EUR Research Information Portal
Survival prediction in head and neck cancer

Publication status and date:
Published: 22/06/2012

Document Version
Publisher's PDF, also known as Version of record

Citation for the published version (APA):
Datema, F. (2012). Survival prediction in head and neck cancer. [Doctoral Thesis, Erasmus University Rotterdam]. Erasmus
Universiteit Rotterdam (EUR).

Link to publication on the EUR Research Information Portal

Terms and Conditions of Use

Except as permitted by the applicable copyright law, you may not reproduce or make this material available to any third party
without the prior written permission from the copyright holder(s). Copyright law allows the following uses of this material
without prior permission:

 you may download, save and print a copy of this material for your personal use only;
» you may share the EUR portal link to this material.

In case the material is published with an open access license (e.g. a Creative Commons (CC) license), other uses may be
allowed. Please check the terms and conditions of the specific license.

Take-down policy

If you believe that this material infringes your copyright and/or any other intellectual property rights, you may request its
removal by contacting us at the following email address: openaccess.library@eur.nl. Please provide us with all the relevant
information, including the reasons why you believe any of your rights have been infringed. In case of a legitimate complaint,
we will make the material inaccessible and/or remove it from the website.

Erasmus University Rotterdam

Making Minds Matter ZGM


https://pure.eur.nl/en/publications/12e17192-d6f9-4800-b6d9-ec4f90fd7344

Survival Prediction in Head and Neck Cancer:

Impact of Tumor and Patient Specific Characteristics

Frank R. Datema



Survival Prediction in Head and Neck Cancer:
Impact of Tumor and Patient Specific Characteristics

Author :F.R.Datema
Lay-out : F. R. Datema
Printing : Ridderprint Offsetdrukkerij BV, Ridderkerk
Cover :F.R.Datema

Publication of this thesis was financially supported by:

RS Datema, J-ACHT, Atos Medical BV, Stallergenes BV, Nutricia Advanced Medical
Nutrition, GlaxoSmithKline, Medoc Huisartsenpraktijk NV, Carl Zeiss BV, Daleco Pharma
BV, Olympus Nederland BV

Copyright © 2012, F. R. Datema

No part of this book may be reproduced, stored in a retrieval system or transmitted in any
form or by any means without permission of the author or, when appropriate, of the
scientific journal in which parts of this book have been published.



Survival Prediction in Head and Neck Cancer:
Impact of Tumor and Patient Specific Characteristics

Voorspellen van Overleving in de Hoofd-Hals Oncologie:
Invloed van Tumor en Patiént Specifieke Kenmerken

PROEFSCHRIFT

Ter verkrijging van de graad van doctor aan de
Erasmus Universiteit Rotterdam
op gezag van Rector Magnificus

Prof.dr. H.G. Schmidt
en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op
vrijdag 22 juni 2012 om 11.30

door
Frank Roelf Datema
geboren te Breda

énsmus UNIVERSITEIT ROTTERDAM



Promotor:

Co-promotor:

Leescommissie:

Prof.dr. R.J. Baatenburg de Jong
dr. H.M. Blom

Prof.dr. E.B. Wolvius
Prof.dr. J.J.B. van Lanschot
Prof.dr. E.W. Steyerberg



CONTENTS

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

General introduction and outline of the thesis

Comorbidity as the gt prognostic variable for overall
survival estimation in head and neck cancer

Internal and external validation of the updated
prognostic head and neck cancer model

. . h .
Severe malnutrition as a potential q' prognostic
variable for overall survival estimation in head and
neck cancer

Survival visualization

Incidence and prediction of major cardiovascular
complications in extensive head and neck surgery

Random Survival Forests versus Cox Proportional
Hazards Regression

General Discussion

Summary / Samenvatting

List of abbreviations

Dankwoord
Curriculum Vitae

List of publications

19

37

55

69

73

93

113

123

133

134

137

138






aan mijn ouders

voor Jeske, Julia en Veerle






General introduction
and outline of the thesis

Chapter



10



General introduction

1.1 Head and neck carcinoma: epidemiology, etiology, and prognosis

Head and neck cancer accounts for almost 5% of all
malignant tumors in the Netherlands. The most up-to-
date Dutch Cancer Registry (NCR) database from 2009
reported 2878 new patients with an invasive carcinoma
of the lip, oral cavity, pharynx and larynx (general
incidence 17:100.000). In this thesis we focus on head
and neck squamous cell carcinoma (HNSCC).

Head and neck squamous cell carcinomas originate

from the mucosal lining of the upper aero-digestive

tract. Tobacco and alcohol are irritants to this mucosal

lining and therefore form major risk factors for the

genesis of malignant epithelial tumors. Other reported etiological factors are malnutrition,
viral factors (Epstein Barr virus and Human Papilloma virus), genetic predispositions and
occupational hazards.

When diagnosed with cancer, the patient’s life changes dramatically. Uncertainty about
future life expectancy, quality of life and (side) effects of upcoming treatment can form a
physical and emotional challenge. Accurate information on what to expect from the
course of disease (modified by treatment) and from the likely outcome of disease, can
help patients and their loved-ones to cope and prepare and to balance the burden of
treatment against the possible gain in life expectancy and quality of life. Furthermore, an
individualized treatment can only be the result of an accurate prognosis. Over- and
underestimation of survival may result in under- and overtreatment.

In general, clinicians are very capable in providing clear information about the disease and
short-term and long-term (side) effects of oncological treatment. When the patient asks
for his prognosis, it can become difficult. The easy answer to the question is that the 5-
year survival rate of HNSCC patients (the percentage of patients that survive at least five
years after cancer is detected) is approximately 50%. This percentage however can greatly
vary depending on the impact and interaction of prognostic factors. Examples are: the age
of the patient, the location of the primary tumor, the size of the tumor, presence of loco
regional and/or distant metastasis, and the patient’s general health status.

For example: the otherwise healthy 42-year-old TINOMO-glottic larynx carcinoma patient
probably has a better prognosis than the insulin dependent 80-year-old TAN2MO-
oropharynx carcinoma patient.
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General introduction

Because the patient demands an accurate prognosis estimate, the clinician is challenged
to recognize relevant prognostic factors in the patient and to determine their impact and
interaction on prognosis. Unfortunately we lack valid instruments that integrate
prognostic factors and their corresponding p-values and hazard ratios into an
individualized prognosis. So the clinician is left with an expanding list of prognostic factors
and is not adequately equipped to apply this prognostic knowledge in everyday practice.
Fortunately there are statistical survival analyses. These analyses, allow the identification
of prognostic factors from historical patients with similar patient and tumor specific
characteristics, and can test their strength, significance and independence towards overall
survival. When several criteria are met prognostic factors can be combined into a
multivariable survival model that predicts the prognosis of an individual patient. In this
thesis, the development of several prognostic HNSCC survival models are presented and
statistical output is translated into clinical relevance and applicability. To equip the
clinician, we developed free, on-online software (also known as OncologlQ) that calculates
an individual overall survival estimate of the newly diagnosed HNSCC patient based on
eight prognostic factors. We believe that this model can complement medical
craftsmanship when communicating prognosis to the patient or when the clinician needs
to choose between suitable treatment options.

1.2 The TNM-classification as a cornerstone in outcome prediction

Up to the 1950s many incompatible cancer staging systems were in use. With the rise of
effective therapies against cancer, the need for an universal staging system emerged. This
staging system needed to be capable to assess an accurate prognosis, because the
selection of therapy usually depends on estimated outcome. As a response to this need,
Pierre Denoix (former chairman of the Union for International Cancer Control (UICC) and
former chairman at the Institute Gustave-Roussy in France),
developed the TNM-classification.

The TNM-classification incorporates the size and extent of

the primary tumor (T-classification), its regional lymphatic Can_c,er
involvement (N-classification) and the presence of distant Staglng
metastasis (M-classification) to stage the progression of Manual

cancer. g SEVENTH

EDITIoN

'F_j Springer
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General introduction

In 1987, the UICC and American Joint Committee on Cancer (AJCC) joined hands and
unified their staging systems into a single cancer staging system (the 4" TNM edition).
Since then, The TNM-classification has been revised and updated several times. The most
up to date published TNM-classification of Malignant Tumors is the 7" edition (2010) and
forms the globally accepted method of choice to describe the anatomical extent of cancer.

Because the TNM-classification is a globally accepted uniform staging system, it became a
very suited instrument to facilitate treatment planning, uniform evaluation of treatment
results, patient selection for clinical trials, and to communicate prognosis to patients. It
can be said that the TNM-classification has been the cornerstone of cancer outcome
prediction for many years. In several chapters of this thesis the importance and impact of
the TNM-classification on overall survival is acknowledged and described.

With its revisions and updates, the TNM-classification evolved into an excellent descriptive
instrument for tumor-specific characteristics. As a predictive instrument, the TNM-
classification showed limitations, especially in prognosis prediction of the individual cancer
patient. These limitations were well described in 1991 by Byron J. Bailey, Chairman of the
Committee to study the TNM-classification of the Laryngeal Cancer Association:

b A o | “Physicians are focused on optimal treatment while patients are

interested in their prognosis, and the TNM is not designed to provide
answers to either set of questions. At the present time, the TNM
system is neither a roadmap for patient management nor is it a crystal
ball with the answers sought by patients.”

This comment is a good illustration of the need for a prognostic instrument that goes
further than the anatomical extent of cancer alone. Combining the TNM-classification with
other relevant oncological and non-oncological prognostic factors into a model, allows the
estimation of a more accurate individual prognosis prediction of the newly diagnosed
HNSCC patient.
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General introduction

13 AJCC recommendations for prognostic factors and for an enhanced
prognostic system (model)

All variables are potentially prognostic, but few variables actually have an independent
prognostic value. In 1993 the AJCC communicated their vision on prognostic factors and
formed criteria for an enhanced prognostic system (model). Most of these criteria form
the basis for the research that is presented in this thesis and are therefore worth
mentioning.

AJCC criteria for prognostic factors

1. The prognostic factor must be significant, meaning that it rarely occurs by
chance.
2. The prognostic factor must be independent, meaning that it retains its

prognostic value when new prognostic factors are added
3. The prognostic factor must be clinically important, meaning that it can
change patient management and thereby change outcome.

Note: In the prognostic research presented in this thesis, the significance of a prognostic
factor is tested with Kaplan Meier Curves and the log-rank test. Following these univariate
analyses, independence of each prognostic factor was tested with a multivariate Cox
regression analysis. Prognostic factors discussed in this thesis are clinically important and
some results from this thesis have strengthened certain management changes in the head
and neck oncology department of the Erasmus Medical Centre. For example, in 2010 an
internal physician joined the oncological staff to identify and optimize comorbidity before,
during and after treatment to reduce complication rates and to optimize the overall
survival probability of our HNSCC patients.

14




General introduction

AJCC criteria for a prognostic system (prognostic model)

10.

11.
12.

The system is easy for physicians to use.

Provides predictions for all types of cancer.

Provides the most accurate relapse and survival predictions at diagnosis and
for every year lived for each patient.

Provides group survival curves, where the grouping can be by any variable,
including outcome and therapy.

Accommodates missing data and censored patients and is tolerant of noisy
and biased data.

Makes no a priori assumptions regarding the type of data, the distribution
of the variables, or the relationships among the variables.

Tests putative prognostic factors for significance, independence, and clinical
relevance.

Accommodates treatment information in the evaluation of prognostic
factors.

Accommodates new prognostic factors without changing the model.
Accommodates emerging diagnostic techniques: not only molecular tests,
but also new imaging modalities.

Provides information regarding the importance of each predictive variable.
Is automatic, that is, the model’s output does not depend on the operator.

Note: Prognostic models that are presented in this thesis comply with criterion 1, 3-7, 9,
11 and 12. Criterion 2 cannot be upheld since the models are only suited for primary

HNSCC patients. Criterion 8 cannot be upheld since treatment is not considered a
prognostic factor. Criterion 10 cannot be upheld since the models do not incorporate
diagnostic techniques. The TNM-classification however is partially derived from diagnostic
(imaging) results.
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General introduction

1.4 Sources of data and prognostic model covariables

In this thesis, three versions of our HNSCC prognostic model are presented. The first
version is an extended version of the original model of Baatenburg de Jong et. al. (2001) to
which comorbidity is added as an g™ prognostic factor. The second version is an updated
and externally validated model which has more recent follow-up data reaching until
January 2010. The third model is created with an alternative statistical approach called
Random Survival Forests. The end-point of all models is overall survival (death of all
causes). The models are fitted on the historical data of 1371 primary HNSCC patients,
diagnosed and treated at the Leiden University Medical Centre (LUMC) between 1981 and
1999. Follow-up is complete for 97.5%.

Covariables Subcategories

1. Age at diagnosis continuous

2. Sex male, female

3. T-classification T1, 72, 73, T4

4. N-classification NO, N1, N2, N3

5. M-classification MO, M1

6. Tumor location lip, oral cavity, oropharynx, nasopharynx, hypopharynx,

glottic larynx and supraglottic larynx

7. Prior tumors all preceding malignancies except basal cell or squamous
cell carcinoma of the skin

8. Comorbidity Adult Comorbidity Evaluation (ACE27) grade O, grade 1,
grade 2, grade 3

9. Malnutrition Weight loss < 5%, weight loss 5-10%, weight loss > 10%

Note: Malnutrition is considered a potential 9t predictor for our model. Since data on
weight loss are only available for a subset of the baseline population, malnutrition cannot
be added to the model.

16
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1.5 Outline of this thesis

In 2001 Baatenburg de Jong et. al. presented a 7-variable-prognostic Cox regression model
(TNM-classification, tumor location, age at diagnosis, prior tumors and sex). In chapter
two of this thesis, his prognostic model is enhanced with comorbidity as an g™ predictor.
The significance and independent impact of comorbidity on overall survival and short-
term mortality is investigated and discussed. The new model is internally validated.

In chapter three the 8-variable-prognostic model is updated with very recent follow-up
and survival data reaching until January 2010. The impact of this update on model
performance is discussed and more importantly, an external validation with a secondary
dataset from the United States of America is performed. External validation is the most
stringent test for a model and is essential before implementing prediction models into
clinical practice.

In chapter four we discuss the impact of severe malnutrition, defined as a weight loss of
more than 10% in the six months preceding cancer diagnosis, on overall survival and short
term mortality. Severe malnutrition is a potential o' predictor for a prognostic head and
neck cancer model.

In chapter five we explain how our most recent model can be accessed on-line and used
for free during daily practice. With a very user-friendly interface it is possible to create an
individualized 5-year survival chart for your newly diagnosed HNSCC patient, without
extensive statistical knowledge. We believe that this on-line visual interpretation of our
model can complement medical craftsmanship in communicating prognosis to the patient.

A substantial amount of tobacco and alcohol induced comorbidity was found in our study
population. Some of these illnesses are known risk-factors for major cardiovascular
complication occurrence during and after extensive head and neck surgery. Since major
cardiovascular complications form an elevated mortality risk, they are worth preventing.
For this purpose, a new risk stratification tool (the modified Lee Cardiac Risk Index) is
introduced for head and neck oncology in chapter six.

In chapter seven an alternative modeling approach, called Random Survival Forests (RSF) is
compared to the most generally used modeling technique, Cox Regression. RSF is known
to deliver accurate models and is more easily automated than Cox models (criterion 12 in
paragraph 1.3). RSF model performance is compared to Cox model performance.
Similarities, differences, limitations and advantages are investigated and discussed.
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Comorbidity as the 8th
prognostic variable for
overall survival estimation
in head and neck cancer
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Comorbidity

Abstract

Background In 2001, we presented a Cox regression model that is able to predict survival
of the newly diagnosed patient with head and neck squamous cell carcinoma (HNSCC).
This model is based on the TNM classification and other important clinical variables such
as age at diagnosis, sex, primary tumor site, and prior malignancies. We aim to improve
this model by including comorbidity as an extra prognostic variable. Accurate prediction of
the prognosis of the newly diagnosed patient with head and neck cancer can assist the
physician in patient counselling, clinical decision-making, and quality maintenance.

Methods All patients with HNSCC of the oral cavity, pharynx, and larynx diagnosed in the
Leiden University Medical Centre between 1981 and 1998 were included. From these
1371 patients, data on primary tumor site, age at diagnosis, sex, TNM classification, and
prior malignancies were already available. Comorbidity data were collected
retrospectively according to the ACE27 manual. The univariate prognostic value of each
variable on overall survival was studied with Kaplan—Meier curves and the log-rank test.
The Cox regression model was used to investigate the impact of these variables on overall
survival simultaneously. Furthermore, univariate analyses were performed to investigate
the impact of comorbidity severity on short-term mortality and to investigate the impact
of organ-specific-comorbidity on short-term mortality.

Results Comorbidity was present in 36.4% of our patients. Mild decompensation was seen
in 17.4%, moderate decompensation in 13.5%, and severe decompensation in 5.5%. Most
frequently observed ailments were cardiovascular, respiratory, and gastrointestinal. In
univariate analyses, all prognostic variables, including comorbidity, contributed
significantly to overall survival. Their contribution (except sex) remained significant in the
multivariate Cox model. Internal validation of this model showed a concordance index of
0.73, indicating a good predictive value. Short-term mortality was seen in 5.7% of our
patients. Cardiovascular comorbidity, respiratory comorbidity, gastrointestinal
comorbidity, and diabetes showed a significant relationship with short-term mortality.

Conclusions Comorbidity impacts overall survival of the newly diagnosed patient with
HNSCC. There is a clear distinction between the impact of the four ACE27 severity grades.
The impact of an ACE27 grade 3 is comparable to the impact of a T4 tumor or an N2 neck.
Comorbidity impacts short-term mortality as well. Especially cardiovascular comorbidity,
respiratory comorbidity, gastrointestinal comorbidity, and diabetes show a strong
relationship.
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Introduction

The TNM-classification has been the cornerstone of cancer staging and outcome
prediction in patients with head and neck squamous cell carcinoma (HNSCC) for many
years. Since its introduction, the TNM-classification has been revised and updated several
times and has evolved into an excellent descriptive instrument for tumor-specific
characteristics.

The anatomic extent of cancer alone, however, is not the most accurate way to predict the
outcome of an individual patient with cancer at initial presentation. A more accurate
prognosis can be achieved by combining the TNM-classification with patient-specific
variables that impact survival as well [1]. In 2001, this principle was illustrated by the
presentation of a validated, Cox-regression model that included the prognostic variables:
age, sex, primary tumor site, TNM-classification, and prior malignancies [2]. The
suggestion to include other prognostic variables to improve the predictive value of the
model was made.

A factor that has high potential as a prognostic variable is comorbidity. Comorbidity is
described as “the presence of one or more medical ailments, next to the primary tumor but
not caused by the primary tumor.”” Risk factors for the development of HNSCC, such as
smoking and alcohol abuse, contribute to other diseases as well (eg, cardiovascular,
pulmonary, or hepatic diseases). Therefore, comorbidity is to be expected in the patient
with HNSCC. Previously reported incidences of comorbidity in patients with HNSCC ranged
from 30% to 55% [3-5]. In some cases, the patient’s comorbidity conditions form an even
greater risk on mortality than the primary tumor [3-6].

There are several validated instruments designed to code and quantify comorbidity in
patients: the cumulative ilness rating scale (CIRS), the Kaplan Feinstein Comorbidity Index
(KFI), the Charlson Comorbidity Index (CCl) and the Index of Coexistent Disease (ICED) [7-
10]. In a comparative study of these 4 instruments, the KFI was the most successful in
stratifying patients with head and neck cancer [11].
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In 1999, the adult comorbidity evaluation (ACE27), also known as the modified KFI, was
introduced. The ACE27 has been revised several times and has proven to be a valid tool to
code and quantify the presence of comorbidity in HNSCC patients. [4] In this retrospective
study, the ACE27 was used to code and quantify comorbidity in 1371 patients with HNSCC.
The first aim of this study was to examine the quality of our retrospective comorbidity
data by means of calculating the intra-observer and inter-observer variability. The second
aim of this study was to gain insights into the prevalence and severity of comorbidity in
this (Dutch) head and neck cancer patient dataset. The third aim of this study was to
investigate the univariate impact of comorbidity on overall survival of patients with head
and neck cancer. The univariate impact of previously identified variables (primary tumor
site, age at diagnosis, sex, prior malignancies, and TNM classification) were investigated as
well.

The fourth aim of this study was to investigate the multivariate impact on overall survival
of these variables simultaneously. The fifth aim of this study was to investigate and
describe the univariate impact of comorbidity and organ system—specific comorbidity on
overall survival and on short-term mortality (mortality within 6 months after diagnosing
the primary HNSCC).

Materials and Methods

For this study, the data of 1662 patients diagnosed with primary HNSCC at the Leiden
University Medical Centre (LUMC) between 1981 and 1998 was available.

Patients with oesophageal cancer and subglottic cancer (n = 218) were excluded because
the prognosis of these patients is poor and the number of incomplete TNM classifications
in this group was relatively large. Patients with carcinoma in situ (n = 51; including 3
patients with oesophageal cancer) were excluded because the prognosis of these patients
is exceptionally good. Another 25 patients were excluded because it was not possible to
designate a proper TNM. The final study population consisted of 1371 patients with
histologically proven squamous cell carcinoma of the lip, oral cavity, oropharynx,
nasopharynx, hypopharynx, glottic-larynx, and supraglottic-larynx (Table 1).

