management in East African highlands (Hay et al. 2003). Although there are 
epidemic outbreaks that have affected some areas during non-malaria seasons 
(e.g. following drought conditions), it is important to correctly identify the 
usual start and end of the transmission season for each area for preparedness 
purposes or, in some cases, for regular preventive measures such as annual 
indoor residual spraying.  
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7.2   Challenges of epidemic surveillance 

Sentinel surveillance 

Sentinel surveillance has the advantage of reducing the workload of health 
staff (especially those at district levels) in terms of data entry and analysis, and 
hence increasing efficiency and accuracy in surveillance data management and 
reporting (Chapter 2). High quality data can be generated from a small, 
manageable number of health facilities (de Savigny and Binka 2004) and 
frequent supervisory support can be provided from the district levels. 

On the other hand, in a sentinel-based surveillance system, it is assumed 
that the selected health facilities are representatives of health facilities in the 
surrounding areas. However, this assumption may not always be met. Usually 
•catchment• areas represented by a sentinel site are epidemiologically 
heterogeneous. The epidemiology of malaria can greatly vary within short 
distances. This makes it difficult to delineate the geographical extent of an 
abnormal transmission during epidemic outbreaks, to determine coverage 
requirements for prevention or control. Furthermore, there may be inherent 
differences among health facilities. As an example of such differences, 
government-owned facilities have put in place user fees waiver schemes 
whereas non-governmental or private facilities often charge patients for 
services. User fee has been found to be an important determinant of the 
number of patients seen at health facilities (Yeneneh et al. 1993; Miguel et al.
1999; Adera 2003). Our experience in East Africa indicates that non-
governmental (mission) health facilities in fact see significantly fewer patients 
compared to governmental ones mainly because of the relatively high fees 
they charge, and many of them receive more admission (or in-patient) cases 
rather than outpatient cases. 

The new surveillance system relies on data from selected sentinel sites 
which were considered •representativeŽ of their surrounding areas within a 
district. The fact that malaria can exhibit high spatial variability within short 
distances means that extra care must be taken to ensure that sentinel sites are 
truly representatives of their surrounding area. Unless areas represented by a 
sentinel surveillance site are fairly homogenous in terms of the 
epidemiological pattern of malaria, it is often difficult to delineate the 
geographical extent of an outbreak. To address this problem, it may be useful 
to rapidly look at morbidity data from neighbouring non-sentinel health 
facilities, to see if there is similar rate of increase. Alternatively, (spatial) 
epidemic risk maps such as the one produced for Eastern African countries 
within the MARA/ARMA Project (www.arma.org.za) (Cox et al. 1999) can 
be a useful guide to determine epidemiological homogeneity, although the low 
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resolution of these maps makes it difficult to provide practical 
recommendations regarding the coverage of specific prevention or control 
measures. 

It is therefore essential to pay due attention to selection of sites early in 
the set of the surveillance system. One way of doing this is to objectively 
compare the historical morbidity patterns of data collected from several health 
facilities in the district. The similarity of the baseline patterns may be studied 
through spatial-temporal cluster analysis. There are a number of techniques 
available especially for spatial cluster analysis (Elliot et al. 2000). These 
might prove difficult to implement at district levels but there is a possibility of 
automating at least some of the essential steps, using software specifically 
designed for such purpose. 

Here, we propose a way of comparing malaria morbidity patterns in 
different health units. This method is based on the principle of clustering by 
calculating the (Euclidean) •distanceŽ between two time series and then 
determining their similarity (Ghosh 2003). The Euclidean distance between 
two n -vectors a  and b where ),...,,( 21 naaaa �  and ),...,,( 21 nbbbb �  can 
be defined as: 

� > � @2/122
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where ia and ib are relative incidence values in month i in health units aand
b , respectively, obtained by dividing log-transformed monthly incidence 
values by their overall mean as discussed in Chapter 3. The relative incidence, 
rather than the actual incidence values, should be used as the calculation of the 
distance and similarity between two or more series requires standardizing 
across the different series.

The similarity baS , between the two vectors can be then calculated as 
follows:

                  
2
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We will illustrate this procedure by using an example. Figure 7.1a shows 
monthly incidence of P. falciparum malaria seen at 6 malaria laboratories in 
north-western Ethiopian highlands during September 1986-August 1989. The 
relative incidence values with mean of 1 for each site are given in Figure 7.1b. 
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Figure 7.1  Monthly incidence (a) and relative incidence (b) of P. falciparum  cases 
seen at 6 sites in north-western Ethiopia, September 1986„August 1989, namely in 
Bahirdar (A), Koladiba (B), Debretabor (C), Addiszemen (D), Bichena (E), and 
Finoteselam (F). 
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The distance and similarity (expressed as a percentage) are given in 
Figure 7.2. It is clear that Sites A and F have similar pattern, irrespective of 
the fact that there are on average more than twice the number of cases seen in 
the former compared to the latter. Sites C and D have also similar pattern. 
These pairs may be grouped together and represented by one sentinel site 
(Figures 7.2b, 7.3). Which one of the pairs to choose as a site will depend on 
other factors such as geographical location. In this particular example, 4 
sentinel sites may be formed to monitor morbidity in the area. The obtained 
similarity figures may also be used in combination with other similarity values 
calculated from factors such as altitude, actual incidence levels and 
geographical proximity. Additional research is needed to find proper cut-off 
points of distance or similarity to test significant differences between sites. 

In a different approach, the number of sites that can be managed with the 
available resources may be determined a priori and similarities between two 
groups or sets may be calculated. This involves a more complicated 
procedure, especially when the number of health facilities under consideration 
is high. At the level where classification of health facilities is required based 
on their similarity, the first decision to be made is the manageable number of 
sentinel sites that can be handled with the available resources. 

