











Biallelic variants in ASNA1 cause rapidly progressive pediatric cardiomyopathy = 35

Supplemental Figure 3. Electrocardiography recordings of both patients. (A) ECG of patient I1:2 during hospital
admission showing sinus rhythm at a rate of 130/min with extremely broad QRS complexes of 220 ms and normal
QRS axis of 60 degrees. (B) ECG of patient I1:3 during cardiopulmonary resuscitation (no prior ECG available).
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Supplemental Figure 4. Recombinant expression and purification of ASNAT from E. coli. (A) Expression tests of E.
coli transformed with plasmids encoding either wild-type ASNAT or the Val163Ala mutant. In each case, equal num-
bers of cells harvested before or after induction with T mM IPTG (for 3 hours at 37°C) were analyzed by SDS-PAGE
and staining with Coomassie Blue. Two individual isolates of wild-type and four of mutant ASNAT all show compa-
rable expression levels of recombinant ASNA1 (indicated by the arrow). (B) The cells from a larger scale induction of
wild-type and mutant ASNA1 (as in panel A) were collected, lysed by sonication, and subjected to chromatography
using Ni-NTA columns. The total cells, soluble lysate, flow through, and elution fractions are shown. Note that a
substantially higher proportion of wild-type ASNAT is produced as a soluble protein, and recovered by chromatog-
raphy. This is a consistent effect observed in more than six independent trials. (C) Increasing amounts of purified
wild-type or mutant ASNAT (ranging from 100 ng to 1 g protein) were analyzed by SDS-PAGE and Coomassie stain-
ing to document concentration and purity. (D) A model TA protein containing the transmembrane domain from
VAMP2 was translated in a purified £. coli-based translation system [16]. This system contains only recombinant
translation factors and ribosomes, with no additional proteins. In addition, it contains *S-methionine to label the
newly synthesized TA protein, and the photo-crosslinking amino acid benzyl-phenylalanine (BPA) and components
for its incorporation at amber codons. A single amber codon in the transmembrane domain of the TA protein is
used to incorporate this photo-crosslinking amino acid. The translation was supplemented with either wild-type or
mutant ASNAT, which forms a complex with the newly made TA protein. The successful formation of the TA-ASNA1
complex was verified by UV irradiation to induce a covalent crosslink between these two proteins (indicated by “x
ASNA1"). These recombinant TA-ASNA1 complexes were used for the insertion assay shown in Figure 4D.
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