Prior malignancies were defined as all preceding malignant tumors except for basal cell
and squamous cell carcinoma of the skin. Based on the therapeutic nil hypotheses, the
type of treatment were not considered a prognostic factor for our model in this study (see
discussion) [12-15].
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Study Design

Patient data on age, sex, primary tumor site, prior malignancies, and TNM classification
were available from the hospital-based cancer registry system (ONCDOC). The ONCDOC
was established in 1969 and contains patient, treatment, and follow-up data for each
patient with cancer diagnosed in the LUMC. Trained oncologic data managers store these
data and safeguard an adequate follow-up by contacting the general practitioner and/or
Registry of Births, Deaths, and Marriages when patients are lost. As a result, the
percentage lost to follow-up for this study population was only 2.5% and the mean follow-
up time was 12.3 years. Another task of ONCDOC is to monitor the registered TNM
classification of each tumor and to raise discussion when discrepancies exist. Disease was
always staged or restaged according to the Union Internationale Contre le Cancer (UICC)
manual, which was up-to-date then. Data on comorbidity were collected retrospectively
from the patient’s medical chart. The presence and severity of comorbidity in the timeline
before diagnosing the primary HNSCC tumor was coded according to the ACE27 manual
with 1 exception. [16] Prior malignancies were not scored as a comorbidity condition
because this factor was already a variable in our existing predictive model. The impact of
prior malignancies on overall survival would be unjust when scored twice.

The patient’s overall comorbidity severity score was defined according to the highest
ranked single ailment (coded as grade 1: mild decompensation; grade 2: moderate
decompensation; or grade 3: severe decompensation), except when 2 or more grade 2
ailments occurred in different organ systems. In this case, the overall comorbidity severity
score was designated as a grade 3. For example, a patient with chronic heart failure more
than 6 months previously and portal hypertension without compensation (two grade 2
ailments) would have an overall comorbidity severity score of grade 3.

To investigate the integrity and quality of our comorbidity data, the inter-observer
variability and intra-observer variability were calculated. For this purpose, a second
researcher coded comorbidity on 60 randomly selected patients, and the initial researcher
coded 20 randomly selected patients twice.
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Table 1.

Characteristics

No. (%)

Characteristics

No. (%)

(Sub)sites
Lip
Oral cavity
Oropharynx
Nasopharynx
Hypopharynx
Larynx-glottic
Larynx-supraglottic
T-classification
T1
T2
T3
T4
N-classification
NO
N1
N2
N3
M-classification
MO
M1

123 (9.0%)
280 (20.4%)
152 (11.1%)

41 (3.0%)
137 (10.0%)
442 (32.2%)
196 (14.3%)

516 (37.6%)
369 (26.9%)
208 (15.2%)
278 (20.3%)

964 (70.3%)
145 (10.6%)
180 (13.1%)

82 (6.0%)

1354 (98.8%)
17 (1.2%)

Age categories
<50y
50-59y
60-69y
> 70y

Sex
Male
Female

Year of diagnosis
1981-85
1986-90
1991-95
1996-98

Prior malignancies
Yes
No

Treatment
Radiotherapy
Chemotherapy
Surgery
Surgery + PORT

Otherwise *

182 (13.3%)
367 (26.8%)
427 (31.1%)
395 (28.8%)

1088 (79.4%)
283 (20.6%)

296 (21.6%)
359 (26.2%)
416 (30.3%)
300 (21.9%)

133 (9.7%)
1238 (90.3%)

798 (58.2%)
8 (0.6%)
205 (15.0%)
250 (18.2%)
110 (8.0%)

*Otherwise: cryogenic or laser therapy; PORT: post operative radio therapy.

Statistical analyses

To investigate the quality of our retrospective ACE27 comorbidity data, the inter-observer

and intra-observer variability was determined by calculating kappa. A kappa value above

0.80 was interpreted as an almost perfect level of agreement. [17]

To investigate the univariate impact of the variables: primary tumor site, age at diagnosis,

sex, prior malignancies, comorbidity, and TNM classification on overall survival, Kaplan—

Meier curves and the log-rank test were used. The endpoint for overall survival was death

(of all causes).
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The Cox regression model was used to investigate the impact of all mentioned variables
on overall survival simultaneously. The Cox regression model can be written as:

H(t,X)= ho(t) * exp (B 1X1 + R 2X2 +.. + 3 nXn)

The reference hazard hy(t) is also known as the baseline hazard and is calculated in the
Cox model. The baseline hazard reflects the risk of dying for the individual patient at
certain point in time when all variables are equal to zero. Therefore, H(t,X) is the resultant
hazard or cumulative hazard and is based on the impact of each model variable of the
respected individual (8 ,X,) multiplied by the baseline hazard. The X is the covariate vector
and S is the regression coefficient. In this study, the regression coefficients of each
categorical variable reflect the additional risk for death (of all causes) adjusted for their
reference category to which the risk is set to 1.0. The reference category is the category
with the best prognosis. Since age is not a categorical but a continuous variable, the mean
population age (62.6 years) was set as the reference.

The predictive accuracy of the Cox regression model was determined by calculating the
concordance index (C-index). A C-index of 0.5 indicates that outcomes are completely
random, whereas a C-index of 1.0 indicates that the model is a perfect predictor. A
bootstrap procedure with 500 samples was used for internal validation by computation of
an unbiased estimate of the C-index [18].

In addition to comorbidity as a single entity, the same statistical approaches were
followed in an attempt to identify the impact of organ-system-specific comorbidity on
overall survival. To investigate the impact of the variables: primary tumor site, age at
diagnosis, sex, prior malignancies, comorbidity, and TNM classification on short-term-
mortality, backward and forward binary logistic regression analyses were performed. The
endpoint for short-term mortality was death (of all causes) within 6 months after
diagnosing the primary tumor.

The impact of organ system—specific comorbidity (categorized as described in the ACE27
manual) on short-term mortality was investigated with backward and forward binary
logistic regression analyses. In all analyses, only p values below .05 were considered
statistically significant. Calculations were performed in SPSS for Windows (version 16.0)
and R (version 2.7.0) (SPSS Inc, Chicago, IL).
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Results

Inter-observer and intra-observer variability

The kappa value for inter-observer variability of the ACE27 data was 0.89 (p < .01), and the
kappa value for intra-observer variability was 0.90 (p < .01). These findings indicate an
almost perfect level of agreement and conclude that the ACE27 is an instrument that
leaves little space for inconsistent data.

Prevalence, type, and severity of comorbidity conditions

From the 1371 reviewed patient charts, 87 charts (6.5%) did not contain enough
information to designate a proper ACE27 score. From the 1282 charts with information,
500 patients had comorbidity (36.4%). Some patients had multiple comorbid conditions,
resulting in a total of 835 scored comorbidity ailments. Cardiovascular disease, respiratory
disease, and gastrointestinal disease were observed most frequently. No patient had a
body mass index (BMI) above 38 (a grade 2 comorbidity), and no data regarding the
presence of acquired immune deficiency syndrome (AIDS) or human immuno-sufficiency
virus (HIV) positivity was encountered. Further results regarding prevalence and severity
of comorbidity are shown in Table 2.

Table 2.
Grade 1: mild Grade 2: moderate Grade 3: severe

Overall ACE27 score 239 (17.4%) 185 (13.5%) 76 (5.5%)
Specific ACE27 categories

Cardiovascular disease 276 (20.1%) 155 (11.3%) 8 (0.6%)

Respiratory disease 38 (2.8%) 33 (2.4%) 13 (0.9%)

Gastro-intestinal disease 45 (3.3%) 53 (3.9%) 0(0.0%)

Renal disease 9 (0.7%) 2 (0.1%) 0(0.0%)

Diabetes 36 (2.6%) 16 (1.2%) 2(0.1%)

Neurological disease 38 (2.8%) 17 (1.3%) 1(0.1%)

Pschycologic disease 7 (0.5%) 1(0.1%) 0 (0.0%)

Rheumatologic disease 13 (0.9%) 2 (0.1%) 0 (0.0%)

Substance abuse 44 (3.2%) 17 (1.2%) 9 (0.7%)

*n = 89 (6.5%), missing values due to absence of medical data.
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Impact of comorbidity on overall survival

In univariate analyses, all variables, except sex (p = .19) showed a significant relationship
with overall survival. There was a clear distinction between the 4 ACE27 comorbidity
severity grades regarding their impact on overall survival. For example, the 2-year survival
probability of a patient without comorbidity was 75.0%, against 67.0% for a patient with
grade 1 comorbidity. A 63.0% survival probability was seen in a patient with grade 2
comorbidity and 46.0% in a patient with grade 3 comorbidity. The univariate impact of
grade 3 comorbidity is comparable to the impact of a tumor classified as T4 or a neck
classified as N2. In 1-year and 5-year survival probabilities, comparable results were found
(Table 3).

The next step was to examine how these variables performed simultaneously in a
multivariate Cox-regression analysis. All variables, except sex (p = .43) remained significant
in the multivariate Cox model. The regression coefficients (exp[f8]) and 95% confidence
intervals of each variable are displayed in Table 4. In the multivariate analysis, the impact
of grade 3 comorbidity on overall survival remained comparable to a tumor classified as T4
or a neck classified as N2.
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Table 3.
Predictor Subcategory 1-year survival 2-year survival 5-year survival P-value log
probability probability probability rank
Site Lip 0.97 0.93 0.75 <0.01
Oral cavity 0.75 0.54 0.38
Oropharynx 0.78 0.58 0.39
Nasopharynx 0.81 0.68 0.56
Hypopharynx 0.69 0.45 0.33
Larynx glottic 0.92 0.85 0.70
Larynx supraglottic 0.86 0.73 0.50
Sex Male 0.85 0.72 0.54 0.19
Female 0.80 0.65 0.49
Age <50 years 0.92 0.81 0.67 <0.01
50-59 years 0.86 0.73 0.60
60-69 years 0.86 0.71 0.53
> 70 years 0.77 0.62 0.41
T-stage T1 0.94 0.89 0.74 <0.01
T2 0.89 0.74 0.54
T3 0.72 0.53 0.37
T4 0.67 0.43 0.27
N-stage NO 0.91 0.81 0.65 <0.01
N1 0.78 0.51 0.32
N2 0.67 0.43 0.28
N3 0.49 0.30 0.12
M-stage MO 0.85 0.71 0.54 <0.01
M1 0.15 0.08 0.00
Prior mal* Yes 0.85 0.62 0.38 <0.01
No 0.84 0.71 0.55
ACE -27 Grade 0 0.87 0.75 0.58 <0.01
Grade 1 0.81 0.67 0.53
Grade 2 0.79 0.63 0.44
Grade 3 0.64 0.46 0.25

Abbreviations; Prior mal: prior malignancies in the timeline before diagnosing the primary head and neck tumor
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Table 4.
Predictor Subcategory Regression P-value 95% Confidence
Coefficient (exp B) interval
Site Lip 1.000 <0.01
Oral cavity 1.580 1.18-2.11
Oropharynx 1.597 1.16-2.21
Nasopharynx 1.191 0.73-1.94
Hypopharynx 1.859 1.33-2.60
Larynx glottic 1.021 0.78-1.33
Larynx supraglottic 1.304 0.96-1.77
Sex Male 1.000 0.43
Female 0.939 0.80-1.10
Age Mean age [62.6 years] 1.000 <0.01
Above* 1.040 1.03-1.04
T-stage T1 1.000 <0.01
T2 1.325 1.12-1.57
T3 1.574 1.28-1.94
T4 2.002 1.64 -2.45
N-stage NO 1.000 <0.01
N1 1.452 1.18-1.79
N2 1.899 1.55-2.32
N3 2.440 1.88-3.16
M-stage MO 1.000 <0.01
M1 6.398 3.72-11.00
Prior Malignancies No 1.000 <0.01
Yes 1.723 141-211
ACE =27 Grade 0 1.000 <0.01
Grade 1 1.043 0.88-1.24
Grade 2 1.379 1.15-1.65
Grade 3 2.229 1.73-2.87

* For each year above mean age, 0.039 needs to be added to the regression coefficient and vice versa when
younger.
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Impact of organ system-specific comorbidity on overall survival

In univariate analysis, comorbidity from the cardiovascular system, respiratory system,
gastrointestinal system, endocrine (diabetes) system, neurological system, and substance
abuse system showed a significant relationship with overall survival. Comorbidity from the
rheumatologic system showed no significant impact (p = .16). Immunological disease
(AIDS/HIV), obesity (BMI >38), psychiatric, and renal disease were excluded from this
analysis because each system contained less than 11 patients and significant results were,
therefore, not expected.

In the multivariate regression analysis, comorbidity from the cardiovascular system,
respiratory system, and substance abuse remained significant variables with an impact on
overall survival, next to the variables: age at diagnosis, primary tumor site, TNM
classification, and prior tumors. Grade 3 comorbidity within these specific organ systems
had a regression coefficient of approximately 1.8 or higher (Table 5).

Figure 1.
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Table 5.

Predictor Subcategory Relative Risk (Exp(RB)) P-value

Site Lip 1.000 <0.01
Oral cavity 1.549
Oropharynx 1.589
Nasopharynx 1.249
Hypopharynx 1.929
Larynx glottic 1.038
Larynx supraglottic 1.323

Age Mean (62.2 years) 1.000 <0.01
Above* 1.042

T-stage T1 1.000 <0.01
T2 1.334
T3 1.533
T4 1.902

N-stage NO 1.000 <0.01
N1 1.482
N2 1.797
N3 2.524

M-stage MO 1.000 <0.01
M1 6.120

Prior Malignancies No 1.000 <0.01
Yes 1.652

ACE -27 cardiovascular Grade 0 1.000 <0.01
Grade 1 0.922
Grade 2 1.313
Grade 3 1.839

ACE27 respiratory Grade 0 1.000 <0.01
Grade 1 1.354
Grade 2 1.887
Grade 3 1.773

ACE27 substance abuse Grade 0 1.000 <0.01
Grade 1 1.966
Grade 2 3.952
Grade 3 3.232

* For each year above mean age, 0.041 needs to be added to the relative risk and vice versa when younger
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Impact of comorbidity and organ system-specific comorbidity on short-term mortality.
From 1371 reviewed patients, 78 patients (5.7%) died within 6 months after diagnosing
the primary head and neck tumor. In univariate analysis, the prognostic variables: age at
diagnosis, primary tumor site, TNM classification, and comorbidity had significant impact
on short-term mortality. Sex (p = .09) and prior tumors (p = .89) showed no significant
impact. Having established the univariate relationship between comorbidity and short-
term mortality, the next step was to see if it was possible to investigate the univariate
impact of organ-system specific comorbidity on short-term mortality. The organ systems,
as described in the ACE27 manual, were chosen as categorical variables. Univariate
analysis showed a (borderline) significant contribution from cardiovascular disease (p =
.05), respiratory disease (p < .01), gastrointestinal disease (p = .04), and diabetes (p = .03).
The most frequently observed comorbid conditions within these 4 organ systems were:
myocardial infarct grade 2 (11.5%), diastolic blood pressure grade 1 (7.7%), chronic
obstructive pulmonary disease (COPD) grade 2 (9.0%), ulcers grade 2 (6.4%), and diabetes
grade 1 (9.0%). Multivariate analyses were not performed because the subgroups for
these analyses contained too little data for a relatively short timeline.

Prognostic model update and internal validation

Based on the regression coefficients and the baseline hazard, which is calculated in the
Cox model, the expected survival for a new patient with HNSCC can be calculated by use
of the formula shown in the statistical section. Based on this formula, we built a user-
friendly interface for survival calculation, and visual graphic output is available through
specially designed, dedicated software (Figure 1). The C-index, based on 500 bootstrap
samples, was 0.73. This indicates a good predictive value of our Cox regression model.
Furthermore, this C-index means an improvement in accuracy of prognosis prediction over
our previous model.
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Discussion

This study shows that comorbidity impacts overall survival and short-term mortality of the
patient with newly diagnosed HNSCC. There is a clear distinction between the impact of
the four ACE27 comorbidity severity grades. Next to comorbidity, the variables prior
tumors, primary tumor site, TNM classification, and age at diagnosis remain significant
predictive covariates in the Cox regression model.

The limitations of the TNM classification as a predictive instrument were well described by
Byron J Bailey, Chairman of the Committee to study the TNM classification of the
Laryngeal Cancer Association [19]: “Physicians are focused on optimal treatment while
patients are interested in their prognosis, and the TNM is not designed to provide answers
to either set of questions. At the present time, the TNM system is neither a roadmap for
patient management nor is it a crystal ball with the answers sought by patients.”

To include treatment modalities as a prognostic variable in our model was not a part of
this study. First, in any index for prognostic stratification, choices between treatment
options that are not under control of the investigator will influence outcome. This
systematic error cannot be eliminated and is the reason this study is based on the
therapeutic nil hypotheses. Second, the choices between treatment options are partially
determined by variables that are already included in our model (e.g., TNM classification,
age at diagnosis, and comorbidity). The inclusion of treatment as an extra prognostic
variable would, therefore, introduce a significant bias.

In this study, comorbidity was scored according to the ACE27 manual. The kappa values
found in this study indicate that the ACE27 is an easy to use instrument that leaves little
space for inconsistent data. Our kappa values are in agreement with kappa values found in
the study of Paleri et. al. (0.81-1.00) [20]. From the 1371reviewed patient charts, 87
charts (6.5%) did not contain enough information to designate a proper ACE27 score. A
comparable percentage of patients without a comorbidity score were found in a study of
Singh et. al. using the KFI [21]. Comorbidity was present in 36.4% of our patients. This
percentage is consistent with findings in other studies where comorbidity among patients
with HNSCC ranged from 30% to 55% [3-5].
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Previous studies already described a few limitations of the ACE27. For example, whether a
patient is HIV positive or not contributes significantly to survival. This information,
however, will not always be found in the patient’s medical chart due to privacy reasons, as
was the case in this study. During data collection, we found other ailments that could
possibly affect survival but cannot be scored in the ACE27. Two examples are valvular
heart disease and chronic anaemia. Valvular heart disease can only be scored as ACE27
comorbidity, when it results in congestive heart failure or arrhythmia. In our medical
charts, valvular heart disease was seen, but in some cases without reporting the
consequence of this disease. For these patients, this could have resulted in a lower ACE27
score. Chronic anaemia is a condition that can affect treatment response and can aid or
introduce post-treatment morbidity, 2 conditions with a possible influence on overall
survival. Besides missing comorbid conditions in the ACE27, we were unable to code
comorbidity in the obese category. A BMI above 38 is not frequently seen in the general
Dutch population because Dutch people are relatively tall. Especially in an oncologic
population in which weight is frequently reduced, a BMI above 38 is highly unlikely.
Cardiovascular comorbidity, respiratory comorbidity, and substance abuse impact overall
survival. The clear distinction between the impact of the four ACE27 severity grades within
these organ systems was less discriminative than was encountered in overall comorbidity.
This was a direct result of the distribution of patients with comorbidity in these specific
organ systems. The difference in impact between absent comorbidity and present
comorbidity on overall survival, however, remained, especially in grade 2 and grade 3
ailments. Cardiovascular comorbidity, respiratory comorbidity, diabetes, and
gastrointestinal comorbidity showed a significant impact on short-term mortality.

Our findings form a stronger foundation for the implementation of identification and
optimization strategies toward comorbid conditions. In the Erasmus Medical Centre
(Rotterdam) a recent proposal was presented to perform pulmonary function testing in all
patients with HNSCC that are planned for major surgery. This allows the pulmonary
physician to optimize the pulmonary status of the patient preoperatively. It is our theory
that this change in preoperative management could lead to a better survival prognosis
(and fewer complications). Further optimization strategies towards comorbidity are
currently being explored, discussed, and implemented.
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Conclusion

In order to establish optimal treatment for head and neck cancer, clinicians need to be
aware of all the relevant factors that determine course and prognosis. It is possible to
predict survival in a new patient with HNSCC based on historic results from a dataset
analyzed with the Cox regression model. Our predictive model contained the prognostic
variables age at diagnosis, sex, TNM classification, prior malignancies, and primary tumor
site and is now extended with the prognostic variable comorbidity. This update allows the
model to predict a more accurate and individualized survival estimate.

The impact of comorbidity on the overall survival of a patient with HNSCC is comparable
to the impact of tumor size (T) and nodular metastasis (N). The results of the Cox
regression may be used in patient counselling, clinical decision-making, and quality
maintenance.

Comorbidity impacts short-term mortality as well. A differentiation into organ system-
specific comorbidity showed a significant impact from cardiovascular disease, respiratory
disease, gastrointestinal disease, and diabetes. These findings motivate us to have a
greater sense of awareness towards these diseases in the pre-treatment time-period.
Furthermore they form a stronger foundation for the implementation of identification and
optimization strategies towards comorbidity in patients with head and neck cancer.
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Internal and external validation

Abstract

Purpose Update and external validation of a prognostic model that is able to predict the
survival probability of newly diagnosed head and neck cancer patients.

Materials and methods The Leiden prognostic model is based on historical data of 1371
primary head and neck cancer patients, diagnosed and treated in the Leiden University
Medical Center, between 1981 and 1999. The model contains the predictors age, sex,
tumor site, TNM-classification, prior tumors and comorbidity. We updated the model with
follow-up data until January 2010. The updated model was then externally validated in
598 head and neck cancer patients from the Siteman Cancer Center/Barnes-Jewish
Hospital, St. Louis, Missouri, USA.