Suppose k  is the number of sentinel sites for which data collection, entry 
and analysis can be handled. To classify the health facilities into k groups, it 
will be necessary to form all possible k  sets out of the universal set U , the 
total number of eligible health facilities. For example, if 3� U  and 2� k , 3 

different pairs of sets of health units can be formed, 321 ,, hhh : }{ 1h  and 
},{ 32 hh ; },{ 21 hh  and }{ 3h ; and },{ 31 hh  and }{ 2h . Then the (mean) relative 

incidence values should be calculated for each set as described above and in 
Chapter 3. The distance and similarity between the sets in each pair can then 
be calculated. Finally, the groups that are least similar will be selected. 
Suppose the similarity values are 0.60, 0.35 and 0.05, for the 3 pairs, 
respectively. The third pair represents sets which are the least similar. The 
sentinel sites to be selected will then be 2h  and either of 1h or 3h . The 
formation of sets will get more complicated as the number of health facilities 
increases and therefore this classification method may not be practical unless a 
specifically designed computer program is used to automate the computation 
process.
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Figure 7.2  Distance (a) and similarity (b) between different combinations of pairs 
formed from a total of 6 sites in north-western Ethiopia calculated from relative 
incidence data using equations 7.1 and 7.2, respectively (AxB = distance or 
similarity between Site A and Site B; see Figure 7.1 for site names).  

A potential problem with the method described above is that it does not 
account for uncertainty in measurements. For example, one health facility may 
have „ on average „ the same pattern as another, but due to random 
variation there may still be a substantial difference. Further investigations are 
recommended to develop a method for testing the statistical significance of the 
difference or similarity between two series. 
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Figure 7.3  Visual similarity of morbidity patterns between Sites A and F (Bahirdar 
and Finoteselam) as plotted from relative incidence values. 

Detection algorithms 

The expected duration and severity of an apparently abnormal incidence is 
usually difficult to predict. Statistically, a normally distributed incidence can 
exceed the 1 standard deviation threshold due to chance variation 15.9% of the 
time (Chapter 4). This means that incidence can exceed the threshold by 
chance at least once, ]%)159.01(1[100 n�����˜ of the time during n successive 
time points. The probability that n,...,2,1  successive incidence values exceed 
the threshold value by chance is n159.0 . It follows that the likelihood of 
observingn •abnormalŽ values consecutively by chance approaches 0 as n
increases. Therefore, occurrence of such a phenomenon will improve the 
specificity of detecting abnormal incidence. In connection with this, the main 
issue for the health services is to find a reasonable balance between: (i) 
waiting too long before deciding whether incidence exceeding a threshold 
value is the beginning of a true epidemic; and (ii) declaring too quickly a 
short-lived and/or a •normalŽ fluctuation exceeding the threshold by chance as 
an epidemic outbreak. It has been reported that false alarms are possible with 
some epidemic detection algorithms (Hay et al. 2002). 

As a general rule, we tentatively propose that all the following criteria 
should be fulfilled before an increase is declared as an epidemic, based on log-
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transformed, de-trended and smoothed series of weekly malaria morbidity data 
with at least 5 years of baseline: (a) the standardized departure calculated for 
each week exceeding the value of 1 for 2 consecutive weeks (or incidence 
exceeding the week-specific mean plus 1 standard deviation threshold); (b) an 
increasing trend in the standardized departure values during the recent 4 
weeks; and (c) incidence exceeding the overall mean plus 1 standard deviation 
threshold for 2 weeks. A severe epidemic should be expected if these criteria 
are fulfilled simultaneously at different sentinel sites within a district. 
Although these criteria may be used as a rough guide, their validity in 
detecting true epidemics remains to be evaluated. A preliminary result of such 
evaluation using Monte Carlo simulation using a hypothetical sample of 
10,000 years showed that the probability that criteria (a) and (b) occur 
simultaneously by pure random chance in any particular week is 0.32%. The 
use of these criteria together with (c) is expected to further reduce the chance 
of observing any false alarms.  

Methods of epidemic detection can vary considerably in terms of their 
sensitivity and specificity. Performances of different methods of triggering 
alerts for early detection were evaluated in terms of potentially prevented 
cases. Theoretical comparisons were made by calculating potentially 
prevented cases under different scenarios mainly based on lead time to control 
measures after detection and the expected effectiveness of control measures 
(Teklehaimanot et al. 2004). Simple weekly percentile thresholds performed 
well for epidemic early detection when tested on data from Ethiopia. Although 
comparing their performance is difficult, studies have indicated that the simple 
epidemic detection techniques require significant refinement before they can 
be considered robust enough for operational use (Hay et al. 2002). Most of the 
previous techniques lack ways of dealing with changing disease patterns or the 
endemicity equilibrium. The detection algorithm we developed has an in-built 
capacity to •adjustŽ the expected weekly number of cases for any given time 
point based on the trend in the whole baseline data (Chapter 2). All baseline 
data except data during the recent 3 months are used to determine the expected 
cases which can change from year to year based on the underlying trend. The 
performance of this new algorithm still needs to be evaluated in comparison 
with other methods.  