Results Median follow-up was 5.5 years (range 0-25.5). Only 2.5% of patients were lost to
follow-up. During follow-up 1099 (80.2%) passed away. Discrimination of the updated
prognostic model was good with a C-index of 0.73 after internal validation. The
discrimination was slightly lower in the external validation set (C- index 0.69). The
predicted 2-year and 5-year survival was satisfactory with some slight deviations from the
perfect calibration line.

Conclusions We used recent follow-up information to update the Leiden prognostic model

for newly diagnosed head and neck cancer patients. The model showed acceptably good
calibration and discrimination results in internal and external validation procedures.
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Introduction

An accurate prognostic assessment of the newly diagnosed head and neck cancer patient
can assist the treating physician in clinical decision making, patient information about the
likely outcome of disease and treatment evaluation. Physicians are often worried about
the accuracy of their assessment, because it is very difficult to determine the impact and
interaction of applicable factors on prognosis [1]. To aid the physician, statistical survival
analyses are mandatory.

We recently developed a prognostic Cox model that combines tumor specific predictors
(TNM-classification, tumor location) with patient specific predictors (age, sex, prior
tumors, and comorbidity) [2]. The prognostic model is based on the historical data of 1371
Dutch primary head and neck squamous cell carcinoma (HNSCC) patients and was
internally validated.

In this paper we describe the update of the Leiden prognostic model with new follow-up
and survival data, reaching until January 2010. Furthermore, the predictive accuracy of the
model is evaluated with an external validation.

The goal of the external validation is to study the performance of the prognostic model for
patients from a different population. The external validation population should be similar
to the development population in terms of index disease, but different from the
development population in terms of geographic location, historical time period, or other
important ways. For the purposes of assessing the external validation or generalizability of
the prognostic model, a dataset containing 598 primary HNSCC patients, diagnosed and
treated at the Siteman Cancer Center/Barnes-Jewish Hospital, St. Louis, Missouri, USA
from 1995 to 2000 was used.

To our knowledge it is the first time that a long-term-follow-up prognostic head and neck
cancer model is externally validated. If the Leiden prognostic model shows a good
predictive performance in American data, we will be more confident about the accuracy
and transportability of the model.
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Materials and methods

Sources of data

The Leiden prognostic model is based on historical data of 1371 consecutive primary
HNSCC patients diagnosed and treated at the Leiden University Medical Centre (LUMC)
between 1981 and 1999. All tumors are histologically confirmed squamous cell carcinomas
of the lip, oral cavity, oropharynx, nasopharynx, hypopharynx, glottic larynx or supraglottic
larynx. Data on age at diagnosis, sex, prior tumors, tumor location and the TNM-
classification were available from the hospital-based cancer registry system (ONCDOC).
The ONCDOC, established in 1969, contains patient, treatment, and follow-up data of all
oncological patients diagnosed and treated at the LUMC. Trained oncologic data managers
store these data and safeguard an adequate follow-up by contacting the general
practitioner and/or Registry of Births, Deaths, and Marriages when patients are lost.
Between 1990 and 1994 twenty-seven patients from Suriname were treated in the LUMC.
These patients returned to their home country afterwards and were therefore not
followed by ONCDOC. Correcting for these patients, our percentage lost to follow-up was
only 0.5%. Follow-up data for this study reaches until January 2010. Disease was always
staged or restaged according to the most up-to-date Union Internationale Contre le
Cancer (UICC) manual. Comorbidity (present before primary tumor diagnosis) was coded
according to the Adult Comorbidity Evaluation (ACE27) manual [3]. Prior tumors were
defined as “all preceding malignant tumors, except for basal cell or squamous cell
carcinomas of the skin”. All model covariables are considered categorical, except age
which is a continuous variable. The reference categories for categorical covariables are set
as the category with best prognosis. For example, the reference category for tumor
location is the lip and the reference category for tumor size (T-classification) is T1.

The secondary dataset for external validation consist out of 598 primary HNSCC patients,
diagnosed and treated at the Siteman Cancer Center/Barnes-Jewish Hospital between
1995 and 2000. All tumors are histologically confirmed squamous cell carcinomas of the
lip, oral cavity, oropharynx, glottic larynx or supraglottic larynx. Data on age at diagnosis,
sex, prior malignancies, tumor location, TNM-classification and comorbidity are complete.
Follow-up for all American patients reaches until November 2009.
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Statistical analyses

Update of the prognostic model

Information on survival status and follow up time for the individual Dutch patients was
updated until January 2010. For 89 patients information on comorbidity was missing.
Missing values were imputed once, allowing all observed values to be analysed. We used
the MICE algorithm, which works with R software. With these data a new Cox regression
model was fitted, that contained the same predictors as the original model. Regression
coefficients (), 95% confidence intervals and covariable importance values (Z-value) are
reported. The Z-value is the ratio of the regression coefficient to its standard error. A
covariable with a high Z-value corresponds to an important predictor for the model.

Model performance measures

The accuracy of the prognostic model was evaluated by means of calibration and
discrimination. Calibration defines if predictions correspond to the observed outcomes.
This is illustrated with calibration curves. Calibration was studied for 2-year and 5-year
survival. Patients were divided in eight groups based on the predicted risks. For each
group a Kaplan Meier curve was constructed to assess the observed survival probability,
that was plotted against the survival probability calculated by the prognostic model.
Discrimination defines the accuracy of the prognostic model in distinguishing between
patients who survive and who die. The Concordance index (C-index) is commonly used to
quantify discrimination. The C-index estimates the probability that in a randomly selected
pair of patients, the patient who dies first has the worst predicted outcome. A C-index of
0.5 corresponds to a model doing no better than random guessing. A value of 1.0
corresponds to a perfectly discriminating model.

Internal and external validation

Over-fitting is a common problem in prognostic modelling. An over-fitted model results in
low predictions being too low and high predictions, being too high. When a model is over-
fitted its predictive accuracy may be quite good when it is applied on the development
dataset, yet when the model is applied to a new dataset performance will be poor [4]. The
extent of over-fitting was estimated in an internal validation procedure using 100
bootstrap samples. A shrinkage factor was calculated and used to shrink the regression
coefficients to obtain well calibrated predictions for new patients [5-8]. The bootstrap
procedure also yielded an ‘optimism corrected’ C-index, which reflects the discriminative
capability of our updated prognostic model in new, similar patients.
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For external validation, the prognostic model with shrunken regression coefficients was
applied on the American data. A graphical representation of the complete external
validation approach is given in figure 1. For each American patient a prognostic index was
calculated based on the regression coefficients from the updated Leiden model. The
Leiden tertile cutoff values were used to divide the American cohort into three risk groups
(high-intermediate-low). Observed survival assessed as Kaplan Meier plots were compared
with the predicted survival of each risk group.

SPSS for Windows © version 17.0 and R version 2.11.1 were used to perform all statistical
and explorative analyses. Only p-values < .05 were considered statistically significant.
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Results

Update of the prognostic model

In table 1 the updated Cox model is presented. All predictors (except sex) have a
significant independent impact on overall survival. These results are similar to the
original prognostic model [1]. Looking at the Z-values, age at diagnoses is the
most important predictor. Other highly important predictors are T-classification,
N-classification, M-classification and comorbidity.

In figure 1 calibration of the model is shown. In general, predictions and observed
outcomes for 2 and 5-year survival showed a close proximity to the perfect
calibration slope (dashed line), which may be expected in development data.
Internal validation of the model resulted in a shrinkage factor of 0.95, indicating
relatively minor over-fitting. The ‘optimism corrected’ C-index was 0.73.

Figure 1 Validation plot of the Dutch prognostic model for 2-year survival and 5-year

survival.
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Table 1.
Covariable B Exp (B) Z-value P-value 95% CI
Age 0.04 1.04 13.33 <0.01 1.03-1.05
Gender Male [RC] -- 1.00 -- -- --
Female 0.08 0.92 0.98 0.33 0.79- 1.08*
Tumor Location Lip [RC] -- 1.00 -- -- --
Hypopharynx 0.62 1.85 3.75 <0.01 1.35-2.54
Oral Cavity 0.41 1.51 2.93 <0.01 1.14-1.99
Oropharynx 0.47 1.60 2.94 <0.01 1.17-2.17
Glottic larynx 0.04 1.04 0.28 0.78 0.81-1.33*
Supraglottic larynx 0.27 131 1.82 0.07 0.98-1.77*
Nasopharynx 0.18 1.20 0.75 0.46 0.74 - 1.94*
T-classification T1 [RC] -- 1.00 -- -- --
T2 0.25 1.28 291 <0.01 1.09-1.51
T3 0.42 1.52 3.99 <0.01 1.24-1.86
T4 0.67 1.95 6.64 <0.01 1.60-2.37
N-classification NO [RC] - 1.00 - - -
N1 0.37 1.45 3.53 <0.01 1.18-1.78
N2 0.61 1.85 6.07 <0.01 1.52-2.26
N3 0.90 2.45 6.76 <0.01 1.89-3.17
M-classification MO [RC] - 1.00 - - -
M1 1.85 6.36 6.70 <0.01 3.70-10.93
Prior tumors No [RC] -- 1.00 -- -- --
Yes 0.50 1.64 5.02 <0.01 1.34-2.00
Comorbidity ACE27 Grade O [RC]  -- 1.00 -- -- --
ACE27 Grade 1 0.06 1.07 0.86 0.45 0.91-1.25*
ACE27 Grade 2 0.34 1.39 3.96 <0.01 1.18-1.66
ACE27 Grade 3 0.79 2.21 6.38 <0.01 1.73-2.80

Abbreviations; RC: reference category; 8: unshrunken regression coefficient; Exp(f3): multiplicative factor; Z-value: ratio of

regression coefficient to its standard error; 95% Cl: 95% confidence interval, *: Not statistically significant.
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Comparison between Dutch and USA cohorts

In table 2, the patient, tumor and follow-up data of the Leiden and American cohort are
displayed. In general, the two datasets were fairly comparable. The American diagnostic
time frame is more recent (1995-2000) than the Dutch (1981-1999) and median follow up
is shorter (3.9 years and 5.5 years respectively). During follow-up, 80.2% of the Dutch
patients passed away and in the American cohort this percentage was 68.9%. Regarding
predictor distribution, some remarkable discrepancies are present. The majority (41.5%)
of American patients had an oral cavity tumor where this tumor location only represents
20.4% of the Leiden population. In the American dataset nasopharynx and hypopharynx
carcinomas are not present. In the Leiden population these tumor locations are present in
3.0% and 10.0% respectively.
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Table 2.
Covariable Explanation Dutch population  USA population
[N=1371] [N =598]
Age - Mean * SD 62.6+12.0 61.6+12.4
Gender Female N [%] 283 [20.6%] 171 [28.6%]
Male 1088 [79.4%) 427 [71.4%)
Tumor location Lip N [%] 123 [9.0%] 22 [3.7%)]
Oral cavity 280 [20.4%) 248 [41.5%]
Oropharynx 152 [11.1%] 91 [15.2%)]
Nasopharynx 41 [3.0%] -
Hypopharynx 137 [10.0%] -
Glottic larynx 442 [32.2%) 137 [22.9%]
Supraglottic larynx 196 [14.3%] 100 [16.7%)]
T-classification T1 N [%] 516 [37.6%) 217 [36.3%]
T2 369 [26.9%] 187 [31.3%]
T3 208 [15.2%] 101 [16.9%]
T4 278 [20.3%] 93 [15.6%]
N-classification NO 964 [70.3%] 381 [63.7%]
N1 145 [10.6%] 82 [13.7%]
N2 180 [13.1%] 118 [19.7%]
N3 82 [6.0%] 17 [2.8%]
M-classification MO N [%] 1354 [98.8%] 585 [97.8%]
M1 17 [1.2%] 13 [2.2%]
Prior tumors No N [%] 1238 [90.3%] 502 [83.9%]
Yes 133 [9.7%] 96 [16.1%]
Comorbidity* ACE27 Grade O N [%] 845 [61.6%) 256 [42.8%]
ACE27 Grade 1 251 [18.3%] 182 [30.4%]
ACE27 Grade 2 193 [14.1%) 118 [19.7%]
ACE27 Grade 3 82 [6.0%)] 42 [7.0%]
Diagnostic time frame Years 1981-1998 1995-2000
Follow-up time Years mean/median 7.5/5.5 5.4/39

Status at last follow-

Dead

Alive

N [%]

1099 [80.2%]
272 [19.8%]

412 [68.9%]
186 [31.1%]

Abbreviations; SD: standard deviation; N: number of patients; N[%]: percentage of total number of patients; * by imputation, the

missing comorbidity data of 89 patients was added to the data
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External validation
In figure 2 calibration of the updated model in American patients is shown. In general,
predictions and observed outcomes for 2 and 5-year survival showed good agreement
with some deviations from the perfect calibration slope (dashed line). Overall, predicted
and observed survival estimates of the whole American population were 0.66 versus 0.68
and 0.48 versus 0.51 respectively for two- and five-year survival.

Figure 2 Validation plot of the prognostic model with USA data for 2-year survival and 5-

year survival.
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In figure 3 the calculated survival curves of three American risk groups are compared to
observed Kaplan Meier survival curves. The Leiden tertile cut-off values distributed
American patients into a low-risk group (N = 142), an intermediate-risk group (N =238) and
a high-risk group (N = 218). The figure shows that our prognostic model is capable of
discriminating between American patients with a good, intermediate, and a poor
prognosis. This result is confirmed by the C- statistic of 0.69.

Survival curves for American patients,
divided into 3 groups according to the
tertile cutoffs of the Dutch develop-
ment data.

Teescay . Size of groups: low risk N=142,
" intermediate risk N = 238 and
high risk N = 218.

.. — . Kaplan-Meier estimates (solid curves)
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" " *==«. bilities (dashed curves).
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Figure 3 Graphical presentation of external validation performance
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Discussion

In this study we described the internal validation of an eight-variable prognostic Cox
regression model, developed from the survival experience of 1371 consecutive primary
Dutch HNSCC patients. Following internal validation, an external validation procedure was
performed in a cohort of similar patients treated in an American teaching hospital and
national cancer center.

When we take a closer look at the prognostic factors in the model, age, T-classification, N-
classification, M-classification, and (moderate to severe) comorbidity are the most
important predictors. These findings are in agreement with clinical experience and results
from prior research [3, 9-10, 12-16]. Sex did not influence prognosis. This is possibly
explained by the knowledge that the majority of our patients were younger than 65 years.
The average life expectancy for Dutch men and women younger than 65 is similar [17].
Mild comorbidity did not influence prognosis as well. This is explained by the fact that
mild comorbidity is usually a historical medical event without detrimental effects. When
necessary, mild conditions are usually treated with therapeutic or prophylactic medication
and then form little mortality risk to the patient. The impact of severe comorbidity on
overall survival however is comparable to the impact of a T4-tumor or N3 neck, stating the
importance of recognizing comorbidity in the HNSCC patient. Prior malignancies have an
independent impact on prognosis as well. There are however some considerations: the
model does not distinguish patients surviving an aggressive tumor (with potentially
detrimental effects on general health) from patients surviving a mild tumor. Second, the
time-interval between the prior tumor and the primary HNSCC is not taken into account. It
is clear that for example, the impact of a lung tumor 6 months prior to HNSCC diagnosis is
different from the impact of a lung tumor 8 years prior to HNSCC diagnosis. This problem
was previously addressed by Goeman et. Al [18]. Despite such limitations, an internal
validation procedure of our updated model showed acceptably good results and model
performance improvement (C-index of 0.73 versus 0.71).

We believe that a more accurate model performance is only possible when we expand the
development study population, preferably until we have included a large group of patients
from a time-frame with similar diagnostic and therapeutic options as today. This would
partially counter the “out-of-date principle” of the model. Another possibility to improve
model performance is to include additional prognostic covariables such as for example
severe malnutrition or oncological biomarkers as developed for HPV [11].
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In the published literature, prognostic model performance is frequently reported with
results from an internal validation procedure. The most stringent test for a model
however is a test of generalizability or external validation. External validations are much
less frequently reported since the procedure requires an independent group of patients
with similar characteristics as the development study population. These databases are
hard to come by. In this paper we described how an external validation of our model was
performed on a dataset of patients receiving care at an America cancer center.

At first glance, the Leiden and American datasets may seem quite similar. However, upon
closer inspection, the two datasets reveal some discrepancies that require attention. An
important finding is that the American dataset does not include patients with nasopharynx
or hypopharynx carcinomas. In the Leiden dataset, patients with tumors in these locations
are present in 3.0% and 10.0%, respectively. Another discrepancy is formed by the
inclusion period and the median follow up time. Dutch patients were included from 1981
to 1998 with a median follow-up time of 5.5 years. American patients were included from
1995 to 2000 with a mean follow-up time of 3.9 years. American patients are from a more
recent time frame (with more up-to date treatment regimes and modalities), do not
include hypopharynx tumors (with a generally worse prognosis), and have a shorter
median follow-up time. Despite these differences, good results were found in the external
validation procedure. A C-index derived from external data of 0.69, compared to a C-index
of 0.73 derived from internal data is a good result. Furthermore, the model appeared very
capable in discriminating between American patients with a good, intermediate, and bad
prognosis. Similar internal and external validation results were found in a study of
Campbell et. al. who found a C-index of 0.745 and 0.697 after internal and external
validation of a British breast cancer model [19].

External validation is essential before implementing prediction models in clinical practice.
The results of this study make us feel confident about the clinical applicability of the
Leiden prognostic model. But when is a prognostic model good enough? In 1993, the
American Joint Committee on Cancer (AJCC) communicated their vision on this question
and proposed criteria for prognostic factors and a prognostic system [20]. All predictors in
our model, except gender, are significant, independent and clinically important and
therefore comply with the AJCC prognostic factor criteria. Out of twelve criteria for a
prognostic system, the most important 9 criteria are upheld by the Leiden prognostic
model. E.g., treatment (AJCC) is not a prognostic factor in our model, because in any index
of prognostic stratification, choices between treatment options that are not under control
of the investigator will influence outcome. This systematic error cannot be eliminated.
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Furthermore, choices between treatment modalities are partially determined by variables
that are already included in our model (e.g, TNM- classification, age at diagnosis, and
comorbidity). The inclusion of treatment as an extra prognostic variable would, therefore,
introduce bias and confounding. Emerging diagnostic techniques such as molecular
testing and new imaging techniques (AJCC) are not incorporated as predictors in our
model. The TNM-classification however is partially derived from diagnostic imaging
results.

Conclusion

External validation is essential before implementing prediction models into clinical
practice. The Leiden prognostic model showed acceptably good calibration and
discrimination results in an external validation procedure. Therefore, we recommend the
use of this prognostic model for HNSCC patients receiving care at medical centers in
developed countries.
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Malnutrition

Abstract

Background Basic patient and tumor characteristics impact overall survival of head and
neck squamous cell carcinoma patients. Severe malnutrition, defined as weight loss > 10%
in the 6 months preceding primary tumor diagnosis, impact overall survival as well. Little
attention has been paid to the interaction between severe malnutrition and other
relevant prognostic covariables. This study investigates the impact of malnutrition on
short-term mortality and overall survival, together with the covariables age, tumor site,
gender, TNM-classification, comorbidity and prior tumors.

Methods 383 consecutive primary HNSCC patients, diagnosed and treated between 1995
and 1999 were followed until January 2010. Impact of covariables on short-term mortality
and overall survival was studied univariately with Kaplan-Meier curves and the log-rank
test. Cox-regression and binary logistic regression were used for multivariate analyses.

Results 28 (7.3%) patients were severely malnourished. All covariables, except gender and
prior tumors had significant impact on overall survival. The relative risk of severe
malnutrition was 1.8 and is comparable to the impact of a T2 tumor, a N1 neck or
moderate comorbidity. A univariate relationship between severe malnutrition and short-
term mortality was established.

Conclusions Severe malnutrition has major and independent impact on overall survival,

with a relative risk comparable to a tumor sized T2, a neck staged N1 or moderate
comorbidity. Early and continuous intervention of malnutrition is mandatory.
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Introduction

Cancer cachexia, chewing and swallowing impairments caused by the local tumour or by
side effects from oncological treatment can result in malnourishment of head and neck
cancer patients. A malnourished patient is at risk for increased morbidity and mortality.
Fortunately it is possible to diagnose and treat malnutrition, for example with (par) enteral
feeding [1].

Despite adequate diagnosis and intervention strategies there are patients who remain
malnourished during and after cancer treatment. These patients are at risk for adverse
events, such as body tissue catabolism and wound healing disorders. These patients
sometimes cannot tolerate optimal treatment. Adverse events and suboptimal treatment
are two risk factors for a decreased overall survival as well. Furthermore, adverse events
are associated with a decrease in quality of life, which has a proven negative impact on
overall survival. These detrimental effects of malnutrition are reported in previous
research [1-7].

Few studies are performed that quantify the impact of malnutrition on overall survival of
head and neck squamous cell carcinoma (HNSCC) patients, together with other
prognostically relevant predictors.

Recently we developed a Cox regression model that contains eight predictors with an
independent impact on overall survival of newly diagnosed HNSCC patients [8]. The
model combines tumour specific characteristics (TNM-classification and tumour location)
with patient specific characteristics (age at diagnosis, gender, comorbidity and prior
tumors) to assess an overall survival probability. The model is based on the historical data
of 1371 consecutive primary Dutch HNSCC patients and is validated internally and
externally (C-index 0.73 and 0.69 respectively). Malnutrition could be a potential ninth
predictor for this model.

This study investigates the univariate and multivariate impact of malnutrition on overall
survival using a subset (n = 383) of the original 1371 patients. Furthermore, analyses were
performed to identify a possible relationship between severe malnutrition and short-term
mortality.

Prognostic models can assist the head and neck oncologist in a more accurate prognosis
prediction of newly diagnosed patients which is useful in patient counselling, clinical
decision-making and quality maintenance.
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Materials and methods

Sources of data

For this study the data of 383 consecutive, primary HNSCC patients were available. All
patients were diagnosed and treated at the Leiden University Medical Centre (LUMC)
between January 1995 and December 1998. All tumours are histologically confirmed
squamous cell carcinoma of the lip, oral cavity, oropharynx, nasopharynx, hypopharynx,
glottic larynx or supraglottic larynx.

Patient data on age, gender, primary tumour site, prior malignancies and TNM-
classification were available from the hospital based cancer registry system (ONCDOC).
ONCDOC was established in 1969 and contains patient, treatment and follow-up data of
each cancer patient diagnosed in the LUMC. Trained oncological data managers store
these data and safeguard an adequate follow-up by contacting the general practitioner
and/or Registry of Births, Deaths and Marriages when patients are lost. As a result, no
patients were lost to follow-up until January 2010.

Age at diagnosis was considered a continuous predictor and all other predictors were
considered categorical. The TNM-classification was staged according to the 5™ edition of
the Union Internationale Contre le Cancer (UICC) manual. Prior tumours were defined as
all preceding malignant tumours except for basal cell and squamous cell carcinoma of the
skin. Comorbidity was coded according to the Adult Comorbidity Evaluation (ACE27)
where grade 0 corresponds to no comorbidity, grade 1 to mild comorbidity, grade 2 to
moderate comorbidity and grade 3 to severe comorbidity [8].

Data on weight loss were collected and recorded into the medical chart by a trained
dietician that especially joined the oncological head and neck team during the above
mentioned time-frame. The patient’s weight at cancer diagnosis was measured and
compared to the patient’s weight 6 months prior to diagnosis (these data were obtained
from anamnesis or from prior medical documentation when available). Based on the
weight difference, the dietician calculated a percentage of estimated weight loss in the 6
months preceding cancer diagnosis. For this study three variables were analysed: severe
malnutrition, defined as > 10% weight loss, moderate malnutrition, defined as a weight
loss of 5 to 10% and no malnutrition, defined as a weight loss of less than 5%.

Based on the therapeutic nil hypothesis, the type of treatment was not considered a
prognostic factor (see discussion) [9-12]. Treatment modalities are however reported in
table 1.
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Table 1.

Total population
N =383

No malnutrition
N =335

Moderate

malnutrition

Severe

malnutrition

N =20 N =28
No. [%] No. [%] No. [%] No. [%]
Tumour location
Lip 29 [7.6%] 29 [7.6%] 0 [0.0%] 0 [0.0%]
Oral cavity 94 [24.5%) 82 [21.4%) 4[1.0%) 8[2.1%)
Oropharynx 50 [13.1%] 42 [11.0%] 4[1.0%] 4[1.0%]
Nasopharynx 8[2.1%] 5[1.3%] 1[0.3%] 2 [0.5%]
Hypopharynx 42 [11.0%] 33 [8.6%] 3[0.8%] 6 [1.6%]
Glottic larynx 119 [31.1%] 110 [28.7%] 3[0.8%] 6 [1.6%]
Supraglottic larynx 41 [10.7%] 34 [8.9%] 5[1.3%] 2 [0.5%]
T-stage
T1 135 [35.2%] 129 [33.7%] 3 [0.8%] 3 [0.8%]
T2 95 [24.8%] 83 [21.7%] 9 [2.3%] 3[0.8%]
T3 48 [12.5%] 39 [10.2%] 3[0.8%] 6 [1.6%]
T4 101 [26.4%] 80 [20.9%] 5[1.3%] 16 [4.2%]
N-stage
NO 268 [70.0%] 239 [62.4%] 13 [3.4%) 16 [4.2%)
N1 27 [7.0%] 22 [5.7%] 1[0.3%] 4[1.0%)
N2 74 [19.3%] 60 [15.7%] 66 [1.6%] 8[2.1%]
N3 14 [3.7%] 14 [3.7%] 0[0.0%] 0[0.0%]
M-stage
MO0 377 [98.4%] 330 [86.2%] 20 [5.2%] 27 [7.0%]
M1 6 [1.6%] 5 [1.3%) 0[0.0%) 1[0.3%]
Gender
Female 94 [24.5%] 82 [21.4%] 5[1.3%] 7 [1.8%]
Male 289 [75.5%] 253 [66.1%] 15 [3.9%] 21 [5.5%]
Comorbidity
ACE27 Grade 0 182 [47.5%] 157 [41.0%] 14 [3.7%] 11 [2.9%]
ACE27 Grade 1 92 [24.0%) 80 [20.9%] 4[1.0%) 8[2.1%)
ACE27 Grade 2 57 [14.9%) 52 [13.6%] 2 [0.5%] 3 [0.8%]
ACE27 Grade 3 30 [7.8%] 24 [6.3%] 0[0.0%] 6 [1.6%]
No data 22 [5.7%] 22 [5.7%] 0[0.0%] 0[0.0%]
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Prior Tumours
No 339 [88.5%] 297 [77.5%] 19 [5.0%] 23 [6.0%]
Yes 44 [11.5%] 38 [9.9%] 1[0.3%] 5[1.3%]

Treatment type

Surgery 78 [20.4%] 77 [20.1%] 1[0.3%] 0[0.0%)
Surgery followed by RTx 106 [27.7%] 90 [23.5%] 6 [1.6%] 10 [2.6%]
Primary RTx 165 [43.1%] 144 [37.6%] 10 [2.6%) 11 [2.9%)
Chemotherapy 8 [2.1%] 6 [1.6%] 0[0.0%] 2 [0.5%]
Chemo radiation 23 [6.0%] 15 [3.9%] 3[0.8%] 5[1.3%]

Abbreviations; ACE27: Adult Comorbidity Evaluation 27, RTx: radiotherapy

Statistical analyses and endpoint definition

To investigate the univariate impact of the nine predictors on overall survival, Kaplan
Meier Curves and the Log Rank test were used. The endpoint for overall survival was
death of all causes.

Cox regression was used to investigate the impact of all predictors on overall survival
simultaneously. Only variables with a statistically significant impact in univariate analysis
were included in the Cox model. For each categorical predictor, the reference category
was set as the category with best prognosis. For example: T1 was the reference category
for T-classification and NO the reference category for N-classification.

To investigate the univariate impact of the nine predictors on short-term mortality, Kaplan
Meier curves and the Log Rank test were used. For malnutrition two subcategories were
used: severe malnutrition and no malnutrition (see results). Binary logistic regression
analysis was used for multivariate analysis.

All calculations were performed in SPSS for Windows © (version 17.0). Only p-values < .05
were considered statistically significant.
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Results

Explorative data analyses

The mean age at diagnosis was 62.9 years with a standard deviation of 11.8 years. The
majority of patients were male (75.5%). Severe malnutrition was encountered in 28
patients (7.3%). From these 28 patients, a majority had a T4 stage tumour (57.1%) and 1
patient (3.6%) had distant metastasis. Moderate malnutrition was encountered in 20
patients (5.2%).

A minority of patients had a preceding malignancy (11.5%). Comorbidity was found in 179
patients (46.7%) of whom 7.8% had severe comorbidity. Most tumours were located in
the glottic larynx (31.1%) and oral cavity (24.5%). Further distribution of tumour locations,
TNM classification and treatment modalities can be found in table 1.

The mean follow-up time was 6.4 years and the median follow-up time was 6.2 years.
None of the patients were lost to follow-up. During follow-up, 270 patients (70.5%)
eventually died. The remaining 113 patients (29.5%) were alive in December 2009. Short-
term mortality was encountered in 37 patients (9.7%).

Univariate analysis for overall survival

In univariate analysis, all variables except gender (p = .43) and prior tumours (p = .20),
showed a significant impact on overall survival. From the moment of primary tumour
diagnosis until 10 years after, a clear distinction between the overall survival of patients
with severe malnutrition and patients without malnutrition was present. Moderate
malnutrition showed a clear decrease in overall survival probability, starting two years
after primary tumour diagnosis. The two-year survival probability of severely
malnourished patients was 0.50, compared to 0.70 for patients with moderate
malnutrition and no malnutrition (p <.01). The 5-year survival probability of severely
malnourished patients was 0.36 compared to 0.45 and 0.57 for moderate malnutrition
and no malnutrition respectively (p < .01). After 10 years, patients with moderate
malnutrition showed almost comparable survival as patients without malnutrition. The
relative risk of severe malnutrition is comparable to the relative risk of a tumor classified
as T3 or a neck classified as N1.
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Figure 1 Kaplan Meier Curves showing univariate impact of malnutrition on overall survival

Multivariate analysis for overall survival

In multivariate Cox regression analysis, all variables except gender and prior tumors were
included. All included predictors, except tumor location showed a significant impact on
overall survival. The independent impact of severe malnutrition on overall survival is
comparable to a tumor classified as T2, a neck classified as N1 or moderate comorbidity
(ACE27 Grade 2). The hazard ratios, p-value and 95% confidence interval for all covariables
are displayed in table 2.
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Table 2.
Covariate B Exp (B) P-value 95% ClI
Age 0.05 1.05 <.01 1.03-1.06
Tumor Location Lip [RC] -- 1.00 -- -
Oral Cavity 0.28 1.33 0.38 0.59 - 3.02*
Oropharynx 0.46 1.57 0.50 0.66 - 3.70*
Nasopharynx 0.13 1.14 0.31 0.34 - 3.82%
Hypopharynx 0.63 1.86 0.17 0.77 - 4.48*
Glottic larynx 0.06 1.05 0.83 0.48 - 2.32*
Supraglottic larynx 0.49 1.55 0.32 0.65 - 3.70*
T-classification T1 [RC] -- 1.00 <.01 -
T2 0.46 1.59 1.08 - 2.33
T3 0.81 2.33 1.48 -3.67
T4 0.59 1.82 1.21-2.74
N-classification NO [RC] - 1.00 <.01 --
N1 0.66 1.91 1.16-3.14
N2 0.82 221 1.59-3.13
N3 1.24 3.40 1.82-6.34
M-classification MO [RC] - 1.00 <.01 -
M1 1.54 4.76 1.66 - 13.66
Malnutrition No [RC] -- 1.00 .03 -
5-10% weight loss -0.16 0.86 0.49 -1.50
> 10% weight loss 0.60 1.82 1.15-2.87
Comorbidity ACE27 Grade O [RC]  -- 1.00 <.01 -
ACE27 Grade 1 -0.06 0.94 0.68-1.30
ACE27 Grade 2 0.44 1.56 1.08-2.25
ACE27 Grade 3 0.91 2.49 1.60 - 3.88

Abbreviations; RC: reference category; Exp(B): multiplicative factor on the hazard; 95% Cl: 95% confidence

interval, *: Not statistically significant.
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Univariate analysis for short-term mortality

Since moderate malnutrition had no significant impact on overall survival in the first 24
months following primary tumor diagnosis, a significant impact form this group on short-
term mortality was not expected. In univariate analysis patients with moderate
malnutrition were therefore excluded. All covariables except gender (p = .98), prior
tumors (p =.89) and age (p =.32), showed a significant relationship with short-term
mortality. The 6 month survival probability of a severely malnourished patient was
significantly less (p = .03) than for a patient without malnutrition (86% and 92%
respectively).

Multivariate analysis for short-term mortality

In multivariate analysis, severe malnutrition did not impact short-term mortality (p = .30).
Expected important predictors such as M1 classification, T4 classification and severe
comorbidity did show significant impact on short-term mortality.
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Discussion

In this study a significant and independent impact of severe malnutrition on overall
survival of primary head and neck cancer patients was established. The relative risk of
dying for a severely malnourished patient is 1.8 times higher than for patients without
malnutrition. Kaplan Meier curves show a clear distinction between the overall survival
probability of severely malnourished patients and patients without malnutrition. This
distinction remains even 10 years after primary tumor diagnosis. Patients with moderate
malnutrition show a decreased overall survival probability as well, starting approximately
two years after primary tumor diagnosis. Since we have no specific causes of death for all
patients in this study, we can only speculate why this decrease starts after 24 months.
Perhaps delayed radiation effects or tumor recurrence can be the explanation.

Our findings emphasize the importance of identification and optimal treatment of
malnourishment before, during but also after cancer treatment. Regarding a preventive
strategy towards malnutrition we are in agreement with Meuric et. al, who presented a
“Good clinical practice in nutritional management of head and neck cancer patients” [15].

Severe malnutrition showed a significant impact on short-term mortality in univariate
analysis (additional risk of 6%). A multivariate relationship however could not be
established. This is likely explained by the low number of events (9.7%) making it difficult
to establish significance. Another explanation could be that most patients (66.7%) who
died within six months had distant metastasis.

In our consecutive cohort of 383 patients, a malnutrition incidence of 12.5% (n = 48) was
found. Literature reports an incidence ranging from 30 to 50% in head and neck cancer [1-
2,13-14]. The lower incidence in this study can be explained by the definitions for
malnutrition that we used, the absence of esophageal cancer as a primary tumor site and
the fact that our patients were consecutive (meaning that no selection or inclusion criteria
were used other than a primary HNSCC). Three recent studies that use similar definitions
for moderate and severe malnutrition, report a more comparable incidence of 16 to 19%
[3-4, 16]. Despite a variation in incidence, all studies conclude that malnutrition impacts
the overall survival of head and neck cancer patients. Little attention however has been
paid to the interaction between malnutrition and other predictors.
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Data on weight loss were gathered by a trained dietician that joined the oncological team
for this study. To calculate a weight loss percentage, she depended on anamnesis and
(when available) on weight data recorded in prior medical documentation. This
methodology comes with a possible uncertainty regarding the true percentage of weight
loss. There was however no other method available to get more precise results, especially
since there is no way of knowing which persons will develop a head and neck tumor in the
next six months.

Despite these limitations, results in this study were illustrative and significant and we feel
confident about the potential of (severe) malnutrition as a predictor for our existing
prognostic model. With extension of model predictors we attempt to get a more accurate
model performance. This is important because even for the very experienced head and
neck surgeons it remains a difficult task to assess the overall survival probability of a newly
diagnosed HNSCC patient. This difficulty exists because overall survival is determined by
the impact and interaction of multiple covariables. Statistical survival analyses, such as
performed in this study, can aid the physician.

To include treatment modalities as an extra prognostic variable in our prognostic model
was not a part of this study. First, in any index of prognostic stratification, choices
between treatment options that are not under control of the investigator will influence
outcome. This systematic error cannot be eliminated and is the reason this study is based
on the therapeutic nil hypotheses. Second, choices between treatment modalities are
partially determined by variables that are already included in our model (eg, TNM-
classification, age at diagnosis, and comorbidity). The inclusion of treatment as an extra
prognostic variable would, therefore, introduce bias and confounding.

Conclusion

Severe malnutrition has a significant and independent impact on overall survival of
primary head and neck cancer patients. There is a clear distinction between patients with
and without severe malnutrition from moment of diagnosis until 10 years after. This
emphasizes the importance of identification and optimal treatment of malnutrition
before, during and after cancer treatment.

A univariate relationship between severe malnutrition and short-term mortality was
established but a multivariate relationship could not be found.
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Introduction

Our most recent prognostic model (chapter three) showed acceptably good results in both
internal and external validation procedures. We believe that the model can be used in
medical centers located in developed countries. With use of specific software, designed by
Henk Jan van der Wijk (department of medical statistics and bioinformatics at the LUMC),
it was possible to create an interactive, on-line version of our model. The on-line software
generates an individual 5-year survival chart for your newly diagnosed HNSCC patient,
without the need for extensive statistical and mathematical knowledge. The model can be
accessed and used for free at: www.oncologiq.nl

Short tutorial for use of the on-line model

The software provides a user-friendly interface with a variables menu on the right side of
the screen. In this menu, the eight covariables of our prognostic model are present with
corresponding subvariables. By selecting the applicable covariables of your primary HNSCC
patients, an individual 5-year overall survival chart is generated and presented on the left
side of the screen. The X-axis presents the follow-up time in months after diagnosis and
the Y-axis the overall survival probability in
percentages. To make it easier, the
precalculated 1-year, 2-year and 5-year —
predictor values
S based on the
tumor and

patient specific
characteristics

overall survival probability is given.

By manually changing the subvariables in the
variables menu, the 5-year survival chart will
change with it immediately. It is therefore
possible to view the effect of, for example:
aging, tumor stage progression and

Supraglotlic laryrx

comorbidity progression (but also

. . . e - The baseline
regression!). In the chart variable section, it is _ il
possible to show the baseline survival function |+l liinil, can be shown

. . P by selecting this
curve of the entire population. option
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Examples

Survival curve for a 47-year old male with a T3N2MO oropharynx carcinoma, with a prior
tumor and ACE27 score 2 comorbidity. The 1-year and 5-year overall survival probability
for this patient is approximately 69% and 24% respectively.

Leiden prognostic HNSCC model version 2.0
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Survival curve for a 51-year old female with a TINIMO glottic larynx carcinoma. She had
no prior tumors or comorbidity. The 1-year and 5-year overall survival probability for this

patient is approximately 93% and 76% respectively.
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Software modifications / limitations

In all prognostic models presented in this thesis, age is considered a continuous variable
where the mean population age (62.2 years) serves as a reference with a relative risk of
1.0. The relative risk increases with 4% for each year above mean age and decreases with
4% for each year below mean age. At the moment, the on-line software only allows the
use of categorical variables. We therefore modified our model development database to
create six age-categories and new univariate and multivariate analyses were performed.
For illustrative purposes the relative risk of each age category (Cox regression) is shown in
table 1. The six age categories show an increasing impact on overall survival. The relative
risks of the other model covariables were hardly affected by this exercise. For example,
the most extreme relative risk change was seen in M1-stage (6.36 to 6.23). We therefore
believe that the online model is representable for the most up-to-date model in this thesis
(chapter three).

Table 1.

Covariable N Exp (B) P-value
Age <40 years 37 1.00 [RC] <.01

41-50 years 175 1.20

51-60 years 382 1.42

61-70 years 424 2.12

71-80 years 270 2.97

> 80 years 83 6.40

Abbreviations: RC: reference category; Exp (8): hazard ratio; N: number of patients

We welcome suggestions from other users to improve the program.
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Major cardiovascular complications

Abstract

Background Patients with head and neck squamous cell carcinoma (HNSCC) usually have a
history of tobacco and alcohol abuse. These 2 intoxications not only are main oncologic
risk factors but also show a strong causal relationship with certain comorbid conditions.
Examples are coronary artery disease, stroke, renal dysfunction, and heart failure, which
are all proven major risk factors for an adverse postoperative outcome after stressful non-
cardiac surgery. Preoperative identification of these conditions could lead to preventive
measures in patients with HNSCC that undergo extensive surgery. Preventing morbidity
and mortality is of medical and economical importance.

Methods All comorbidity of 135 consecutive patients with HNSCC that underwent
extensive oncologic and reconstructive surgery as the first form of treatment between
2001 and 2007 was investigated. Based on these data, a Lee Cardiac Risk Index (LCRI)
Score and an overall Adult Comorbidity Evaluation (ACE-27) severity score were
calculated. The predictive value of these scores and the American Society of
Anesthesiologists’ (ASA) classification toward major cardiovascular complication
development were investigated. Major cardiovascular complications were defined as:
cardiac death, nonfatal myocardial infarction, heart failure, and cardiac arrhythmias. The
impact of these complications on duration of hospitalization, medical costs, and short-
term mortality (defined as death within 6 months after primary tumor diagnosis) were
investigated as well. The cardioprotective effect of preoperatively prescribed beta
blockers and statins are discussed.

Results Twenty-two patients developed 23 major cardiovascular complications (16.3%). In
univariate and multivariate analyses, a higher LCRI score was associated with an increased
risk for major cardiovascular complications, as was an age >70 years (all values of p <.01).
The area under the receiver operating characteristics (ROC) curve (AUC) for the
multivariate model was 0.84, indicating a good prognostic value. In univariate and
multivariate analysis, a higher ACE-27 score was associated with an increased risk for
major cardiovascular complications, as was as age >70 years (all values of p <.01). The
AUC for this model was 0.84, indicating a performance similar to that of the LCRI score
model. No statistically significant results were found for the ASA scores (p = .38).
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Preoperative beta-blocker use showed a significant cardioprotective function in univariate
analysis, whereas statins did not. The mean duration of hospitalization was prolonged by 7
days in patients with a major cardiovascular complication. In economic terms, this means
a cost increase of at least 3500 Euros. None of the patients died during admission because
of a major cardiovascular complication. The short-term mortality rate was 11.1%, but no
specific cardiovascular cause of death was reported in these patients.

Conclusions Prevention of major complication occurrence after extensive HNSCC surgery is
of medical and economic importance. Our results show that the ACE-27 and the LCRI are
suitable instruments for preoperative major cardiovascular complication risk assessment.
Addition of the variable age >70 years shows an improvement in predictive value of both
instruments. Because of its simplicity we advise the implementation of the LCRI into
preoperative HNSCC screening protocols. We advise the exploration of low-dose long-
acting beta blockers as a preventive treatment strategy.
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Introduction

Patients with head and neck squamous cell carcinoma (HNSCC) are prone to develop
significant comorbidity mainly because of the high incidence of tobacco and alcohol
abuse, which are 2 main risk factors for HNSCC development.