An increase in the parasite rate (or percent positive) among patients seen 
at health facilities where blood tests are routinely carried out may be a good 
indication of abnormal transmission. Data on confirmed cases of P. 
falciparum and P. vivax from Finoteselam Malaria Laboratory in north-
western Ethiopia shows that the parasite rate closely follows the number of 
positive cases (Figure 7.4a). Traditionally, malaria laboratories attempt to 
microscopically test all self-presenting patients. A scatter plot of log number 
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of confirmed cases against the parasite rate indicates a strong linear 
relationship (Figure 7.4b). The slope of such a relationship will most likely 
vary between areas, but in the case of Finoteselam, it seems that epidemics are 
associated with high parasite rates (mostly exceeding 50%). This parameter 
may be used for epidemic early detection in the absence of more sophisticated 
techniques or in sites with microscopy, or lacking sufficient baseline data.  

This method may also be used in addition to the other epidemic detection 
algorithms. Nevertheless, in health facilities where only a selected number of 
patients go through the laboratory confirmation process, the parasite rate may 
be seriously biased and is therefore not recommended. 

Integration of the surveillance system 

Many African countries have set up Integrated Disease Surveillance and 
Response (IDSR) units but most of these have not been effective in 
recognizing outbreaks at their early stages and/or in taking timely response 
measures. The IDSR system is a strategy designed to detect and respond to the 
diseases of epidemic potential, diseases of public health importance and 
diseases targeted for eradication and elimination. The system is currently 
being decentralized to the district level. 

Current disease surveillance and response systems are geared towards the 
needs of (highly) endemic areas, if at all they exist or are functional. The need 
for special systems in epidemic-prone areas both in terms of monitoring 
disease situations and strategies for response has been either ignored or an 
attempt has been (wrongly) made to adapt/modify systems suitable only in 
endemic areas. The main challenge is integrating surveillance of the target 
diseases, as many of these differ in terms of the extent of detailed data 
requirements, coverage, frequency of reporting and type of response needed. 
For example, malaria epidemic surveillance is needed most in the districts at 
risk of malaria outbreaks. The most important step that ministries of health 
may need to take in order to meet this challenge is to set up ways of 
coordinating design and use of practical surveillance systems and tools for 
data collection by bringing together all concerned units and levels in the health 
services. Currently, there is a serious lack of coordination between units 
responsible for health and management information systems and surveillance 
of epidemic diseases in most countries. This leads to duplication of efforts and 
ambiguities of responsibilities. There is a need to coordinate the various 
activities of the different units regarding malaria epidemic surveillance. 
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Figure 7.4  (a) Confirmed malaria cases and the associated parasite rates at 
Finoteselam Malaria Laboratory, north-western Ethiopia, July 1987-August 1993; 
(b) The parasite rate from the same data set as a function of the (log) number of 
confirmed cases, indicating a linear relationship. 
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7.3   Highland malaria and climate change 

The effect of climate change on trends in malaria transmission in the 
highlands still remains controversial. In recent years, a number of published 
works have looked at trends in temperature and malaria especially in the East 
African highlands. Some studies have claimed that disease incidence is 
increasing in the absence of any apparent trends in temperature in these areas 
over the last few decades, attributing the phenomenon to non-climatic changes 
such as increased drug resistance (Hay et al. 2002; Shanks et al. 2002). 
However, studies have shown the existence of a significant trend in 
temperature data from the same areas (Pascual et al. 2006). The effect of 
climate on epidemics of malaria is most important in highlands and arid areas 
where temperature and rainfall are limiting factors for transmission. In recent 
years, there has been a general upward trend of malaria incidence in highland 
areas, some of which were previously considered malaria-free. However, the 
slope of this trend greatly varies between areas. 

Data from Ethiopia indicate that some highlands have attained a higher 
equilibrium level whereas very little trend is noticeable in others. Figure 7.5 
illustrates this point using two urban centres: Abomsa in the eastern 
escarpment of the Rift Valley and Bahir Dar in north-western Ethiopia. Both 
areas are located at similar altitudes of about 1,800 metres, but possess 
different topographic and climatic characteristics, rates of economic 
development and population movement patterns. Abomsa is a small rural town 
with a population of 12,800 (1999 estimates), whereas Bahir Dar is a larger 
urban centre with rapid development both in terms of economic/commercial 
activities and population size since it became the capital of the Amhara 
Regional State in the early 1990s; its population was estimated at 112,000 in 
1999. Owing to its flat topography, Bahir Dar is often affected by floods. The 
two urban centres also significantly differ in their average annual rainfall: 
1,466 mm for Bahir Dar and 960 mm for Abomsa. It is clear that after the 
mid-1990s, malaria incidence in Bahir Dar has dramatically increased and it 
now appears that a new equilibrium level has been established. Abomsa, on 
the other hand, is affected from time to time with abnormal increase but there 
is little change in the overall trend. 

Although drug resistance by P. falciparum may have contributed to the 
upward trend in malaria in the highlands, the difference in trends observed 
between the two sites is unlikely to have been due to chloroquine resistance, 
which was uniformly high in most areas in Ethiopia during the 1990s 
(unpublished data). It seems that difference in demographic changes and 
population movement patterns between the two sites, coupled with greater 
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potential for malaria transmission due to its flat topography and risk of 
flooding may have probably given rise to the observed difference in trends. 

In a study carried out in Rwanda, it was found that minimum temperature 
predicted malaria incidence best in higher altitude areas which experienced the 
most increases during the 1980s (Loevinsohn 1994). Abnormal increase in 
minimum temperature has also been shown to precede epidemic events in the 
Ethiopian highlands in the late 1980s and early 1990s (Chapter 4). A study 
carried out using data from 7 highland sites in East Africa has concluded that 
climate variability, rather than long-term changes in mean temperature, plays 
an important role in initiating malaria epidemics in the East African highlands 
(Zhou et al. 2004; Zhou et al. 2005) although the method used to test this 
hypothesis has been challenged (Hay et al. 2005).
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Figure 7.5  Incidence of P. falciparum cases reported from Abomsa (solid line) 
and Bahir Dar (broken line) in Ethiopia. 