Comorbidity can form a greater risk for morbidity and mortality than the primary tumor
and therefore requires attention in the course of the disease of a patient with HNSCC [1-4]
Examples of comorbid conditions that show a causal relationship with alcohol and tobacco
abuse are ailments from the cardiovascular, neurologic, and renal systems. Coronary
artery disease, stroke, renal dysfunction, and heart failure are proven major risk factors
for adverse postoperative outcome after stressful non-cardiac surgery [5]. Preoperative
identification of these conditions could lead to preventive measures to reduce
perioperative morbidity and mortality (eg, cardiovascular protective medication and
intensified perioperative management, including prolonged postoperative stay at the
intensive care unit).

Several instruments are at hand to stratify the risk for perioperative morbidity and
mortality in patients that require surgery. An instrument that is commonly used for this
purpose is the American Society of Anaesthesiologists (ASA) Physical Status Classification
System (ASA classification). A second instrument that has a proven predictive value
toward complication development, short-term mortality, and overall survival of the
patient with HNSCC is the Adult Comorbidity Evaluation (ACE-27) [2, 4]. The ACE-27 is an
extensive but thorough instrument that codes both the presence and the severity of organ
system-specific comorbidity. A third instrument with a high potential predictive value
toward major perioperative cardiovascular complication development is the Lee Cardiac
Risk Index (LCRI). The LCRI is a multivalidated and simple 6-item index that can easily be
implemented as part of a preoperative risk stratification protocol [5, 6]. The predictive
value of the LCRI for a patient population with primary HNSCC, however, is not
investigated in prior research.
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This retrospective study was performed to gain further insights into the type and severity
of comorbid conditions of patients with primary HNSCC requiring extensive oncologic and
reconstructive surgery. The collected comorbidity data were used to define an overall
ACE-27 and LCRI score. The predictive value toward major perioperative cardiovascular
complication occurrence of the ACE-27, LCRI, and ASA classification was researched. Major
cardiovascular complications were defined as: cardiac death, nonfatal myocardial
infarction, heart failure, and cardiac arrhythmias [5]. A comparison between predictive
performances was made to investigate which instrument is most suited to be integrated
into a preoperative risk stratification protocol.
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Materials and methods

Hospital Setting and Study Population

The Erasmus Medical Centre is a university hospital that serves a population of
approximately 3 million people in the south-western area of The Netherlands. It acts as a
tertiary referral centre for approximately 30 affiliated hospitals.

Our study population consists of 135 consecutive patients, diagnosed with a primary
squamous cell carcinoma of the oral cavity or oropharynx between September 2001 and
December 2007. All patients had extensive oncologic and reconstructive surgery as the
first line of treatment.

Sources of Data

The data, assessed at preoperative screening, for this retrospective study originated from
our computerized hospital information system. Information was collected by the first
author of this article, from referral letters, outpatient clinic letters, clinical discharge
letters, anaesthesiology reports, surgical reports, complication registration system,
laboratory database, chest X-ray reports, electrocardiogram (ECG) database, and
pathology reports.

Covariates Collected: Lee Cardiac Risk Index

The Lee Cardiac Risk Index (LCRI) consists of 6 items that define an overall Lee Index score:
Lee I: O risk variables; Lee IlI: 1 risk variable; Lee lll: 2 risk variables; and Lee IV: >2 risk
variables. Five risk factors are comorbid conditions: a history of ischemic heart disease
(angina pectoris and/or myocardial infarction), heart failure, history of cerebrovascular
disease, insulin-dependent diabetes, and kidney failure (preoperative serum creatinine >2
mg/dL). The sixth risk factor is a high-risk type of surgery [5, 6]. The variables of the LCRI
were scored when several criteria were met. Diabetes mellitus was coded in the patient
who used insulin or oral medication and in the patient with fastening blood glucose levels
>7.0 mmol/L or random blood glucose levels >11.0 mmol/L. Myocardial infarction was
coded when the patient had a history of myocardial infarction or when preoperative ECG
results showed signs of an old myocardial infarction. Angina pectoris was coded in the
presence of typical chest pain complaints.
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Patients with a history of bypass surgery or angioplasty were not coded when typical
angina pectoris cardiac complaints were absent. Heart failure was coded when patients
complained of dyspnea during exercise or dyspnea in rest, supported by physical
examination abnormalities suggestive for heart failure. Results from the golden standard
(preoperative echocardiography) were not available since this test is not a routine part of
preoperative testing in our hospital. Cerebrovascular accidents were coded in patients
with a history of transient ischemic attack or cerebrovascular ischemia or haemorrhage.

Renal disease was coded as defined by Lee when the preoperative serum creatinine level
was >160 pumol/L or 2.0 mg/dL. In addition to these LCRI variables, the patient’s age at
diagnosis was calculated and cardiac medication use (beta blockers and statins) was
coded. The hospital protocol considering chronic perioperative beta-blocker therapy
recommends a resting heart rate between 60 and 70 beats per minute, with dose
adjustments prior to surgery to achieve this target heart rate. Statins are prescribed and
dosed according to national guidelines [6].

All patients received the same form of surgical treatment. Type of treatment thus has no
discriminative value in our current risk analyses. Furthermore, head and neck surgery is
defined as surgery with an intermediate to high risk and is therefore not a contributing
factor to the Lee Index Score [7].

Covariates Collected: Adult Comorbidity Evaluation (ACE-27)

An overall comorbidity severity grade was designated according to the ACE-27 manual.
The overall comorbidity severity grade is defined by the highest-ranked single ailment
(coded as grade 1: mild decompensation; grade 2: moderate decompensation; or grade 3:
severe decompensation) except when 2 or more grade 2 ailments occur in different organ
systems. In this case, the overall comorbidity severity score is grade 3. For example, a
patient with chronic heart failure >6 months ago and portal hypertension without
compensation (2 grade 2 ailments) would have an overall comorbidity severity score of
grade 3. The first author of this report, who has substantial experience with comorbidity
coding, designated all ACE-27 scores.
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Covariates Collected: American Society of Anesthesiologists’ Classification of Physical
Status (ASA)

The ASA classification has been revised several times and has evolved into a widely used
and commonly accepted risk stratification instrument. The most recent ASA classification
is divided into 5 risk classes. Class | is designated to a normal healthy patient; Class Il
patients have mild systemic disease; Class Il patients have severe systemic disease; Class
IV patients have a life-threatening systemic disease; and Class V is designated to the
moribund patient who is unlikely to survive the operation. The ASA class is routinely
determined by the anesthesiologist in a preoperative anesthesiologic intake and recorded
in the patients’ medical chart. In most cases the ASA class data were therefore readily
available to us for analysis.

End-Point Definition

The primary end point for this study was the occurrence of major cardiovascular
complications from the timeframe between hospital admission and hospital discharge.
Major cardiovascular complications were defined as: cardiac death, nonfatal myocardial
infarction, heart failure, and cardiac arrhythmias. Myocardial infarction was coded when
ECG reports and positive serum troponine T levels could confirm the diagnosis. Heart
failure was coded when the radiologists confirmed the clinical diagnosis on chest X-rays.
Ventricular fibrillation was coded with an ECG-confirmed diagnosis. Primary cardiac arrest
and complete heart block did not occur.

The secondary end points for this study were duration of hospitalization, medical costs,

and short-term mortality (defined as death within 6 months after primary tumor
diagnosis).
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Statistical Analysis

The Pearson chi-square test was used for univariate impact analysis of the categorical
variables: age >70 years, LCRI, ASA class, and overall ACE-27 grade, on major
cardiovascular complication occurrence. A threshold of p < .05 in univariate analysis was
set for entering a multivariate analysis.

Multivariate analyses were performed with bivariate logistic regression (backward and
forward). Only values of p < .05 were considered to be statistically significant.
Performances of the LCRI risk model and the ACE-27 risk model were determined by
calculating the area under the receiver operating characteristics (ROC) curve (AUC), which
indicates how well a model orders patients with respect to their outcome (where 0.5
indicates no predictive value and 1.0 indicates perfect performance).

All calculations and descriptive statistics were performed in SPSS for Windows (version
16.0; Chicago, IL).

Results

Baseline Population Characteristics

Between July 2001 and December 2007, 135 consecutive patients had major oncologic
and reconstructive surgery because of a primary squamous cell carcinoma of the
oropharynx or oral cavity. The study population consisted of 80 men and 55 women. The
age of the patients ranged from 24 to 83 years, with a median age of 59 years.
Approximately 92% of the tumors were located in the oral cavity. Of all tumors, 89.6%
were in stage lll or stage IV. Surgery consisted of a combined mandibular approach,
followed by tumor resection, neck dissection, tracheotomy, and reconstruction with a free
vascularised tissue flap. The most frequently used donor site for reconstruction was the
radial forearm (54.1%), followed by the fibula (28.1%). Most patients (88.9%) received
postoperative radiotherapy. The average duration of the surgical procedure was 11.3
hours (anesthesiologic preparation included) with a minimum of 6.0 hours and a
maximum of 15.4 hours. Further demographic data and tumor characteristics are shown in
Table 1.
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Table 1.
Characteristics No. (%) Characteristics No. (%)
Year of diagnosis M-stage
2001 8[5.9] MO 135 [100.0%)
2002 22[16.3] M1 0 [0.0%]
2003 27 [20.0] Sex
2004 17 [12.6] Male 80 [59.3%]
2005 23[17.0] Female 55 [40.7%]
2006 19 [14.1] Age at diagnosis
2007 19 [14.1] <50 years 24 [17.8%)
Tumor location 50-59 years 48 [35.6%]
Oral cavity 124 [91.9] 60-69 years 41 [30.4%])
Oropharynx 11[8.1] > 70 years 22 [16.3%]
T-classification Treatment modalities
T1 2 [1.5] Surgery only 15[11.1%]
T2 35[25.9] Surgery followed by RTx 117 [86.7%]
T3 43 [31.9] Surgery followed by CRTx 3[2.2%]
T4 55 [40.7] Donor sites
N-classification Free radial fore arm 73 [54.1%]
NO 53 [39.3%] Anterolateral thigh 21 [15.6%)
N1 27 [20.0%] Fibula 38 [28.1%]
N2 53 [39.3%] Intoxications
N3 2 [1.5%] Tobbaco 105 [78.8]
Alcohol 71[58.5]

Abbreviations: RTx: radiotherapy; CRTx: chemoradiotherapy
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Major Cardiovascular Complication Occurrence

Twenty-two patients (16.3%) developed 23 major cardiovascular complications. A total of
4 myocardial infarctions were confirmed, 18 patients had heart failure, and 1 patient had
ECG-confirmed ventricular fibrillation.

Lee Index Scores and Major Cardiovascular Complication Prediction

The distribution of Lee Index Scores is shown in Table 2. Eighty-five of 135 patients (43.0%)
had a Lee Index Score of Il or higher. From the 22 patients that developed a major
cardiovascular complication, 16 patients (72.7%) had a Lee Index Score of Il or higher
(Table 3).

In univariate analyses, the LCRI was associated with an increased risk for major
cardiovascular complication development (chi-square = 22.5; p < .01). An age >70 years
showed a significant association as well (chi-square = 21.9; p <.01).

In the multivariate regression analysis, both the LCRI and age >70 years remained
significant variables. Relative risks are shown in Table 4. There is a clear distinction
between the impact of each Lee Index Score. A patient with a Lee Index Score Il has a 1.7-
fold higher risk for major cardiovascular complication development than that of a patient
with Lee Index score I. Our data indicate that a Lee Index Score above Il is associated with
an 11- to almost 12-fold higher risk.

In model performance analysis, the AUC for the Lee index alone was 0.73, indicating a
good predictive value. Addition of the variable age >70 years to the model showed an
improvement of the AUC to 0.84. This indicates the additional prognostic value of the

variable age.

Table 2.
LCRI No.[%] ASA No.[%] ACE-27 No. [%]
Leel 77[57.0] ASA1 19[14.1] Grade 0 41 [30.4]
Leelll 39[28.9] ASA2 71[52.6] Grade1 47 [34.8]
Lee lll 15[11.1] ASA3 19[14.1] Grade 2 36 [26.7]
Lee IV 4[3.0] ASA4 1[0.7] Grade 3 11[58.1]

No Data 25[18.5]

Abbreviations: LCRI, Lee Cardiac Risk Index; ASA, American Society of Anesthesiologists; ACE-27, Adult Comorbidity Evaluation.
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ACE-27 Severity Grades and Major Cardiovascular Complication Prediction

The distribution of overall ACE-27 severity grades is shown in Table 2. This distribution is
based on a total of 153 identified preoperative comorbid conditions (Table 5). From the 22
patients who developed a major cardiovascular complication, 14 patients (63.4%) had an
ACE-27 grade >1. In univariate analyses the ACE-27 was associated with an increased risk
for major cardiovascular complications (chi-square = 18.6; p < .01).

In the multivariate regression analysis both the ACE-27 and age >70 years remained
significant variables. Relative risks are shown in Table 4. There is a clear distinction
between the impact of each ACE-27 severity grade. A patient with grade 1 comorbidity has
a 5.7-fold higher risk for major cardiovascular complication development than that of a
patient without comorbidity. Both moderate and severe decompensations are associated
with at least a 9.5-fold higher risk.

In model performance analysis, the AUC for the ACE-27 alone was 0.75, indicating a good
predictive value. Addition of the variable age >70 years to the model showed an
improvement of the AUC to 0.84 and is similar to the LCRI model.

ASA Classification and Major Cardiovascular Complication Prediction

The distribution of ASA scores is shown in Table 2. From 135 patients, 110 (81.5%)
designated ASA classifications were available for statistical analysis. In the remaining 25
patients, for unknown reasons, no ASA score was reported.

In univariate analysis, the ASA classification did not show a significant relationship
between major perioperative cardiovascular complications (chi-square = 3.1, p = .38).

Table 3.
Major cardiovascular complications No. [%] Lee index score No. [%]
Acute myocardial infarction 4[3.0] I:Orisk variables 1[25.0]
II: 1 risk variable 2 [50.0]
I1I: 2 risk variables 1[25.0]
IV: > 2 risk variables NA
Heart failure 18[13.3]  I: Orisk variables 51[27.8]
Ventricular fibrillation / cardiac arrest 1[0.7] lll: 2 risk variables 1[100.0]
Complete heart block DNO NA NA

Abbreviations: DNO, did not occur; NA, not applicable.
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Influence of Preoperative Cardiovascular Medication

In our study population, 24 patients used prescribed beta blockers before surgery. From
these 24 patients, 4 patients developed a major cardiovascular complication (16.7%).
Twenty-eight patients used prescribed statins before surgery. From these 28 patients, 10
patients developed a major cardiovascular complication (35.7%).

Univariate analysis confirmed the cardioprotective effect of beta-blocker use, whereas
statin use showed no significant protective relationship (chi-square = 0.00; p = .99; chi-
square = 8.5; p < .01, respectively).

Table 4.
LCRI and age above 70 model No. [%] p value  Adjusted Hazard Ratio
Lee index score | 77 [57.0] <.01 1.0[RC]
Lee index score Il 40 [29.6] 1.7
Lee index score IlI 14 [10.4] 11.5
Lee index score IV 41[3.0] 11.8
Age <70 years 113 [83.7] <.01 1.0[RC]
Age > 70 years 22 [16.3] 8.5
ACE-27 and age above 70 model N [%] p value  Adjusted Hazard Ratio
ACE-27 Grade 0 41 [30.4] <.01 1.0[RC]
ACE-27 Grade 1 47 [34.8] 5.7
ACE-27 Grade 2 36 [26.7] 9.5
ACE-27 Grade 3 11[8.1] 36.0
Age <70 years 113 [83.7] <.01 1.0[RC]
Age > 70 years 22 [16.3] 7.6

Abbreviations; RC; reference category
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Prolongation of Hospitalization and Short-Term Mortality

The mean duration of hospitalization for patients without any perioperative complication
(n =87) was 18 days (range, 10-44 days). Patients with a perioperative major cardio-
vascular complication (n = 22) had a mean hospitalization of 25 days (range, 13—110 days),
which means an average hospitalization prolongation of 7 days. Nine patients had a
prolonged stay on the intensive care unit, 1 patient was admitted to a cardiac care unit,
and the remaining 11 patients were transferred to the ENT ward where the consulting
cardiologist prescribed diuretics and cardiac medication and performed cardiologic follow-
up.

It is important to mention that during admission, none of the patients died because of

a major cardiovascular complication. Follow-up data showed a short-term mortality rate
of 11.1%. The causes of death in these 15 patients were tumor recurrence or metastasis in
8 patients, septic shock in 4 patients, and unknown or multifactorial in 3 patients.

Table 5.
Grade 1: mild Grade 2: moderate Grade 3: severe

Overall ACE27 score 47 [34.8%)] 36 [26.7%] 11 [58.1%]
Specific ACE27 categories

Cardiovascular system 42 [27.4%] 17 [11.1%] 3 [2.0%]

Respiratory system 10 [6.5%] 5[3.3%] 0 [0.0%]

Gastro-intestinal system 7 [4.6%] 8 [5.2%] 0 [0.0%]

Renal system 1[0.7%] 0 [0.0%] 0 [0.0%]

Endocrine system 22 [14.4%) 4[2.6%] 1[0.7%])

Neurological system 10 [6.5%] 2 [1.3%] 0[0.0%]

Psychiatric 3[2.0%] 1[0.7%] 0[0.0%]

Rheumatological system 0[0.0%] 0 [0.0%] 0 [0.0%]

Immunological system ND ND ND

Prior malignancy 3[2.0%] 1[0.7%] 0 [0.0%]

Substance abuse 4[2.6%] 7 [4.6%)] 1[0.7%])

Body weight 0 [0.0%] 1[0.7%] 0[0.0%]

Abbreviations: ND: no data on Immunological disease (AIDS / HIV) due to privacy reasons

87



Major cardiovascular complications

Discussion

Patients undergoing non-cardiac surgery can be at high risk of life-threatening cardiac
complications [8]. In general, the risk for perioperative complications depends on the
condition of the patient before surgery, any comorbidities, and the invasiveness and
duration of the surgical procedure. Specifically, cardiac complications can be expected in
patients with documented or hidden coronary artery disease, heart failure, or aortic valve
disease, and who undergo procedures that are associated with prolonged hemodynamic
or cardiac stress. Because of the strong causal relationship between these comorbid
ailments and alcohol and tobacco abuse (2 main risk factors for HNSCC as well), major
cardiovascular complications can be expected in the patient with HNSCC who undergoes
extensive surgery. In this study, this was illustrated by a major cardiovascular complication
rate of 16.3%. This percentage is slightly higher than derived incidences from literature,
ranging from 7.0% to 13.0%. This could be explained by the heterogeneity of these study
populations (less stages Ill and IV tumor and inclusion of larynx carcinoma) and a different
definition of major cardiovascular complications than that formulated by Lee [4,9,10]. The
prevention of life-threatening perioperative complications is of medical and economical
importance. Preoperative identification of significant risk factors should therefore be a
priority. For this purpose, several instruments are available to us. The ASA classification is
a widely used anesthesiologic instrument and the ACE-27 has proven to be a valid
instrument, with strong association toward complication development and overall
survival. Despite the good predictive value of the ACE-27, its specific association with
major cardiovascular complications was not investigated in previous studies.

In this study, the predictive value of the LCRI was investigated and compared with the
predictive value of the ASA classification and the ACE-27. Both the Lee Index and ACE-27
showed a strong and comparable association between major cardiovascular complication
developments, whereas the ASA classification did not. The latter likely reflects the fact
that the majority of our patients had medical comorbidities, making them ASA class Il or
class lll. This skewed the data, making it difficult to establish significance. Another
explanation can be that different anesthesia providers tend to assign different scores to
the same patient, making it a more subjective instrument [11-12]. Furthermore, the term
“systemic’’ can cause confusion. For example, myocardial infarction is a local disease, so a
patient with a recent or old myocardial infarction in the absence of any other systemic
disease does not truly fit in any category of the ASA classification.
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Comparable predictive performances of the ACE-27 and Lee Index were not expected.
Although 5 of the 6 Lee Index variables are comorbid conditions that can more or less be
coded in the ACE-27 as well, the presence of other comorbid conditions without a
relationship toward major cardiovascular complications has contributed to higher overall
ACE-27 grades. For example, in 38 patients with a Lee Index Score | (0 risk variables), the
ACE-27 was grade 1 or higher. The most frequently observed comorbid conditions in these
38 patients were: hypertension grade 1, chronic obstructive pulmonary disease (COPD)
grades 1 and 2, and hepatic disease grade 2. These comorbidity conditions are correlated
with alcohol and tobacco abuse just as major cardiovascular complications.

This study was based on historical data without a predefined study protocol for
registration of important prognostic variables. Despite the extensive sources available to
us, it is therefore possible that some complications were missed or that some comorbid
conditions were unrecognized. Another limitation is the absence of routine repeated
serum troponin-level testing in our patients. Silent cardiovascular complication occurrence
(complications without clinical symptoms) was not identified as such.

Although none of the patients died during admission, the short-term mortality rate for this
study population was 11.1%. No cardiovascular causes of death could be determined in 12
patients and the cause of death remained unclear in 3 patients. Despite these findings we
believe that risk factors for major cardiovascular complication development can
contribute to mortality and require appropriate attention and treatment.

Several treatment strategies have been developed with the aim of safely reducing the
occurrence of major cardiovascular complications. Most strategies use drugs, including
statins and beta blockers that affect plaque stability or myocardial oxygen balance, or
both [13-16]. Beta blockers improve myocardial oxygenation by decreasing heart rate and
myocardial contractility, and promote coronary plaque stability by reducing mechanical
and shear stresses [17-18]. A recent randomized controlled trial (Dutch Echocardiographic
Cardiac Risk Evaluation Applying Stress Echo [DECREASE IV]) demonstrated that bisoprolol
treatment, begun 1 month preoperatively and titrated to heart rate, significantly reduced
the incidence of perioperative cardiac death and myocardial infarction, without increasing
morbidity or non-cardiac mortality [19]. The POISE (PeriOperative Ischemic Evaluation)
trial supports the results of DECREASE and other trials of long-acting agents in reducing
perioperative cardiac events, although with an increased incidence of stroke.
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As the authors of POISE show, other randomized trials of acute initiating high-dose beta
blockers immediately before surgery have also shown an increased stroke rate. However,
contrary to these findings, the incidence of perioperative stroke in a low-dose bisoprolol
regimen started at least 7 days before surgery in the DECREASE trials was 0.4% of 3994
patients, similar to that with placebo therapy. In our hospital, the patients’ preoperative
medication is routinely continued during admission (anticoagulants excepted when
cardiologic consent is given). To prevent medication discontinuation during admission,
patients that are unable to take oral medication receive intravenous or nasogastric tube
medication until they are able to switch back. In our retrospective evaluation, no
withdrawal or change in type and dose of beta-blockade and statin use was found. The use
of beta blockers was associated with less major cardiovascular complications. Based on
this finding and the findings in the POISE and DECREASE trials we believe that it is
worthwhile to investigate the protective function of bisoprolol in patients with surgically
treated head and neck cancer.

Patients that developed a major cardiovascular complication had a mean prolongation of
hospitalization of 7 days. In economic terms, prolongation of hospitalization on our ENT
ward results in additional uncorrected costs of at least 500 Euros each day. When we
would be able to prevent the occurrence of a major cardiovascular complication, this
could mean an average cost reduction of at least 3500 Euros per patient. This emphasizes
the additional economic benefit of complication reduction next to the medical
importance.

Conclusions

Prevention of major complication occurrence after extensive head and neck cancer
surgery is of medical and economical importance. Identification of risk factors for major
complication development in the preoperative timeframe can lead to a greater awareness
in the treating physician and possibly allow preventive measures before surgery takes
place. Our results show that the ACE-27 and the Lee Cardiac Risk Index are suitable
instruments for preoperative major cardiovascular complication risk assessment. Addition
of the variable age >70 years shows an improvement in predictive value of both
instruments.

Because of its simplicity and brevity in use, we advise the implementation of the Lee

Cardiac Risk Index into preoperative HNSCC screening protocols. We advise the
exploration of low-dose, long-acting beta blockers as a preventive treatment strategy.
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RSF versus Cox regression

Abstract

Background Electronic patient files generate an enormous amount of medical data. These
data can be used for research, such as prognostic modelling. Automatisation of statistical
prognostication processes allows automatic updating of models when new data is
gathered. The increase of power behind an automated prognostic model makes its
predictive capability more reliable. Cox proportional hazard regression is most frequently
used in prognostication. Automatisation of a Cox model is possible, but we expect the
updating process to be time-consuming. A possible solution lies in an alternative modeling
technique called random survival forests (RSFs). RSF is easily automated and is known to
handle the proportionality assumption coherently and automatically. Performance of RSF
has not yet been tested on a large head and neck oncological dataset. This study
investigates performance of head and neck overall survival of RSF models. Performances
are compared to a Cox model as the “gold standard.” RSF might be an interesting
alternative modeling approach for automatisation when performances are similar.

Methods RSF models were created in R (Cox also in SPSS). Four RSF splitting rules were
used: log-rank, conservation of events, log-rank score, and log-rank approximation.
Models were based on historical data of 1371 patients with primary head-and-neck
cancer, diagnosed between 1981 and 1998. Models contain 8 covariates: tumor site, T
classification, N classification, M classification, age, sex, prior malignancies, and
comorbidity. Model performances were determined by Harrell’s concordance error rate,
in which 33% of the original data served as a validation sample.

Results RSF and Cox models delivered similar error rates. The Cox model performed
slightly better (error rate, 0.2826). The log-rank splitting approach gave the best RSF
performance (error rate, 0.2873). In accord with Cox and RSF models, high T classification,
high N classification, and severe comorbidity are very important covariates in the model,
whereas sex, mild comorbidity, and a supraglottic larynx tumor are less important. A
discrepancy arose regarding the importance of M1 classification (see Discussion).

Conclusion Both approaches delivered similar error rates. The Cox model gives a clinically
understandable output on covariate impact, whereas RSF becomes more of a “black box.”
RSF complements the Cox model by giving more insight and confidence toward relative
importance of model covariates. RSF can be recommended as the approach of choice in
automating survival analyses.
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Introduction

An important question that the newly diagnosed patient with head and neck cancer will
most likely ask his or her physician is: ““How are my survival chances?”” The answer to this
question is not that simple because it is based on the impact and interaction of multiple
factors. Roughly, these factors can be divided into 3 main categories: tumor-specific,
patient-specific, and treatment-specific. Even for the most experienced head and neck
surgeon, it remains a difficult task to determine the impact and relevance of each
applicable covariate on overall survival.

To aid the physician in this survival prediction dilemma, there are statistical survival
analyses. The most popular and broadly used survival analysis is the Cox proportional
hazards regression (Cox model). Our most up-to-date survival model is a Cox model
containing 8 covariates: tumor location, tumor size (T classification), regional metastasis
(N classification), and distant metastasis (M classification), sex, age at diagnosis, prior
malignancies, and comorbidity severity (Adult Comorbidity Evaluation-27 [ACE-27]). This
Cox model is based on the historical data of 1371 Dutch patients with primary head and
neck squamous cell carcinoma and is validated internally by use of a bootstrap procedure.
The predictive accuracy of the model is illustrated by a Harrell’s concordance index (C-
index) of 0.73 [1].

To further improve individualized prognosis prediction, we need to enhance the
performance of our Cox model. We believe that this can be achieved in multiple ways. The
fist method is addition of covariates with a significant impact on overall survival. This
method was recently illustrated by the addition of comorbidity as a covariate in our Cox
model, which resulted in a modest but significant accuracy improvement of 3.0% [1, 2].
The second method is extension of the original database to increase power and to create a
more heterogeneous study population. This is a worthwhile but time-consuming effort,
especially in a single-center study setting.

Perhaps a solution lies in the introduction and implementation of electronic patient files
(EPFs). When an EPF is organized to collect standardized medical data that can
automatically be exported into a study database, it can greatly assist in prognostic
modeling. First of all, a process of extracting patterns from data, called ‘data mining’
allows extrapolation of relevant covariates hidden in the EPF-generated database in an
automated fashion. Second, by automatisation of the survival analysis itself, periodic
feedback on model performance can be given after the addition of newly identified
covariates and additional patient data.
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Automatisation of the generally used Cox model is possible but will require substantial
subjective input from the user when it is applied to a dataset in which covariates are
highly interrelated. Perhaps other survival analyses that deliver accurate predictive
models are more suited for automatisation. In this article, we therefore explore a
relatively new survival analysis from data mining, called random survival forests (RSFs).
RSF is derived from the Random Forest Modeling technique, introduced by Breiman in
2001 [3]. RSF proved to be useful in the determination of risk factors for disease-free
survival of patients with breast cancer and uncovered highly complex interrelationships
between covariates in a coronary artery study [4, 5]. Furthermore, RSF is a survival
analysis that can easily be automated. To our knowledge, it is the first time that RSF has
been applied to a large historical head and neck cancer dataset and is, therefore,
considered to be a novel approach.

Study Objectives. The main purpose of this study was to test the predictive performance of
RSF models and compare them with the performance of the Cox model as a “gold
standard.” When RSF delivers a better or comparable predictive performance, it can be
the survival analysis of choice for automatisation. The second purpose of this study was to
gain further insights into the relative importance of each model covariate according to
each modelling technique.
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Materials and Methods

Cox Proportional Hazards Regression (Cox Model)

The Cox model is the most general of regression models because it is not based on any
assumptions concerning the nature or shape of the underlying survival distribution. The
Cox model can be written as:

h(t,x)= ho(t) * HR = ho(t) * exp *1P1*%2P2" " XmPr)

Consider the model to consist of 2 parts. First, the baseline hazard hy(t) describes the
hazard (risk of dying) at a specified point in time for a reference patient with all covariate
values equal to 0.

Second, effect parameters (B, B,,..., Bm) describe how the hazard varies in response to the
models’ covariates (X;, X,,..., Xm) and this is expressed as (X181 + X2B2,....XmBm)- The model
can be linearized by dividing both sides of the equation with hg(t) and then taking the
natural logarithm of both sides. Then the model is written as:

log h(t,x) = logho(t) + X1B1 + X585 + ... + XimBm

Because the functional form of the baseline hazard is not given but determined from the
data, the Cox model is called semi parametric. A parametric form for the effect of the
covariates on the resultant hazard, however, is assumed as follows:

1. A multiplicative relationship between the underlying hazard function and the log-
linear function of the covariates exists. This assumption is called the proportionality
assumption. In practical terms, it is assumed that any 2 subjects have hazard functions
whose ratio is a constant proportion that depends on the covariates and not on the
time.

2. Thereis a log-linear relationship between the independent covariates and the
underlying hazard function.

3. The effect of the covariates is the same at all times.
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In this study, the Cox model was created in SPSS for Windows (version 16.0) and in R
(version 2.10.0). The 8 covariates for the Cox model were significant in prior univariate
analyses. Tumor location, tumor size (T classification), regional metastasis (N
classification), distant metastasis (M classification), age at diagnosis, sex, prior tumors, and
comorbidity severity (ACE-27 grade) were considered categorical covariates with their
reference category set as that covariate with the best prognosis. Age at diagnosis was
considered a continuous covariate.

As in a multiple regression, the p value was used as a criterion to decide whether a
covariate was statistically significant (p <.01) or not (p >.01). The Z-statistic was used to
determine which covariates were most informative. The Z-value marks the ratio of each
regression coefficient to its SE within the Cox model. High positive Z-values indicate
informative covariates.

Random Survival Forests

RSF is an ensemble tree method for the analysis of right censored survival data. In RSF,
randomization is introduced in 2 forms. First, a randomly selected bootstrap sample
(approximately 67% of the original data) is used for growing the tree. This bootstrap
sample can be seen as the root of the tree. Second, the root is split into 2 daughter nodes
by using a splitting rule on a randomly selected covariate. The split is the best when
survival difference between the daughter nodes is maximized. Eventually, as the number
of tree nodes increases with every split, and dissimilar cases become separated, each
node in the tree becomes homogeneous and is populated by cases with similar survival. In
the RSF algorithm implemented in this paper, the tree reaches a saturation point when a
terminal node (the most extreme node in a saturated tree) has at least 1 death with
unique survival times. By grouping hazard estimates from terminal nodes, a cumulative
hazard function for the tree can be calculated. In this study, 1000 trees were grown in a
first trial to generate the ensemble cumulative hazard. Results were later compared to a
replication process with 100 trees to reduce computation speed. The ensemble
cumulative hazard function is produced by the average over all trees (Figure 1) [5, 6].
Version 3.6.0 of the RSF R-package provides 4 splitting rules to choose from [6]. (1) The
log-rank splitting rule splits the nodes by maximization of the log-rank test statistic. The
larger the value, the greater the difference between the 2 groups and the better the split
is [7, 8]. (2) The conservation-of-events splitting rule splits the nodes by finding daughter
nodes closest to the conservation-of-events principle. This principle states that the sum of
the estimated cumulative hazard function over the observed time points must equal the
total number of deaths. The value is small if the 2 groups are well separated (Naftel,
Blackstone, and Turner, unpublished notes). (3) The log-rank score splitting rule, which
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splits the nodes using a standardized log-rank statistic [9]. (4) The log-rank
approximationsplitting rule. It splits the nodes by using an approximation of the log-rank
test to reduce computations [8, 10].

In this study, RSF models were created with the 4 mentioned splitting rules. Analyses were
performed with the 8 covariates simultaneously. The same reference categories were
used as in the Cox model.

The importance of each model covariate was determined by applying the model on the
data that was not used in building the model. These data (the remaining 33% of the
original data) are called out-of-bag data (OOB-data). High positive importance values
indicate informative covariates, whereas small positive or negative importance values
indicate non-informative covariates [5, 6].

Model Performance

The quality of a predictive survival model is reflected by its prediction error. Harrell’s
concordance index (C-index) can be used to determine the model’s quality. The C-index is
related to the area under the receiver operating characteristic curve. It estimates the
probability that, in a randomly selected pair of cases, the case that fails (dies) first had the
worst predicted outcome. The Harrell’s concordance error rate is computed as 1 minus
the C-index. Error rates are between 0 and 1, with 0.5 corresponding to a procedure doing
no better than random guessing. A value of 0.0 reflects perfect accuracy [11].

For the Cox model and the RSF models, the mean and SD of Harrell’s concordance error
rate was calculated by using 100 and 10 independent replications. Models were fit on
their bootstrap data and the prediction error was estimated using the corresponding
OOB-data. In RSF models, the number of trees was equal to 1000 in the first test and 100
in the second.
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Head and Neck Cancer Data

For this study, the data of 1662 patients diagnosed with primary head and neck squamous
cell carcinoma at the Leiden University Medical Center between 1981 and 1998 were
available. Patients with esophageal cancer and subglottic cancer were not included
because the prognosis of these patients is poor and the number of incomplete TNM
classifications in this group was relatively large. Patients with carcinoma in situ were not
included because the prognosis of these patients is exceptionally good. One patient was
excluded because there was no follow-up data. The final study population consisted of
1371 patients with histologically proven primary squamous cell carcinoma of the lip, oral
cavity, oropharynx, nasopharynx, hypopharynx, glottic larynx, or supraglottic larynx.

The TNM classification was obtained from the hospital-based oncological documentation.
Oncological documentation was established in 1969 and contains patient, treatment, and
follow-up data for each patient with cancer diagnosed in the Leiden University Medical
Center. Trained oncological data managers store these data and safeguard an up-to-date
TNM classification by staging or restaging the disease according to the most up-to-date
Union Internationale Contre le Cancer manual (for this study, the fifth edition was most
up-to-date at the last moment of follow-up).

Prior malignancies were coded in the presence of all preceding malignant tumors except
for basal cell and squamous cell carcinoma of the skin.

Comorbidity severity was coded according to the ACE-27 manual. An overall ACE-27

grade 0 corresponds with no comorbidity, grade 1 with mild comorbidity, grade 2 with
moderate comorbidity, and grade 3 with severe comorbidity [11]. We chose not to score
prior malignancies as ACE-27 comorbidity because this factor is a separate covariate in the
Cox model. The impact of prior malignancies on overall survival would be unjust when
scored twice. In this article, we therefore use the term “adjusted’” ACE-27.

Based on the therapeutic nil hypothesis, the type of treatment was not considered a
prognostic factor for our model [12-15].
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Results

Explorative Data Analyses

The mean age was 62.6 years old with an SD of 12.0 years. The majority of patients were

men (1088; 79.4%). A minority of patients had a preceding malignancy outside the head
and neck area (133; 9.7%). Comorbidity was found in 500 patients (36.5%) of whom 76
(5.5%) had severe comorbidity. Most tumors were located in the oral cavity (280; 20.4%)
and glottic larynx (442; 32.2%). Further distribution of tumor locations and the TNM
classification can be found in Table 1.

The mean follow-up time was 12.3 years and the median follow-up time was 5.3 years.

During follow-up, 1048 patients (76.4%) eventually died. The remaining 323 patients

(23.6%) were alive at last follow- up.

Table 1.

Characteristics

No. (%)

Characteristics

No. (%)

Tumor location
Lip
Oral cavity
Oropharynx
Nasopharynx
Hypopharynx
Larynx-glottic
Larynx-supraglottic
T-classification
T1
T2
T3
T4
N-classification
NO
N1
N2
N3

123 (9.0%)
280 (20.4%)
152 (11.1%)

41 (3.0%)
137 (10.0%)
442 (32.2%)
196 (14.3%)

516 (37.6%)
369 (26.9%)
208 (15.2%)
278 (20.3%)

964 (70.3%)
145 (10.6%)
180 (13.1%)

82 (6.0%)

M-classification
MO
M1

Sex
Male
Female

Prior malignancies
Yes
No

Comorbidity (adjusted) ACE27
Grade 0: none
Grade 1: mild
Grade 2: moderate
Grade 3: severe

No Data

1354 (98.8%)
17 (1.2%)

1088 (79.4%)
283 (20.6%)

133 (9.7%)
1238 (90.3%)

782 (57.0%)
239 (17.5%)
185 (13.5%)
76 (5.5%)
89 (6.5%)

Abbreviations: ACE27: Adult Comorbidity Evaluation 27
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Cox Proportional Hazards Regression Analysis

Based on the given p values, the covariate sex does not impact overall survival.
Furthermore, based on the used reference categories, no significant impact on overall
survival was found from mild comorbidity and from tumors located in the nasopharynx,
glottic larynx and supraglottic larynx (Table 2).

For the remaining significant covariates, Exp (B) can be interpreted as a multiplicative
effect on the hazard of death. For example, holding all covariates constant, an additional
year of age increases the monthly hazard of death by a factor of 4% (exp(B) = 1.04).
Similarly, a patient with moderate comorbidity has an increased hazard of 39% (exp(B) =
1.39) compared to its reference category [RC].
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Table 2.
Predictor B Exp (B) Z-value p value 95% Cl
Age 0.038 1.039 11.804 <0.01 1.032-1.045
Sex Female [RC] - 1.000 - - -
Male 0.066 1.068 0.789 0.430 0.907 - 1.258*
Tumor location Lip [RC] -- 1.000 -- -- --
Hypopharynx 0.628 1.874 3.417 <0.01 1.307 - 2.686
Oral Cavity 0.471 1.602 2.836 <0.01 1.157-2.218
Oropharynx 0.495 1.641 2.757 <0.01 1.154-2.334
Glottic larynx 0.020 1.020 0.128 0.855 0.907 - 1.258*
Supraglottic larynx 0.266 1.305 1.555 0.125 0.933 - 1.825*
Nasopharynx 0.211 1.235 0.801 0.425 0.737 - 2.068*
T-classification T1 [RC] -- 1.000 -- -- --
T2 0.289 1.335 3.204 <0.01 1.119-1.592
T3 0.437 1.549 4.022 <0.01 1.251-1.916
T4 0.708 2.029 6.820 <0.01 1.656 - 2.487
N-classification NO [RC] -- 1.000 -- -- -
N1 0.311 1.365 2.878 <0.01 1.104 - 1.686
N2 0.611 1.843 5.833 <0.01 1.500 - 2.263
N3 0.873 2.395 6.450 <0.01 1.837-3.122
M-classification MO [RC] - 1.000 - - -
M1 1.903 6.707 6.645 <0.01 3.826-11.759
Prior tumors 0.548 1.730 5.097 <0.01 1.401-2.136
Comorbidity ACE27 Grade 0 [RC] -- 1.000 -- -- --
ACE27 Grade 1 0.057 1.059 0.648 0.524 0.891 - 1.259*
ACE27 Grade 2 0.332 1.394 3.624 <0.01 1.165 - 1.669
ACE27 Grade 3 0.827 2.286 6.409 <0.01 1.775-2.943

Abbreviations: RC: reference category; Exp(B): multiplicative factor on the hazard; Z-value: ratio of regression coefficient to its

standard error; 95% Cl: 95% confidence interval, *: Not statistically significant.
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Random Survival Forrest Analyses

Figure 2, Figure 3, Figure 4, and Figure 5 present a graphical output of how each RSF
model ranks its covariates by level of OOB-importance, based on 1000 trees. Each RSF
approach shows a slightly different ranking order. However, similarities are present. Very
important covariates in nearly all 4 RSF approaches were: age at diagnosis, T4
classification, N3 classification, and N2 classification. Unimportant covariates in nearly all
4 RSF approaches were: sex, mild comorbidity (grade 1), tumor location, supraglottic
larynx, and nasopharynx. The remaining covariates had smaller positive importance values
with somewhat different ranking within each RSF approach.

These findings were generally comparable with the results from the Cox model, with some
exceptions. M1 classification is a very important and significant covariate in the Cox
model, whereas in the RSF model only the log-rank splitting rule was able to confirm this
finding. The glottic larynx is an insignificant covariate in the Cox model, whereas the
conservation of events splitting rule ranked it as 1 of the most important covariates. The
conservation of events splitting rule and log-rank score splitting rule ranked moderate
comorbidity (ACE-27 grade 2) as unimportant, whereas the Cox model identified it as
important.