Nevertheless, studies have continued to confirm the association of 
epidemic malaria with El Niño events in many parts of the world. As an 
example, in Columbia, researchers have analyzed malaria data for the period 
1980-1997 to present evidence that the El Niño phenomenon intensifies the 
annual seasonal malaria transmission cycle (Poveda et al. 2001). Several 
reports have already produced consistent findings regarding the association 
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between El Niño and malaria in the coastal regions of Venezuela and 
Columbia (Kovats et al. 2003). 

Although there is still much uncertainty about the role of climate change 
in determining long-term trends in incidence in the highlands, a combination 
of multiple factors are probably responsible, including climatic as well as non-
climatic causes such as population movement and changes in the demographic 
characteristics, reduced intensity and quality of malaria control measures (in 
particular vector control) and drug resistance of the parasite. Nevertheless, 
current evidence appears to show that climate variability plays an important 
role in causing short-term, but at times widespread, epidemics in these areas. 

7.4   Dynamics of communal immunity 

In the study of the use of weather variables in malaria epidemic modelling, we 
concluded that inclusion of dynamic immunity would be necessary (Chapter 
5). The study of immunity at the population level requires longitudinal 
serological surveys (Molineaux and Gramiccia 1980; John et al. 2005; 
Munyekenye et al. 2005). In the absence of serological data, adult-to-child 
ratios of hospital admissions have been used in the highlands of Kenya to 
study transmission intensity (Hay et al. 2002). Areas with intense transmission 
are characterised by absence of severe disease in adults and older children as a 
result of effective immunity to malaria, whereas in areas with less intense 
transmission all age groups can be affected. This difference can be reflected in 
the age structure of malaria patients seen at health facilities „ as relatively 
more children are expected among cases in areas with higher communal 
immunity levels.  

Here we will use proportion of children under 10 years of age among all 
confirmed malaria cases reported from several areas across Ethiopia to study 
the relationship with intensity of transmission. We used data from malaria 
detection and treatment posts in Ethiopia from September 1987 to August 
1988 (data relating to age groups was available only for total confirmed cases 
and not separately for each Plasmodium species; average age of morbidity 
cases could also be used for such analysis if patient-specific data is available). 
We also used the data to study the existence of seasonal variations in the 
proportion of children and the possible association of such variations with the 
magnitude of the proportion. The most important implication of this study is 
to show the potential of using the proportion of children among patients seen 
at health facilities as a proxy measure for dynamic immunity, which may be 
incorporated in prediction models that are based on data generated from health 
facilities.
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The results of the analysis showed that there is a clear spatial variation in 
the proportion of children under 10 years old among confirmed cases of 
malaria seen at health facilities. The proportion increased with increasing 
incidence levels, indicating that relatively more children visit health facilities 
as transmission increases, given about equal size of catchment areas (Figure 
7.6).
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Figure 7.6  The proportion of children under 10 years of age positive for malaria 
as a function of annual number of P. falciparum cases in each site. Each dot 
represents one site. There are no huge differences between sites in terms of 
population size and number of malaria laboratory diagnosis and treatment 
facilities so the number of cases indicates real differences in malaria morbidity 
levels. As the age group data did not distinguish between the different 
Plasmodium species, the numbers of P. falciparum cases by age group were 
estimated from the proportions of this species out of the total confirmed. 

The proportion of children under 10 years among patients also varied 
with number of P. falciparum cases seen each month (Figure 7.7). These 
results show that the use of this proportion as a proxy for dynamic immunity 
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in prediction models should take into account the underlying incidence levels 
as the strength of the association is area-specific. This indicates that a 
correction factor may be required in such models. More detailed studies are 
required to ascertain the potential use of the age-specific incidence at health 
facilities as a proxy for dynamic immunity, through concurrent longitudinal 
serological studies. It is worth noting that an erratic pattern might result in 
areas with low number of cases (e.g. as in Alaba in Figure 7.7, where the 
number of cases seen before June 1988 was too low to adequately determine 
the proportion of children). Furthermore, we expect significant changes in 
population immunity levels to occur only after huge outbreaks affecting a 
large part of the population, or following a long period without any outbreaks. 
On the other hand, in areas with high endemicity (such as Gambela in western 
Ethiopia as in Figure 7.7), there was no apparent seasonal change in the 
proportion of children throughout the year. Therefore, this phenomenon is 
better studied over longer periods and in areas with low transmission but 
where morbidity is sufficiently high for the calculation of accurate 
proportions. In situations where patient-specific data are available, temporal 
changes in the average age of cases at health facilities may also be studied. 

Figure 7.7  Seasonality of P. falciparum malaria (solid lines) and the proportion of 
children under 10 years among confirmed cases (broken lines). The graphs 
represent four examples of the patterns observed, namely, proportion of children: 
lagging behind confirmed cases (Aykel), trailing number of cases (Ghimbi), 
showing no obvious seasonality (Gambela), and showing irregular pattern 
(Alaba). 
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7.5   Conclusions and recommendations 

Conclusions

�ƒ A method using seasonal adjustment provides better forecasts of malaria 
incidence in epidemic-prone areas than other proposed methods, including 
ARIMA. This method can be used with a minimal resource requirement of 
a three-year baseline of monthly morbidity data. 

�ƒ A new epidemic detection algorithm, involving continuous removal of 
baseline trends and using a combination of two threshold limits, has been 
successfully implemented in epidemic-prone districts, within a sentinel 
surveillance system with an automated, weekly data analysis at district 
levels.