Figure 2 Out-of-bag data (OOB-data) covariate importance values according to log-rank
splitting rule

Age
N3 classification
N2 classification ————
T4 classification —————)
ACE27: Grade 3 or severe [
N1 classification R
T2 classification il
T3 classification —
M1 classification i
Prior Tumours —
Tumour Location: Oropharynx —]
Tumour location: Hypopharynx —]
Turnour Location: Oral Cavity ]
ACE27: Grade 2 or moderate =]
Tumour Location: Glottic Larynx ]
Tumour Location: Nasopharynx
Tumour Location: Supraglottic larynx -
Female -
ACE27: Grade 1 or mild -
Male -
-0,005 0,00 0,005 0,01 0,015 0,02 0,025
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Figure 3 Out-of-bag data (OOB-data) covariate importance values according to
conservation of events splitting rule
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Figure 4 Out-of-bag data (OOB-data) covariate importance values according to log-rank
score splitting rule.
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Figure 5 Out-of-bag data (OOB-data) covariate importance values according to log-rank
approximation splitting rule.
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Cox Model Performance versus Random Survival Forrest Model Performance

The Cox model showed a slightly better performance than all 4 RSF approaches with a
Harrell’s Concordance error rate (1 minus C-index) of 0.2826. The performance of each
RSF approach was very similar with the best error rate (0.2873) obtained by the log-rank
splitting rule with 1000 trees (Table 3). To reduce computation speed, a second RSF test
with 100 trees was performed. We observed a slight increase in error rates (Table 3).
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Table 3.
Repetitions = 100 Repetitions = 10
Mean (ER) SD (ER) Mean (ER) SD (ER)
Cox Model 0.2826 0.0120 0.2788 0.0114
nTrees = 1000 nTrees = 100
RSF Log-Rank 0.2873 0.0005 0.2889 0.0014
Conservation of Events 0.3079 0.0006 0.3099 0.0015
Log-Rank score 0.2951 0.0007 0.2986 0.0020
Log-Rank approx 0.2958 0.0006 0.2996 0.0013

Abbreviations: ER: error rate; nTrees: number of trees; SD: standard deviation; RSF: random survival forest

Discussion

Although at first glance RSF seems to be an unusual procedure to evaluate right-censored
survival data, considerable empirical evidence has shown randomized ensembles to be
highly effective. Because standard survival analyses often rely on restrictive assumption,
such as proportional hazards, there is always the concern whether associations between
covariates and hazards have been modeled appropriately. RSF is known to handle this
problem coherently and automatically [3, 5]. Despite this advantage, RSF was not able to
deliver a model with a substantially better C-index than the Cox model in this study. This
could be the result of the size and content of our historical dataset. The covariates for
these 1371 consecutive patients were collected with a strong assumption that they all
impact overall survival based on prior univariate regression analyses. Perhaps RSF
performs better as a data-mining instrument on a large dataset that does not have
covariates with a predetermined impact on the model output variable. We will test this
hypothesis when our EPF is able to generate and export large head and neck oncological
datasets with a substantial amount of covariates. Nevertheless, the results of this study
confirm what is generally found: RSF produced accurate ensemble models with
performances comparable to the Cox model.
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In this study, the log-rank splitting approach performed better than the other 3 RSF
approaches. Users are, however, encouraged to try all 4 RSF approaches. The log-rank
approximate approach has the fastest computation, followed by the conservation of
events rule. The log-rank approximate approach, therefore, might be the preferred
method in settings in which computational speed is essential. Comparing RSF to the Cox
model, it can be said that a Cox model is more capable of extracting patterns and
relationships hidden deep into medical datasets, whereas in the RSF model the ensemble
tree methods become more of a “black box”” when interpreting the model due to the
sheer number of trees generated.

A predictive model not only has a certain performance, but also indicates the relative
importance of its covariates. In the Cox model, we used the ratio of the regression
coefficient to its SE (Z-value) to rank covariates. In RSF, the OOB-data importance values
were used to rank covariates. From both methods, we learned that age at diagnosis, a
high T classification, a high N classification, and severe comorbidity (ACE-27 grade 3) are
very informative covariates. The covariates, sex, mild comorbidity (ACE-27 grade 1), tumor
location nasopharynx, glottic larynx, and supraglottic larynx were less informative. For the
remaining covariates, it can be said that they have intermediate to low importance values.

Discrepant findings between methods were present. Where M1 classification is a very
informative covariate in the Cox model, it was an unimportant covariate in 3 of 4 RSF
approaches. Every clinician will agree that presence of distant metastasis is correlated
with a very poor prognosis. It is important to realize that when a covariate is insufficiently
represented in the original data (M1 classification, n = 17; 1.2%), it is possible that some
RSF approaches are unable to identify it as an important covariate, especially because the
level of importance is computed on the OOB-data sample, which is approximately 33% of
the original data. In this study, the log-rank approach, which delivered the lowest RSF
error rate, did identify M1 classification as an important covariate. A second important
finding was that despite comparable error rates, the relative importance ranking in the 4
RSF approaches was somewhat different, especially for the different tumor locations. This
might make someone question the true level of importance for these model covariates.
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Conclusions

The Cox model delivered the best performance of all approaches. The performance of the
4 RSF approaches were, however, almost similar. Therefore, both methods can be
recommended in right-censored head and neck cancer survival analyses.

There are some considerations when using RSF. First, a Cox model clearly represents the
impact of each covariate on overall survival and its relationship with other covariates. RSF
does not give hazard ratios and p values and perhaps becomes more of a “black box”
when interpreting the model due to the sheer number of trees generated. Second, the
relative importance ranking of model covariates slightly differed within each RSF
approach. This might make someone question the true level of importance of the
respective model covariates. Third, when a covariate is insufficiently represented in the
original data, RSF can miss it as an important covariate. The advantage of RSF is that it is
much better suited for automatization of survival analysis than a Cox model because it
requires less input from the user in data settings where covariates are highly interrelated.
We will consider RSF a suited explorative “data mining”’ tool for large (future EPF
generated) datasets with covariates that have an as yet undetermined effect on the model
output variable. Based on the results of these analyses, RSF can assist in building Cox
models with highly significant covariates with a higher level of confidence than with a
single method.
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General discussion

In this chapter, the most important findings of research from this thesis are summarized
and discussed.

Why we started this research

Since the 1950s, the TNM-classification was the instrument of choice to estimate the likely
prognosis of the newly diagnosed cancer patient. The TNM-classification incorporates the
size and extension of the primary tumor (T-classification), its regional lymphatic
involvement (N-classification) and the presence of distant metastasis (M-classification) to
stage the progression of cancer. In several decades the TNM-classification evolved into an
excellent descriptive instrument. As a predictive instrument the TNM-classification
showed limitations (chapter 1).

Nowadays we acknowledge that the anatomical extend of cancer alone is not the most
accurate method to estimate the survival probability of the individual cancer patient.
Other tumor and patient specific factors impact overall survival as well and need to be
taken into account.

For a clinician it can be a difficult task to recognize all prognostically relevant factors
during practice, let alone to determine the impact and interaction of these factors on
prognosis. To aid the clinician there are statistical survival analyses that allow the
formation of an insightful prognostic model. A prognostic model provides information
about the significance, strength and independence of each covariable on prognosis and
can calculate an individual overall survival estimate. We believe that prognostic models
can complement medical craftsmanship in communicating prognosis to the patient.

In 2001 Baatenburg de Jong presented the first version of his head and neck squamous cell
carcinoma (HNSCC) model. The model contained seven predictors with an independent,
significant and clinically important impact on overall survival. These predictors were: age
at diagnosis, T-, N- and M-classification, prior tumors, tumor location and sex. The model
is based on the historical data of 1371 primary HNSCC patients who were diagnosed and
treated in the Leiden University Medical Centre (LUMC) between 1981 and 1998. The
model was internally validated.

His model formed the basis for a greater sense of awareness in both the LUMC and
Erasmus Medical Centre (EMC) towards the prognostic value of patient and tumor specific
factors.
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Comorbidity as the eighth predictor in our HNSCC prognostic model

It is our continuous goal to improve the predictive performance of our HNSCC prognostic
model. In 2005 we therefore decided to test the prognostic value of comorbidity as a
possible eighth predictor (chapter 2). At that time, several validated instruments were
available to code and quantify the severity of comorbidity in oncological patients. Based
on its validity and brevity in use, we decided to use the modified Kaplan Feinstein
Comorbidity Index, better known as the Adult Comorbidity Evaluation 27 (ACE27).

We found that 36.4% of our 1371 primary HNSCC patient had comorbidity. Distributed in
comorbidity severity, mild comorbidity was present in 17.4%, moderate comorbidity in
13.5% and severe comorbidity in 5.5% of patients.

An interesting finding was that most comorbidity came from the cardiovascular (32.0%),
gastro-intestinal (7.2%) and respiratory (6.1%) system. This can be explained by the strong
causal relationship between tobacco and alcohol abuse and HNSCC and coexistent
diseases from these organ systems.

The ACE27 proved a significant predictor for overall survival in univariate and multivariate
regression analysis. There was a clear distinction between the hazard ratio’s of the four
ACE27 severity grades. The impact on overall survival of a patient with severe comorbidity
(ACE27 grade 3) is 2.23 times higher compared to a patient without comorbidity (ACE27
grade 0). This is comparable to the impact of a T4 tumor or a N3 neck. A hazard ratio of
1.38 was found for moderate comorbidity (ACE27 grade 2).

Mild comorbidity (ACE27 grade 1) showed little impact on overall survival with a hazard
ratio of 1.04. This is probably explained by the fact that mild comorbidity is usually a
historical medical event without residual damage or complications. These mild conditions,
when necessary, can be treated with therapeutic or prophylactic medication and then
form little mortality risk to the patient. For prognostic purposes it would be interesting to
test the performance of a simplified ACE27. By excluding mild comorbidity from the
ACE27, it will become an easier and faster to use instrument for daily practice. A
disadvantage will be that the instrument loses its optimal descriptive capability.

The HNSCC prognostic model was updated with comorbidity as the 8th predictor. Internal
validation showed a good discriminative capability of the model (C-index 0.73).
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Comorbidity has an independent impact on short-term mortality (death of all causes
within six months after primary tumor diagnosis) as well. From our population, 78
patients (5.7%) died within six months. Especially moderate and severe ailments from the
cardiovascular, respiratory, endocrinological (diabetes) and gastro-intestinal system were
significant in univariate analysis. Significant results from multivariate analyses were not
expected considering the low number of events in each subgroup.

The findings from this study generated a greater sense of awareness towards comorbidity
in the head and neck squamous cell carcinoma patient and formed a foundation for the
implementation of identification and optimization strategies. A good example is that in
2010 a specialist for internal diseases joined the head and neck oncology staff of the EMC.
Her main task is to detect and optimize comorbidity before and during hospitalization in
an attempt to reduce complication rates and to optimize the overall survival probability of
our HNSCC patients.

The importance of external validation

The most stringent test for a prognostic model is to test its predictive performance on a
cohort of primary HNSCC patients that were not part of the development data. This is
called an external validation. An external validation is essential before implementing
prediction models in clinical practice.

In 2011 we updated the prognostic model with follow-up data reaching until January 2010
and performed an external validation on 598 primary HNSCC patients from the Siteman
Cancer Center/Barnes-Jewish Hospital, St. Louis, Missouri, USA (Chapter 3).

We found that the updated model achieved accurate estimates of survival in the Dutch
cohort and fairly good measures of calibration and discrimination (C-index 0.69) in US
patients. We believe that our prognostic model can be used for primary HNSCC patients,
diagnosed and treated at medical centres in developed countries.
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Severe malnutrition is a potential ninth predictor for the HNSCC
prognostic model

Cancer cachexia, chewing and swallowing impairments caused by the local tumour or by
side effects from oncological treatment can result in malnourishment of head and neck
cancer patients. These patients are at risk for adverse events, such as body tissue
catabolism and wound healing disorders. Sometimes they cannot tolerate optimal
treatment. Adverse events and suboptimal treatment are two risk factors for a decreased
overall survival as well. Furthermore, adverse events are associated with a decrease in
quality of life, which has a proven negative impact on overall survival as well.

To expand our model with predictors that have an independent, significant and clinically
relevant impact on overall survival, we saw potential in malnutrition as a ninth predictor
(Chapter 5).

Between 1995 and 1998 a trained dietician joined the oncological head and neck cancer
team of the LUMC. For a subset (N = 383) of our 1371 patients, data on weight loss 6
months preceding primary tumor diagnosis were available. For this study we analysed
three subcategories: severe malnutrition, defined as a weight loss of > 10%, moderate
malnutrition, defined as a weight loss of 5-10% and no malnutrition, defined as a weight
loss of less than 5%.

We found 20 (5.2%) patients with moderate malnutrition and 28 (7.3%) patients with
severe malnutrition. The majority of severely malnourished patients had a T3 or T4
tumour and 1 patient had distant metastasis.

Malnutrition proved a significant predictor for overall survival in univariate and
multivariate analysis. An interesting finding from the multivariate analysis was that against
our expectation, patients with moderate malnutrition did not have a significantly elevated
mortality risk. However, when we look at the Kaplan Meier curves (observed overall
survival), a decreased overall survival rate is seen in patients with moderate malnutrition
compared to patients without malnutrition. This starts approximately 24 months after
primary tumor diagnosis and continues even 10 years after diagnosis. Since we do not
know the exact causes of death of our patients, we cannot properly explain this
phenomenon. As expected. the mortality risk of severely malnourished patients was
significant and 1.8 times higher than for patients without malnutrition. We therefore
consider severe malnutrition a potential ninth predictor for a prognostic HNSCC model.
Because data was only available for a subset of patients, the predictor could not be added
to our existing model.
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Survival visualisation

Prognostic modelling is mainly a statistical exercise. The challenge afterwards lies in the
translation of statistical findings into clinical importance and relevance. To aid us in this
challenge it was possible to create an on-line, freely accessible version of our model. The
on-line software provides a 5-year overall survival chart, based on the applicable model
covariables in the individual primary HNSCC patient. With simple clicks in a drop down-
menu, model covariables can be changed, resulting in an immediate effect change of the
survival chart. It is therefore possible to view the effect of each covariable on overall
survival.

A limitation to the on-line software is that age could not be incorporated as a continuous
variable. Modifications were therefore made to the database. Age was divided into six
categories. In a new Cox-regression analysis, the significance and independence of all
variables remained. Relative risks of the age categories are shown in chapter 5. The
relative risks of the other model covariables hardly changed or remained the same. The
on-line model can therefore be considered representative for the results that are
presented in chapter 3 of this thesis. Despite this practical approach, we are currently
making efforts to adjust the software so that it will be possible to incorporate continuous
covariables.

Specific comorbidity elevates the risk for major cardiovascular
complications in surgically treated head and neck cancer patients

As mentioned before, alcohol and tobacco abuse are two major risk factors for the
development of HNSCC. They show a strong causal relationship with certain comorbid
conditions as well. Literature reports that specific comorbid conditions from the
cardiovascular, respiratory, renal and endocrinological system are risk factors for an
adverse postoperative outcome after stressful non-cardiac surgery. We encountered
substantial comorbidity from these organ systems in our cohort of 1371 HNSCC patients
(chapter 2). Adverse perioperative events are therefore expected in the extensively
surgically treated HNSCC population.
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In 2010 we started a retrospective study towards the comorbidity of primary HNSCC
patients who had extensive oncological and plastic reconstructive surgery (stressful non-
cardiac surgery) as the first form of treatment in the Erasmus Medical Centre (Chapter 6).
Between 2001 and 2007, 135 patients were diagnosed with a primary oral cavity or
oropharynx carcinoma. They were all treated with a combined mandibular approach,
tumor and (bilateral) neck dissection, tracheotomy and free flap reconstruction of the
surgical defect.

We tested the performance of three risk stratification instruments that mainly depend on
comorbid conditions (ASA-classification, ACE27 and Lee Cardiac Risk Index) towards major
cardiovascular complication occurrence in the peri-operative time-frame. A major
cardiovascular complication was defined as: cardiac death, nonfatal myocardial infarction,
heart failure and cardiac arrhythmia.

16.3% of our patients developed a major cardiovascular complication. Fortunately none of
these patients died during hospitalization but the average prolongation of hospitalization
on the ENT ward, cardiac care unit or intensive care unit was one week. This resulted in an
increase of medical costs of at least 3500 Euros per patient hereby stipulating the
economical importance in addition to medical importance of complication rate reduction.

The Lee Cardiac Risk Index (LCRI) and ACE27 showed comparably good predictive
performances towards major cardiovascular complication occurrence, while the ASA-
classification did not. Addition of the variable “age above 70 years” resulted in an accuracy
improvement of both instruments (AUC = 0.84, p <. 01).

Because of its simplicity and brevity in use, we advise the implementation of the LCRI into
preoperative HNSCC screening protocols. The LCRI consists of six items that define an
overall Lee index score of | to IV. Five items are comorbid conditions: a history of ischemic
heart disease, heart failure, history of cerebrovascular disease, insulin-dependent
diabetes, and kidney failure. The sixth risk factor is a high-risk type of surgery.

We found that a LCRI score of lll and IV forms a severely elevated risk (relative risk 11.5
and 11.8 respectively) for major cardiovascular complication occurrence when compared
to a LCRI score I. Based on these findings, we strongly advise that these patients are
referred to a specialist for internal diseases for optimization strategies and observation
during hospitalization.
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How to proceed with prognostic research

It has been ten years since Baatenburg de Jong et. al. presented the first version of his
prognostic model. To improve the performance of his model we continued research. In
ten years we accomplished:

1. The identification, testing and addition of comorbidity as an eighth predictor to
the model.
Update and external validation of the second version of the model.

3. The identification of severe malnutrition as a (potential) ninth predictor

for the model.

This illustrates that improvement of prognostic model performance is a time consuming
effort which requires substantial (manual) input of the researcher and model developer.
Model performance can further improve by expanding the development dataset with
more covariables and more patients. There is much (speed) to gain when this process is
automated.

With the upcoming use of electronic patient files (EPF) we believe that this goal is
reachable. When an EPF is organized to collect standardized medical data that can
automatically be exported into a database, it can assist in prognostic modelling. First, a
process of extracting patterns from data, called “data mining” allows extrapolation of
relevant covariables hidden in the EPF-generated database. Second, by automatisation of
the survival analysis itself, periodic feedback on model performance can be given after the
addition of newly identified covariables and/or additional patient data.

Automatisation of Cox regression analysis is possible but will require substantial input
from the user when it is applied to a dataset in which covariables are highly interrelated.
We explored a relatively new modelling technique called Random Survival Forests (RSF)
which is known to be easily automated.

In our study we tested the performance of four RSF models and compared them to the
performance of our Cox regression model. The models delivered almost similar
performance. RSF and Cox regression can therefore both be recommended for survival
analyses. There are however some considerations when using RSF.

Where Cox models give a clinically understandable output with a regression coefficient, p-
value and 95% confidence interval for each predictor, RSF does not provide this
information and perhaps becomes more of a “black box” when interpreting the model.
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RSF does give a relative importance ranking of significant predictors. It was insightful to
see that in all four RSF approaches, age, severe comorbidity and high T- and N-
classifications ranked the highest.

In three out of four approaches M-classification was missed as an important predictor,
while M1 classification is a very important predictor in the Cox model. Every clinician will
agree that presence of distant metastasis is correlated with a very poor prognosis. We
learned that when a predictor is insufficiently represented in the development data (M1-
classification, n = 17; 1.2%), RSF can miss it because the level of importance is computed
on an out-of-bag sample, which is approximately one third of the original data.

We concluded that at this moment in time, RSF is not suited to replace Cox regression
analysis. RSF however can complement Cox regression modelling by identification of
highly significant covariates from the data (data mining). This will become handy when we
are able to generate large “EPF datasets” with covariables that have an as yet
undetermined impact on prognosis.

Lessons learned

Prognostic research is complex, interesting, fun, but most importantly clinically relevant.
In the process of model enhancement and model testing several lessons were learned
from which future researchers in this field can benefit:

1. The creation of a prognostic model is only possible with an extensive (historical)
database that is filled with accurate and complete survival data. Most research,
presented in this thesis was only possible because the LUMC invested in the ONCDOC
department (since 1969). Trained oncological data managers who safeguard an
adequate data registration and who monitor events during follow-up are extremely
valuable for prognostic research. It is worthwhile to consider investing in a structural
(prospective) data collection and data safeguarding department such as ONCDOC.

2. Electronic patient files generate an enormous amount of medical data with prognostic
potential. Information in free text fields can be considered “dead data” because
statistical analyses require numeric values. It is advisable to make it possible to code
and quantify specific data into an EPF, so that these data can be exported into a
database for statistical analysis.
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3. When retrospective data is collected, it is advisable to test the intra- and inter-
observer variability to test the quality of gathered data.

4. Before a prognostic model can be used in daily practice, an internal and external
validation procedure is necessary.

5. Further accuracy improvement of our model is believed possible by including more
covariables into the model and expansion of the development study population with
more recent patients. The problem with retrospective data collection however is that
there is no upfront guarantee that sufficient information will be found in the medical
charts of the baseline study population to incorporate new covariables. This also
applies when expanding the consecutive development dataset. The inclusion of more
recent patients will possibly help to counter the ‘out-of date principle’ of the model.
Patients who were diagnosed and treated in a period with comparable diagnostic and
treatment standards as today, will have a more representative survival probability
than earlier patients.