�ƒ Unusually high minimum temperature in preceding months is a useful 
indicator of impending malaria epidemic in highlands. 

�ƒ A biologically motivated statistical model including malaria incidence and 
minimum temperature in the previous month and rainfall 2 and 3 months 
earlier explained most of the variance in data obtained from Ethiopia.  

�ƒ Malaria early warning, early detection, preparedness and response are 
integral parts of an effective epidemic management system. Current 
challenges in implementing such a system include developing local 
capacity for dynamic risk mapping, rapid response and selective and 
timely vector control. 

Recommendations 

�ƒ The sentinel surveillance system and automated epidemic detection 
algorithm tested in pilot districts in East Africa is a useful epidemic 
monitoring approach and should be implemented in all epidemic-prone 
areas.

�ƒ There is a need for new methods to account for dynamic communal 
immunity in models for predicting malaria epidemics. 
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Summary

At least one million people are killed by malaria every year and 80% of the 
deaths occur in Africa south of the Sahara. Most of the populations in areas 
with high intensity of transmission develop immunity to the severe forms of 
the disease relatively early during childhood„thus adults are usually at a 
relatively low risk of mortality. Malaria transmission is mostly stable in these 
areas with little fluctuation in incidence of disease. In contrast, the 
transmission intensity is normally low in highlands and arid lowlands. Most of 
the human populations in these areas possess little or no immunity to the 
disease. As the result, all age groups are affected during malaria outbreaks, 
leading to high mortality rates. 

Epidemic malaria„defined as an acute exacerbation of disease out of 
proportion to the normal to which the community is subject„continues to 
affect several regions in Africa, the Americas, Asia, and some parts of the 
Middle East. Most of the affected areas include highlands or highland fringes 
where transmission is mostly determined by temperature, and arid or semi-arid 
areas where availability of surface water plays a major role. It has been 
estimated that malaria epidemics can cause, every year on average, up to 12 
million malaria episodes and 155,000„310,000 deaths, which is equivalent to 
12-25% of the annual worldwide malaria deaths. 

Various combinations of factors lead to epidemics. These include: 
anomalous weather conditions, increasing drug resistance by the parasite, 
failure or deteriorating vector control activities, and high population 
movement between areas of varying endemicity due to seasonal labour or civil 
unrest. Malaria epidemic early warning is based on monitoring transmission 
risk indicators for the prediction of the timing of an increase (such as 
abnormal rainfall and/or temperature), and population vulnerability indicators 
for the prediction of the severity of impact (such as loss of immunity due to 
recent history of low transmission). Prediction of malaria epidemics using 
such factors can give lead-times of weeks to months, during which appearance 
of anomalies in disease incidence can be closely monitored and preventive and 
control measures targeting specific areas planned and implemented. 

Investigating the various effects of environmental variables to understand 
the triggering mechanisms of epidemic malaria is useful to develop prediction 
systems for prevention and preparedness. Temperature is known to affect the 
length of sporogony„the development cycle of the Plasmodium parasite 
within the mosquito vector. The warmer the environmental temperature, the 
shorter the sporogonic cycle„a favourable condition for the accelerated 
transmission of the parasite during the life span of the vector. Warmer 
temperatures also lead to an accelerated growth of the aquatic stages of 
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mosquitoes. Rainfall deficit in the highlands may result in increased 
proliferation of vectors by creating breeding grounds in small pools formed as 
rivers and streams tend to dry. Change in relative humidity affects 
transmission through its effect on longevity of vectors. On the other hand, 
excessive rainfall in warm, arid areas can lead to increased transmission due to 
creation of vector breeding sites and/or decreased temperatures which are 
normally high and would be lethal both to the vector and the parasite. 

In this thesis, we showed the associations of abnormal weather conditions 
with some documented epidemics of malaria and developed tools that are 
potentially useful for early warning and early detection. The main emphasis of 
the thesis was to present efforts to understand malaria epidemic precipitating 
factors, to develop biologically motivated statistical modelling techniques that 
make use of these factors for the development of early warning models, to 
assess the accuracy of simple versus advanced time series methods for 
incidence forecasting, and to develop and test the technical feasibility of a new 
epidemic detection algorithm and a sentinel surveillance system in selected 
highland districts in East Africa. We also discuss how epidemic monitoring 
systems can be linked to effective response and the associated challenges 
facing control programmes. 

Methods and systems for detecting epidemics at their early phases will be 
useful to initiate timely control interventions. In Chapter 2 we discuss a new 
epidemic detection system which involves recognizing the start of an 
abnormal situation by measuring changes in local disease incidence in relation 
to normally expected values. Although this surveillance mechanism offers 
little lead-time for implementation of preventive measures, it can lead to a 
rapid response to reduce peak morbidity and mortality. Under the Highland 
Malaria Project (HIMAL), we successfully set up a new epidemic detection 
system in four pilot districts of Kenya and Uganda. This system involves a 
network of selected sentinel health facilities that report to their respective 
district health offices on a weekly basis, followed by an automated analysis of 
the data at the district levels and dissemination of the outputs to the different 
levels of the health services and partners. A new epidemic detection algorithm 
was developed to assess weekly incidence anomalies taking into account 
normal variations and underlying trends in the baseline data. 

In Chapter 3 we tested the accuracy of different univariate time series 
methods for epidemic prediction using only historical morbidity patterns. Five 
methods were compared using malaria incidence data reported from health 
facilities in epidemic-prone areas of Ethiopia. A seasonal adjustment method 
in which forecasts were produced by using month-specific mean (expected) 
number of cases and deviations of cases in the previous three months from 
expected values produced the most accurate predictions compared to other 
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methods, including the statistically more advanced autoregressive, integrated 
moving average (ARIMA) technique. 

We studied the temporal and spatial patterns of climatic variables related 
to documented malaria epidemics in Chapter 4, in order to identify factors 
that could be monitored and used for prediction. Using data from several sites 
in Ethiopia, we showed that specific areas were at risk during some years 
while others temporarily remained risk-free but were affected during other 
years. Wet highland areas were affected by a widespread malaria epidemic in 
1988, whereas fringe areas in the Rift Valley and its escarpments, which had 
relatively normal transmission in 1988, were affected in 1991 and 1992. 
Studies of weather patterns indicated that abnormally high minimum 
temperatures preceded epidemic onsets, but no significant associations were 
found between above normal rainfall or maximum temperatures and 
occurrence of epidemics. 

Following these observations, in Chapter 5 we developed a statistical 
model based on the theoretically expected links between transmission 
parameters such as the vectorial capacity as a function of minimum 
temperature and rainfall, immunity levels in populations as a function of the 
overall incidence levels, and previous values of malaria incidence. This model 
was fitted using meteorological and morbidity data from 35 sites in Ethiopia, 
while taking into account spatial and temporal autocorrelations. The model 
which included rainfall 2 and 3 months earlier, and minimum temperature and 
case incidence during the previous month explained more than 85% of the 
total variance in areas with relatively high or low incidence and 55%-85% of 
the total variance in areas with moderate incidence. The study indicated that a 
dynamic immunity mechanism should be included in a prediction model. 
Further studies are required to understand the interactions of the various 
meteorological, morbidity and immunity variables and how these can trigger 
epidemics. Collection of detailed longitudinal data on many of these factors is 
on-going and the data will be used to fine tune models developed so far and to 
test dynamic epidemic risk mapping methods. 

In Chapter 6 we discuss the malaria prevention and control challenges 
facing epidemic-prone areas. The main challenge in taking prevention 
measures before the onset of epidemics is the need to link economic 
evaluation of expensive measures such as indoor residual spraying of 
insecticides with area-specific risk with acceptable degree of accuracy. A 
prerequisite in taking such measures also involves building the capacity of 
countries for more organized vector control operations. Selective action such 
as barrier spraying is recommended and should target areas only in close 
proximity to vector breeding sources. Seasonal preparedness, in particular by 
stocking sufficient antimalarials, should be an essential part of epidemic 
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management. Epidemic response should focus on providing effective and 
rapid treatment for most fever cases. Current challenges include the high cost 
of effective drugs and developing effective systems for dynamic risk mapping. 

We also present some additional results relevant to epidemic prediction 
and early detection and integrate the findings of the previous chapters in 
Chapter 7. In Section 7.1, we provide answers to the research questions posed 
in the General Introduction as the result of key findings discussed in the 
various chapters of the thesis. In Section 7.2, we propose a method for 
studying the similarities between patterns of historical morbidity data from 
different health units in north western Ethiopia which can potentially be used 
in the objective selection of sentinel surveillance sites. In Section 7.3 we 
discuss the controversial increasing trend of highland malaria and climate 
change. In Section 7.4, we investigate the potential use of the proportion of 
younger age groups among patients presenting at health units as a proxy 
measurement of changing population immunity levels, for inclusion in 
morbidity-based prediction models. In the final section, we provide 
conclusions and recommendations based on the findings of the studies. 

In conclusion, malaria epidemic prediction, early detection, preparedness 
and response are integral parts of an effective epidemic management system. 
Our studies have demonstrated that early detection and prediction of malaria 
epidemics is feasible, but more research is required to fully understand the 
processes that trigger epidemics, especially in the highlands. Detailed field 
investigations and modelling of the various effects of different meteorological 
factors and their complex interactions as well as the effects of dynamic 
changes in population immunity levels are required to further improve the 
prediction and risk assessment systems currently available.  



Samenvatting

Per jaar sterven minstens een miljoen mensen aan malaria, en 80% van de 
sterfgevallen vindt plaats in Afrika, ten zuiden van de Sahara. In gebieden met 
veel transmissie ontwikkelen kinderen meestal al op jonge leeftijd immuniteit 
tegen de ernstigste vormen van de ziekte. Hierdoor hebben volwassenen een 
relatief laag sterfterisico. De malaria transmissie in deze gebieden is vrij 
stabiel met kleine schommelingen in het aantal ziektegevallen (de incidentie). 
In hooglanden en woestijnachtige laaglanden daarentegen is de intensiteit van 
transmissie meestal laag, zodat men daar weinig of geen immuniteit heeft 
tegen de ziekte. Als gevolg hiervan worden alle leeftijdsgroepen getroffen bij 
een malaria-epidemie, wat gepaard gaat met een hoge sterfte. 

Epidemische malaria„gedefinieerd als een plotselinge verheviging van 
het aantal malariagevallen ten opzichte van de normale situatie in een 
gebied„is een bekend probleem in verscheidene delen van Afrika, Amerika, 
Azië en sommige delen van het Midden Oosten. De meeste gebieden met 
epidemische malaria bevinden zich op (de randen van) hooglanden waar de 
transmissie erg afhankelijk is van temperatuur, of zijn droge streken waar de 
beschikbaarheid van oppervlaktewater een belangrijke rol speelt. Schattingen 
laten zien dat gemiddeld 12 miljoen mensen per jaar malaria krijgen als 
gevolg van epidemieën. Hiervan overlijden 155.000„310.000 mensen, d.w.z. 
12-25% van de jaarlijkse malariasterfte in de wereld. 