6. Currently, in the Erasmus Medical Centre, strong efforts are made to enhance the
quality of prospective oncological data collection which hopefully will lead to the first
EMC prognostic HNSCC model. For this model it is advisable that:

a. atleast the nine predictors presented in this thesis are part of a data
collection form.

b. members from the head and neck oncology department are trained to validly
code all model covariables in this form.

c. data-collection becomes an ongoing process and part of daily practice.
Therefore the use of an EPF form is preferable and head and neck
oncologists need to be motivated and aware of the importance of proper
data collection.

d. the collaboration with a statician with sufficient knowledge of survival
analyses and model validation is at hand.
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HOOFDSTUK EEN: het leven van de patiént verandert
dramatisch als de diagnose kanker wordt gesteld.
Onzekerheid over hoe lang het leven nog mag duren
en hoe de kwaliteit van leven zal zijn na oncologische
behandeling kunnen een fysieke en emotionele
uitdaging vormen. Nauwkeurige informatie over het
ziektebeloop en de prognose kan patiénten en hun

naasten helpen om beter om te gaan met de ziekte
en helpen bij de afweging tussen enerzijds de last van oncologische behandeling en
anderzijds de mogelijke toename in levensverwachting en -kwaliteit. Verder kan een
individueel behandelplan alleen maar het resultaat zijn van een nauwkeurige inschatting
van prognose. Over- en onderschatting van prognose kan resulteren in onder- en
overbehandeling.

Omdat het belang van de informatie zo groot is, zal nagenoeg elke oncologiepatiént zijn
behandelaar vragen naar prognose. Vroeger werd de TNM-classificatie gebruikt om
hierover een uitspraak te doen, maar tegenwoordig onderkennen we dat alleen
tumorspecifieke kenmerken onvoldoende zijn om een individuele prognose te bepalen.
Andere (niet-oncologische) factoren, zoals de leeftijd en algemene gezondheid van de
patiént, moeten ook worden meegewogen. Er is veel onderzoek gedaan naar
prognostische factoren, waar onder het onderzoek dat is gepresenteerd in dit proefschrift.
Het zal voor de behandelaar lastig zijn om met een langer wordende lijst aan
prognostische factoren, de juiste prognose te formeren. Gelukkig bestaan er statistische
analyses die de significantie, sterkte en onafhankelijkheid van prognostische factoren
testen op een grote groep historische patiénten met vergelijkbare tumor en
patiéntgebonden karakteristieken. Een combinatie van prognostische factoren noemen
we een prognostisch model. Met een prognostisch model kan (een zekere maat van
onzekerheid in acht nemend) de individuele prognose van een patiént berekend worden.

HOOFDSTUK TWEE: In 2001 presenteerden Baatenburg de Jong et. al . een prognostisch
model voor primaire hoofd-hals plaveiselcel carcinoom patiénten (HHPCC) bestaande uit
zeven prognostische factoren: T-, N- en M-classificatie, tumor locatie, leeftijd en geslacht
van de patiént en eerder doorgemaakte tumoren. Dit model is gefundeerd op de
historische data van 1371 patienten die tussen 1981 en 1998 werden gediagnostiseerd en
behandeld in het Leids Universitair Medisch Centrum. Dit model werd intern gevalideerd.
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Ons blijvende doel is om de nauwkeurigheid van de prognose voorspelling door het model
te verbeteren. In dit hoofdstuk beschrijven we dat na univariate en multivariate analyse
bleek dat comorbiditeit (gescoord met de ACE27 handleiding) een onafhankelijke invloed
heeft op de overleving van HHPCC patiénten. Comorbiditeit bleek aanwezig in 36.4% van
de 1371 patiénten en betrof voornamelijk ziekten uit het cardiovasculaire, respiratoire en
gastro-intestinale orgaansysteem. Dit kan worden verklaard door de relatie tussen alcohol
en tabaksmisbruik (twee belangrijke risicofactoren voor het ontstaan van HHPCC) en
aandoendingen uit deze orgaansystemen.

Interessant is dat milde comorbiditeit nauwlijks invioed heeft op prognose, terwijl matige
en ernstige comorbiditeit een significant verhoogt mortaliteitsrisico dragen (relatief risico
van 1.4 en 2.2). De invloed van ernstige comorbiditeit op overleving is daarmee
vergelijkbaar met de invloed van een T4 tumor of een N3 hals. Dit geeft het belang aan
van het tijdig herkennen van comorbiditeit en waar mogelijk het optimaliseren ervan.
Comorbiditeit werd toegevoegd als 8° voorspeller aan het model dat vervolgens intern
gevalideerd werd (C-index 0.73).

HOOFDSTUK DRIE: de meest strenge test voor een prognostisch model is een externe
validatie, waarbij de nauwkeurigheid van het model wordt getest op patiénten met
vergelijkbare tumor en patiéntgebonden karakteristieken, maar uit een andere
geografische locatie en uit een ander diagnostisch tijdperk. Een dataset van 598 primaire
HHPCC patiénten, die tussen 1995 en 2000 werden gediagnostiseerd in het Siteman
Cancer Centre in Amerika, kwam tot onze beschikking. Ondanks verschillen tussen de
Nederlandse en Amerikaanse populatie, werden acceptabel goede calibratie en
discriminatie resultaten gevonden (C-index 0.69). We hebben hiermee meer vertrouwen
gekregen dat ons model ook goed presteert buiten het LUMC, maar realiseren ons dat er
nog steeds ruimte is voor een verbetering van performance.

HOOFDSTUK VIER: patiént met een ernstige ondervoeding in de periode voor kanker
diagnose hebben een verhoogd risico op complicaties en verdragen soms een optimale
behandeling niet. Een gecompliceerd ziektebeloop en suboptimale behandeling zijn
risicofactoren voor mortaliteit. Ernstige ondervoeding werd daarom gezien als potentiele
9° voorspeller voor ons model. Van een subgroep (383) van de 1371 patiénten was data
beschikbaar over gewichtsverlies. Ernstige ondervoeding, gedefinieerd als meer dan 10%
gewichtsverlies in de zes maanden voor tumordiagnose, werd in 5.2% aangetroffen en
toonde na univariate en multivariate analyse een onafhankelijke invloed op de overleving
van HPCC patienten. Het mortaliteitsrisico van deze patiénten was 1.8 keer hoger dan van
vergelijkbare patiénten zonder ondervoeding.
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Dit benadrukt het belang van tijdige herkenning van ernstige ondervoeding en de
implementatie van interventiestrategieén. Omdat slechts van een deel van de
ontwikkelpopulatie gewichtsverliesdata beschikbaar waren, kon ernstige ondervoeding
helaas niet als 9° variabele aan het model worden toegevoegd.

HOOFDSTUK VIJF: de meeste prognostische modellen in dit proefschrift zijn gebaseerd op
Cox-regressie analyses. Tijdens een spreekuur zal het voor de behandelaar lastig blijken
om met relatief ingewikkelde formules een individuele prognose te berekenen. Daarom
ontwikkelden wij gebruikersvriendelijke software, waarmee de behandelaar door het
aanklikken van voorspellende variabelen, direct wordt voorzien van een 1-, 2- en 5-jaars
overlevingskans. Ook toont het programma een patiéntspecifieke 5-jaars
overlevingscurve. We hopen dat deze software een meerwaarde heeft op het medische
vakmansschap wanneer de patiént over zijn prognose geinformeerd moet worden of
wanneer er gekozen moet worden tussen geschikte behandelmodaliteiten. De software is
gratis te gebruiken via www.oncologig.nl

HOOFDSTUK ZES: Zoals werd aangetoond heeft comorbiditeit een onafhankelijke invlioed
op de overleving van primaire HHPCC patiénten. Bepaalde comorbiditeit verhoogt het
risico op een ernstige cardiovasculaire complicatie bij patiénten die stressvolle niet-
cardiale chirurgie ondergaan. Een ernstige cardiovasculaire complicatie is gedefinieerd als:
acute hartdood, een niet-fataal hartinfarct, hartfalen en cardiale arytmie. Omdat deze
complicaties potentieel levensbedreigend zijn is preventie zeer waardevol. Bij 16.3% van
135 primaire oropharynx en/of mondholte plaveiselcel carcinoom patiénten die
uitgebreide oncologische en plastisch reconstructieve chirurgie ondergingen, trad een
dergelijke complicatie op. Gelukkig overleed niemand gedurende ziekenhuisopname, maar
de gemiddelde zorgkosten per patient namen wel toe met 3500 euro. Dit illustreert het
economische belang van complicatie reductie, naast het medische belang.

De aangepaste Lee Cardiac Risk Index (LCRI) codeert een voorgeschiedenis met
ischaemische hartziekte, hartfalen, cerebrovasculaire incidenten, insuline afhankelijke
diabetes en/of nierfalen. De LCRI bleek binnen de hoofd-hals oncologie een significante
voorspellende waarde te hebben voor ernstige cardiovasculaire complicaties. Een LCRI
score van lll of IV bleek geassocieerd met een 11 tot 12 keer hoger risico vergeleken met
patiénten zonder deze specifieke comorbiditeit. De voorspellende waarde van de LCRI
nam toe na het toevoegen van de variabele “leeftijd boven 70 jaar” (AUC 0.84). Wij raden
aan dat deze patiénten worden verwezen naar een cardiovasculair internist voor
preoperatieve screening en optimalisatie, bij voorkeur gecontinueerd tijdens en na
ziekenhuisopname.
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HOOFDSTUK ZEVEN: het ontwikkelen, updaten en uitbreiden van een prognostisch model
dat is gefundeerd op een grote historische dataset, is een tijdrovende maar waardevolle
inspanning. Wij geloven dat het model nauwkeuriger kan gaan voorspellen als er meer
prognostische variabelen worden geincludeerd en/of meer patiénten aan de
ontwikkeldatabase worden toegevoegd. Het probleem met retrospectief data-onderzoek
is dat er van te voren geen garantie is dat er voldoende gegevens in de medische status
aanwezig zijn om een extra variabele aan het model toe te kunnen voegen (hoofdstuk 4).
Hetzelfde geldt voor het toevoegen van meer patiénten aan de ontwikkeldata. Dit laatste
zou wel deels het “out-of-date principe” van een model kunnen tegengaan, omdat met het
includeren van patiénten die gediagnostiseerd en behandeld werden in een periode met
meer gelijkwaardige diagnostische en therapeutische middelen als van vandaag, mogelijk
een meer representateive overleving hebben dan patiénten uit een eerder tijdperk.

Het is onze hypothese dat er mogelijkheden voor toekomstig prognostisch onderzoek
liggen bij de steeds vaker aanwezige electonische patiénten dossiers (EPD). Gedurende
werktijd verzamelen we een enorme hoeveelheid aan waardevolle medische data, dat
wordt opgeslagen in een EPD. Vrije tekstvelden zijn initieel zonder waarde voor
onderzoek, maar als dossiergegevens gestandaardiseerd kunnen worden met een
achterliggende numerieke waarde, kunnen ze worden geexporteerd naar een database
waarop statistische analyses, zoals survival analyses, mogelijk zijn. Zeker wanneer data-
analyse, model ontwikkeling, model validatie en updating automatisch zou kunnen, is er
veel tijd te winnen. We hebben daarom een relatief nieuwe modeleringstechniek getest,
genaamd Random Survival Forests (RSF). RSF staat erom bekend dat ze relatief
gemakkelijk en automatisch patronen kan herkennen die verborgen liggen in grote
survival databases.Er is maar weinig bekend over hoe nauwkeurig RSF modellen
voorspellen in vergelijking met een gevalideerd prognostisch Cox regressie model. In onze
studie gaven RSF modellen nagenoeg vergelijkbare resultaten als ons Cox regressie model.
Een beperking van RSF was dat daar waar Cox regressie een klinisch begrijpelijke output
genereert met een p-waarde, relatief risico en 95% betrouwbaarheidsinterval voor elke
voorpeller, RSF meer een “black box” wordt. We concludeerden dat op dit moment RSF
nog niet geschikt is om Cox regressie te vervangen. Wel kan RSF helpen bij het identiferen
van sterk significante prognostische variabelen uit grote (EPD gegenereerde) databases
met variabelen die een tot nu toe onbekende invloed hebben op prognose.

We sluiten dit proefschrift af met een aantal belangrijke lessen die geleerd zijn tijdens het
ontwikkelen, updaten en valideren van de in dit proefschrift gepresenteerde modellen. Ik
hoop dat deze lessen een waarde hebben voor toekomstige onderzoekers die zich bezig
gaan houden met het voorspellen van een individuele prognose van de HHPC patiént.
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CHAPTER ONE: When diagnosed with cancer, the
patient’s life changes dramatically. Uncertainty about
future life expectancy, quality of life and (side)
effects of the upcoming treatment can form a
physical and emotional challenge. Accurate
information on what to expect from the course and
likely outcome of disease, can help patients and their

loved-ones to cope and prepare and to balance the
burden of treatment against the possible gain in life expectancy and quality of life.
Furthermore, an individualized treatment can only be the result of an accurate prognosis.
Over- and underestimation of survival may result in under- and overtreatment.

In every new patient, the clinician is challenged to estimate an accurate prognosis. In the
past, the TNM-classification was used for this purpose, but nowadays we acknowledge
that tumor specific factors alone are not sufficient to determine an individual survival
estimate. Other (non-oncological) factors, such as age or general health status need to be
taken into account as well. A lot of research, including the research in this thesis, has been
performed to identify and test prognostic variables in head and neck squamous cell
carcinoma (HNSCC) patients. For a clinician it can be difficult to derive an accurate
prognosis from an expanding list of prognostic variables. Fortunately there are statistical
survival analyses that determine the significance, strength and independence of
prognostic factors on overall survival from a large group of historical patients with similar
tumor and patient specific characteristics. A combination of prognostic factors is called a
prognostic model. A prognostic model allows (considering a certain margin of uncertainty)
the calculation of an individual prognosis for the newly diagnosed HNSCC patient.

CHAPTER TWO: In 2001 Baatenburg de Jong et. al. presented a prognostic model that
estimates the overall survival probability of primary HNSCC patients based on seven
prognostic variables: the T-, N- and M-classification, tumor location, the age and sex of the
patient and prior malignancies. The model was fitted on the historical data of 1371
primary HNSCC patients, diagnosed and treated in the Leiden University Medical Centre
between 1981 and 1998. The model was internally validated.

It is our continuous goal to enhance the predictive performance of the model. In this
chapter we describe that after univariate and multivariate analyses, comorbidity (coded
according to the ACE27 manual) showed an independent impact on overall survival.
Comorbidity was found in 36.4% of the 1371 patients and mostly came from the
cardiovascular, respiratory and gastro-intestinal system. This is explained by the causal
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relationship of alcohol and tobacco abuse (two major risk factors for the development of
HNSCC) and diseases from these organ systems.

Interesting was that mild comorbidity hardly affected prognosis, while moderate and
severe comorbidity showed a significant elevated mortality risk (relative risk 1.4 and 2.2
respectively). The impact of severe comorbidity on overall survival is comparable to the
impact of a T4 tumor or N3 neck, stating the importance of early comorbidity recognition
and when possible, intervention. Comorbidity was added to the model as an g™ predictor
and the model was internally validated (C-index of 0.73).

CHAPER THREE: The most stringent test for a model is an external validation that tests the
performance of the model on patients from a different population. This population should
be similar to the development population in terms of index disease, but different in terms
of geographic location and historical time period. A dataset of 598 primary HNSCC
patients, diagnosed and treated at the Siteman Cancer Center, USA between 1995 and
2000 was made available to us. Despite differences between the Dutch and American
populations, acceptably good calibration and discrimination results were found (C-index
0.69). We now feel more confident about the generelizability of our prognostic model but
realize that there is still room for performance improvement.

CHAPTER FOUR: Patients with severe malnutrition prior to cancer diagnosis are at risk for
adverse events and sometimes do not tolerate optimal treatment. Adverse events and
suboptimal treatment are risk factors for a decreased overall survival. Severe malnutrition
was therefore considered a potential 9™ predictor for our model. From a subpopulation
(383 patients) of the 1371 patients, weight loss data prior to cancer diagnosis were
available for analyses. Severe malnutrition, defined as weight loss of more than 10% in the
six months preceding cancer diagnosis, was encountered in 5.2% and showed an
independent impact on overall survival. The mortality risk of these patients was 1.8 times
higher than for patients without malnutrition. This emphasizes the importance of
identifying severe malnutrition and implementation of intervention strategies. Because
data was only available for a subset of the model development population, weight loss
could not be added to the model as a 9™ predictor.
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CHAPTER FIVE: Most models that are presented in this thesis are based on Cox-regression
analyses. During daily practice, it will be difficult to perform extensive statistical
calculations to determine the individual prognosis of the patient. We therefore developed
user-friendly software, allowing the clinician to simply select applicable predictors,
resulting in a 1-, 2- and 5-year survival estimate of the patient. The software provides the
corresponding 5-year survival chart as well. We hope that this software complements
medical craftsmanship when communicating prognosis to the patient or when the clinician
needs to choose from suitable treatment modalities. The software is freely accessible on:
www.oncologiqg.nl.

CHAPTER SIX: Comorbidity has an independent impact on overall survival. We performed
an ‘in depth’ study to identify specific comorbid conditions in primary oropharynx and oral
cavity carcinoma patients, receiving extensive head and neck and plastic reconstructive
surgery (stressful surgery). It is known that certain comorbidity elevates the risk of major
cardiovascular complications during stressful non-cardiac surgery. These complications are
potentially life-threatening and therefore worth preventing. A major cardiovascular
complication was defined as: cardiac death, nonfatal myocardial infarction, heart failure
and cardiac arrhythmia and encountered in 16.3% of 135 patients diagnosed and treated
at the Erasmus Medical Centre between 2001 and 2007. Fortunately none of these
patients died during hospitalization but the average increase in medical costs was at least
3500 Euros per patient, stipulating an additional economical importance of complication
rate reduction.

The modified Lee Cardiac Risk Index (LCRI) codes a medical history with ischemic heart
disease, heart failure, cerebrovascular disease, insulin-dependent diabetes, and kidney
failure. The LCRI proved a significant prognostic tool: for example, a LCRI score of lll or IV
was associated with an 11 to 12 time higher risk for major cardiovascular complication
development, compared to a patient without comorbidity. The predictive performance of
the LCRI increased by addition of the variable “age above 70 years” (AUC 0.84) . We
strongly advise that these patients are referred to a specialist for internal diseases for
optimization strategies and consultation during (and when necessary after)
hospitalization.
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CHAPTER SEVEN: Developing, updating and expanding a prognostic model, fitted on a
large historical dataset, is a time-consuming but worthwhile effort. Further accuracy
improvement of our model is believed possible by including more covariables and/or
expansion of the development study population. The problem with retrospective datasets
is that there is no upfront guarantee that sufficient information can be found in the
medical charts to incorporate extra covariables into the model (chapter four). The same
applies to addition of patients to the development population. The latter could partially
counter the ‘out-of date principle’ of the model because inclusion of patients who were
diagnosed and treated in a time period with more similar diagnostic and treatment
possibilities as today, perhaps have a more representative survival probability than earlier
patients.

It is our hypothesis that possibilities for future prognostic research lie with the upcoming
use of electronic patient files (EPF). During practice, we gather an enormous amount of
valuable medical data that is recorded in an EPF. Free text fields are initially without value
for research, but when medical chart data are standardized with underlying numerical
values they can be exported into databases on which statistical analyses such as survival
analyses are possible. Especially when data analysis, model development, model testing
and model updating can be automated there is much speed to gain. We therefore tested a
relatively new survival modelling technique, called Random Survival Forests (RSF). RSF is
known to easily extract patterns hidden in large survival databases in an automated
fashion. Little is known about the performance of RSF models compared to Cox-regression
models. In our study, RSF models delivered a similar performance as our Cox regression
model. A limitation of RSF was that where Cox models give a clinically understandable
output with a relative risk, p-value and 95% confidence interval for each predictor, RSF
becomes more of a “black box” when interpreting the model. RSF did give insightful
information on covariable importance ranking. We concluded that at the moment, RSF is
not suited to replace Cox regression but that it can complement it by identification of
highly significant covariates from large (EPF generated) databases with covariables that
have an as yet undetermined impact on prognosis.

We end this thesis with several important lessons that were learned during the
development, updating and validation of the presented prognostic HNSCC models. | hope
that these lessons are of value to future researchers in the field of prognosis prediction of
the individual HNSCC patient.
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List of abbreviations

ACE27 Adult Comorbidity Evaluation 27

AIDS Acquired Immune Deficiency Syndrome
ASA American Society of Anesthesiologists
AUC Area Under the Receiver operating characteristics Curve
BMI Body Mass Index

C-index Concordance Index

CIRS Cumulative lliness Rating Scale

COPD Chronic Obstructive Pulmonary Disease
DECREASE Dutch Echocardiographic Cardiac Risk Evaluation Applying Stress Echo
ECG Echocardiography

EMC Erasmus Medical Centre

EPF Electronic Patient File

HNSCC Head and Neck Squamous Cell Carcinoma
HIV Human Immuno Sufficiency Virus

HPV Human Papilloma Virus

ICED Index of Coexistent Disease

uicc Union Internationale Contre le Cancer

KFI Kaplan Feinstein Comorbidity Index

LCRI (Modified) Lee Cardiac Risk Index

LUMC Leiden University Medical Centre

NCR Netherlands Cancer Registry

ONCDOC LUMC Based Cancer Registry System
POISE Peri Operative Ischemic Evaluation

PORT Post Operative Radio Therapy

RSF Random Survival Forests
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