Factoren die kunnen leiden tot epidemieën zijn abnormale 
weersomstandigheden, toenemende resistentie bij de parasiet tegen 
geneesmiddelen, niet functionerende of kwalitatief slechte vectorbestrijding (= 
muggenbestrijding; we gebruiken de termen mug en vector door elkaar), en 
een hoge migratie vanwege seizoensarbeid of politieke onrust. Bij de vroege 
opsporing van malaria-epidemieën worden transmissierisico-indicatoren 
(zoals abnormale regenval en/of temperatuur) bijgehouden voor het 
voorspellen van het moment van een toename van transmissie, en 
kwetsbaarheids-indicatoren (zoals immuniteitsverlies na een periode van lage 
transmissie) voor het voorspellen van de ernst van de epidemie. Het zou mooi 
zijn als het voorspellen van malaria-epidemieën op basis van zulke indicatoren 
weken tot maanden van tevoren zou kunnen worden gedaan, zodat men 
gedurende die periode de toename in het aantal malariagevallen nauwkeurig 
bij kan houden, en maatregelen kan nemen ter preventie en bestrijding. 

Onderzoek naar het belang van omgevingsfactoren voor de uitbraak van 
malaria-epidemieën is van nut voor de ontwikkeling van 
waarschuwingssystemen waarmee de epidemieën voorkomen kunnen worden, 
of waarmee men zich althans goed kan voorbereiden op een epidemie. Het is 
bekend dat de temperatuur invloed heeft op de lengte van sporogonie„dat is 
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de ontwikkelingscyclus van de malariaparasiet Plasmodium in de mug. Hoe 
hoger de omgevingstemperatuur, hoe korter de sporogoniecyclus„wat zorgt 
voor een snelle transmissie van de parasiet tijdens het leven van de mug. 
Hogere temperaturen leiden ook tot een versnelde groei van de stadia van de 
muggen in het water. Te weinig regenval in hooglanden kan resulteren in een 
wildgroei van muggen door broedplaatsen in poeltjes die ontstaan als rivieren 
en stromen opdrogen. Verandering van de relatieve luchtvochtigheid kan de 
transmissie beïnvloeden door het effect op de levensduur van de vector. In 
warme woestijnachtige gebieden kan overvloedige regenval juist leiden tot 
een verhoogde transmissie door het ontstaan van broedplaatsen van de mug of 
door lagere temperaturen dan de gebruikelijke hele hoge temperaturen die 
dodelijk zijn voor zowel de vector als de parasiet. 

In dit proefschrift tonen we de samenhang aan tussen abnormale 
weersomstandigheden en gedocumenteerde malaria-epidemieën en we 
ontwikkelen een methode die gebruikt kan worden voor vroege opsporing van 
epidemieën. Het proefschrift richt zich vooral op: (1) onderzoek om factoren 
die malaria-epidemieën bevorderen te begrijpen, (2) het ontwikkelen van een 
biologisch plausibele statistische modelleertechniek die deze factoren gebruikt 
voor de ontwikkeling van modellen voor vroege opsporing van epidemieën, 
(3) het vergelijken van eenvoudige en meer geavanceerde tijdreeksmodellen 
voor het voorspellen van malaria incidentie, en (4) het ontwikkelen en testen 
van een nieuw algoritme en een waarschuwingssysteem om epidemieën in 
geselecteerde hooglanddistricten in Oost Afrika te detecteren. Ook 
bediscussiëren we hoe systemen om epidemieën te monitoren benut kunnen 
worden en wat daaruit voortvloeiende uitdagingen voor 
bestrijdingsprogramma•s zijn. 

Methoden en systemen voor het vroeg detecteren van epidemieën zijn 
van belang om tijdig met bestrijding te starten. In Hoofdstuk 2 bespreken we 
een nieuw detectiesysteem dat het begin van een abnormale situatie kan 
herkennen door het meten van veranderingen in de plaatselijke incidentie van 
malaria. Hoewel dit systeem maar korte tijd biedt om preventieve maatregelen 
te nemen kan het van nut zijn om de piek van ziekte en sterfte te verminderen. 
Binnen het •Highland Malaria Project• (HIMAL) hebben we met succes een 
nieuwe epidemie-detectiesysteem met succes opgezet in vier testdistricten in 
Kenia en Oeganda. Het systeem betreft een netwerk van geselecteerde 
gezondheidsposten (zgn. •sentinel sites•) die wekelijks het aantal nieuwe 
malariagevallen rapporteren naar hun respectievelijke gezondheidsbureaus, 
gevolgd door een geautomatiseerde analyse van de gegevens op 
districtsniveau en verspreiding van de resultaten naar de verschillende niveaus 
van het gezondheidssysteem. Verder is er een nieuw epidemie-detectie 
algoritme ontwikkeld om afwijkingen van de wekelijkse incidentie vast te 
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stellen, waarbij rekening gehouden wordt met normaal verdeelde variatie en 
een trend over de tijd. 

In Hoofdstuk 3 testen we de nauwkeurigheid van verschillende 
univariate tijdreeksmodellen voor het voorspellen van epidemieën op basis 
van historische ziektepatronen. Vijf methoden worden vergeleken, waarbij we 
gebruik maken van malaria incidentie gegevens zoals gerapporteerd door 
gezondheidszorgvoorzieningen in gebieden van Ethiopië met een hoog risico 
op epidemieën. Een •seasonal adjustment• methode die voorspellingen doet op 
grond van gemiddelde (verwachte) aantallen malaria gevallen per maand en 
afwijkingen van die aantallen gedurende de voorgaande drie maanden, gaf 
nauwkeuriger voorspellingen dan andere methoden, waaronder de statistisch 
meer geavanceerde •autoregressive integrated moving average• (ARIMA) 
methode.  

In Hoofdstuk 4 bestuderen we de patronen van klimaatvariabelen in 
relatie tot gedocumenteerde epidemieën, in de hoop factoren te identificeren 
die kunnen worden gebruikt voor monitoring en het maken van predicties. Op 
grond van gegevens uit verschillende locaties in Ethiopië laten we zien dat 
sommige locaties risico liepen op epidemieën in bepaalde jaren, terwijl andere 
gebieden dan risicovrij bleven, maar getroffen werden tijdens andere jaren. De 
natte hooglandgebieden werden getroffen door een uitgebreide malaria-
epidemie in 1988, terwijl randgebieden in de Rift Valley en zijn steile 
rotswanden, die een relatief normale transmissie hadden in 1988, juist werden 
getroffen in 1991 en 1992. Studies van weerspatronen lieten zien dat 
ongebruikelijk hoge temperaturen soms voorafgingen aan de epidemieën, 
maar er werd geen significante associatie gevonden tussen hogere dan normale 
regenval of maximum temperatuur en het optreden van epidemieën. 

 In Hoofdstuk 5 wordt een statistisch model ontwikkeld dat gebaseerd is 
op theoretisch afgeleide samenhangen tussen transmissieparameters. 
Bijvoorbeeld de •vectorial capacity• (= gemiddeld aantal secundaire 
malariagevallen verbreid door muggen per dag per primair geval) als een 
functie van minimum temperatuur en regenval, en het immuniteitsniveau in 
populaties wordt gemodelleerd als een functie van het gemiddelde 
incidentieniveau en van de malaria incidentie in de reeks eraan voorafgaande 
jaren. Het model is gefit tegen meteorologische en morbiditeitsgegevens uit 35 
locaties in Ethiopië, daarbij rekening houdend met ruimtelijke en temporele 
autocorrelaties. Het model dat gebruik maakte van de regenval 2 en 3 
maanden eerder en de minimum temperatuur en incidentie van de voorgaande 
maand verklaart meer dan 85% van de variantie in gebieden met een relatief 
hoge of lage incidentie, en 55%-85% in gebieden met een gematigde 
incidentie. De studie liet verder zien dat een dynamisch 
immuniteitsmechanisme zou moeten worden opgenomen om tot een goed 
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predictiemodel te komen. Aanvullend onderzoek is nodig om te begrijpen hoe 
de verschillende meteorologische-, ziekte- en immuniteitsfactoren 
samenhangen en hoe deze tezamen epidemieën kunnen veroorzaken. 
Longitudinale metingen van vele van deze factoren worden momenteel 
verzameld, en deze gegevens kunnen worden gebruikt om de huidige 
modellen te verfijnen, en om dynamische methoden voor het in kaart brengen 
van epidemierisico te testen.  

In Hoofdstuk 6 worden de uitdagingen voor malariapreventie en …
bestrijding in gebieden met risico op malaria-epidemieën besproken. Van 
groot belang is het om economische implicaties van dure 
preventiemaatregelen, zoals het gebruik van insecticiden, op een voldoende 
nauwkeurige wijze te koppelen aan het risico op een epidemie. Dit soort 
maatregelen zijn alleen mogelijk als de betreffende landen goed 
georganiseerde vector bestrijdingscapaciteit hebben opgebouwd. Selectieve 
acties zoals •barrier spraying• zijn belangrijk, maar moeten alleen worden 
uitgevoerd in de omgeving van broedgebieden van de vector. Een 
seizoensafhankelijke voorraad antimalariamiddelen is ook essentieel bij het 
omgaan met epidemieën. Immers, om de gezondheidsgevolgen van de 
epidemie te beperken, is een effectieve en snelle behandeling van de grote 
meerderheid van de koortsgevallen een eerste vereiste. Problemen op dit 
moment zijn de hoge kosten van effectieve geneesmiddelen en de afwezigheid 
van effectieve systemen voor het in kaart brengen van risico•s. 

Hoofdstuk 7 integreert de bevindingen van de voorgaande hoofdstukken, 
en geeft ook nog enkele aanvullende resultaten. In Sectie 7.1 worden de 
antwoorden op de onderzoeksvragen geformuleerd. De belangrijkste 
bevindingen uit de verschillende hoofdstukken worden opgesomd. In Sectie 
7.2 stellen we een methode voor om de overeenkomsten te bestuderen in 
patronen van historische ziektegegevens tussen verschillende 
gezondheidsposten in Noordwest Ethiopië. Deze methode biedt 
mogelijkheden voor een objectieve selectie van •sentinel sites•. In Sectie 7.3 
bespreken we de controversiële associatie tussen de toenemende trend van 
malaria in hooglanden en klimaatsverandering. In Sectie 7.4 bespreken we het 
gebruik van de proportie van malariagevallen op jonge leeftijd als een 
indicator voor het immuniteitsniveau in de bevolking, zodat de fluctuatie in 
deze proportie gebruikt zou kunnen worden in verbeterde predictiemodellen.  

Concluderend kunnen we stellen dat een effectief managementsysteem de 
fasen van voorspellen van de epidemie, de vroege opsporing ervan, het 
voorbereiden op de uitbraak van de epidemie en de feitelijke respons alle vier 
goed moet dekken. Onze studies hebben laten zien dat vroege opsporing en 
predictie van epidemieën inderdaad mogelijk is. Verdere gedetailleerde 
veldstudies en modellering van de effecten van meteorologische factoren en 
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hun complexe interactie, zijn nodig om, samen met effecten van populatie-
immuniteit, de systemen voor predictie en inschatting van risico•s verder te 
verbeteren.
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