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Abstract

Activation of the transcription factor NF-kB appears to be involved in different stages of atherogenesis. In this paper we
investigate the role of NF-kB inhibitor IkBa in atherosclerosis. Myeloid-specific deletion of IkBa results in larger and more
advanced lesions in LDL-R-deficient mice without affecting the compositional phenotype of the plaques or systemic
inflammatory markers in the plasma. We show that IkBa-deleted macrophages display enhanced adhesion to an in vitro
endothelial cell layer, coinciding with an increased expression of the chemokine CCL5. Also, in vivo we found that IkBadel

mice had more leukocytes adhering to the luminal side of the endothelial cell layers that cover the atherosclerotic plaques.
Moreover, we introduce ER-MP58 in this paper as a new immunohistochemical tool for quantifying newly recruited myeloid
cells in the atherosclerotic lesion. This staining confirms that in IkBadel mice more leukocytes are attracted to the plaques. In
conclusion, we show that IkBa deletion in myeloid cells promotes atherogenesis, probably through an induced leukocyte
recruitment to plaques.

Citation: Goossens P, Vergouwe MN, Gijbels MJJ, Curfs DMJ, van Woezik JHG, et al. (2011) Myeloid IkBa Deficiency Promotes Atherogenesis by Enhancing
Leukocyte Recruitment to the Plaques. PLoS ONE 6(7): e22327. doi:10.1371/journal.pone.0022327

Editor: Jaswinder K. Sethi, University of Cambridge, United Kingdom

Received January 21, 2011; Accepted June 26, 2011; Published July 21, 2011

Copyright: � 2011 Goossens et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Netherlands Heart Foundation (grant no. 2005B175), Netherlands Organization for Scientific Research (ZonMW VIDI
917-66-329 to MPJdW), the European Union (Marie-Curie MEST-CT-2005-020706/CADRE2 to PG) and the European Vascular Genomics Network (EVGN). MPJdW is
an established investigator of the Netherlands Heart Foundation (2007T067 and 2009T034). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dewinther@maastrichtuniversity.nl

Introduction

NF-kB is a transcription factor that translates the inflammatory

stimuli from the environment into gene expression patterns regu-

lating cell differentiation, activation, proliferation and apoptosis as

well as the production of a set of inflammatory mediators. It is

activated in response to pathogen detection by Toll-like receptor

signaling or, in the inflammatory milieu, through different cyto-

kine receptors such as the TNF receptor. Also, non-pathogen

related activation, called ‘‘sterile inflammation’’, including stimuli

such as free radicals, radiation and modified lipoproteins, can

trigger NF-kB [1,2].

Rather than one transcription factor, NF-kB is in fact a family

of homo- and heterodimers, with different possible combinations

of the Rel-domain containing proteins NF-kB1 (p50 and its

precursor p105), NF-kB2 (p52 and its precursor p100), RelA

(p65), RelB and c-Rel. In the absence of an activating stimulus,

the NF-kB dimer is kept cytoplasmic because its nuclear lo-

calization signal is covered by an inhibitor belonging to the IkB

family [3]. The IkB family consists of IkBa, IkBb, IkBc, IkBe
and Bcl-3 [4]. Following a signaling cascade initiated by an

inflammatory stimulus, IkB is phosphorylated by a complex

consisting of IkB kinase 1 (IKK1 or IKKa), IKK2 (or IKKb) and

NEMO (or IKKc). This phosphorylation leads to ubiquitination

and subsequent proteasomal degradation of the IkB, leaving NF-

kB free to translocate to the nucleus [5]. Being NF-kB target

genes themselves, the IkB family members are part of a negative

feedback loop, retracting NF-kB from the nucleus back into the

cytoplasm and thereby preventing excessive and irreversible NF-

kB activation [6].

NF-kB activation is an important response in different infectious

as well as non-infectious pathologies. Also in the different stages of

atherogenesis, from early endothelial activation to eventual plaque

rupture, NF-kB has been described as a key regulator [7,8].

Atherosclerosis is a slowly progressing, chronic inflammatory di-

sease of the large arteries representing the most common cause of

death in western society [9]. This process is initiated when modi-

fied lipoproteins in the vessel wall activate the endothelial lining of

the vessel, thereby attracting monocytes, which differentiate into

macrophages upon migration through the endothelium. By taking

up and storing the lipoproteins, these macrophages eventually

become large foam cells and start secreting inflammatory me-

diators, cytokines and chemokines. The thereby created inflam-

matory environment attracts even more monocytes as well as other

immune cells to the vessel wall, forming an atherosclerotic plaque

[10].
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In the atherosclerotic plaque, a wide variety of NF-kB inducers

is present, ranging from modified lipoproteins to inflammatory

mediators, free radicals and remnants of dead cells [11,12,13].

Therefore, activated NF-kB has been found in different cell types

in the lesion, including macrophages, smooth muscle cells and

endothelial cells [8,14]. To investigate the importance of this

activation, we have previously studied models with either a

macrophage- [15] or endothelial cell-specific [16] ablation in NF-

kB activation. While macrophage-specific deletion of IKK2 led to

larger and more advanced lesions, endothelium-restricted NEMO

deletion abrogated atherogenesis by impairing macrophage re-

cruitment to the plaque.

In this paper we aimed at investigating the role of the NF-kB

inhibitor IkBa in atherogenesis. Since full IkBa knockout mice die

neonatal of hypergranulopoiesis and severe dermatitis [17,18,19],

we used a conditional model with a myeloid specific deletion of

IkBa [20]. Bone marrow from these LysMCre-IkBafl/fl mice was

transplanted into atherosclerosis-susceptible ldlr2/2 mice to study

the effect of myeloid IkBa deficiency on atherogenesis. We found

that myeloid IkBa deficiency promotes atherogenesis by causing

increased attraction of myeloid cells to the developing plaques

without affecting other phenotypical characteristics of the lesions.

Quite surprisingly, macrophage IkBa deficiency does not seem to

affect the production of a number of NF-kB target genes in vivo nor

in vitro but appears to be involved in the adhesion and recruitment

of these cells to the atherosclerotic plaque.

Results

Myeloid IkBa deficiency promotes atherogenesis without
altering plaque phenotype, body weight, plasma lipids
and cytokines

To study the effect of myeloid IkBa deficiency on atheroscle-

rosis, bone marrow was isolated from IkBafl/fl and LysMCre-

IkBafl/fl mice, the latter having a myeloid-specific deletion of the

IkBa gene [20]. This bone marrow was transplanted into irra-

diated ldlr2/2 mice, resulting in atherosclerosis-susceptible mice

that were either wildtype (IkBaWT) or deleted (IkBadel) for IkBa in

their myeloid cells. Four weeks after transplantation, these mice

were put on a high fat diet for 12 weeks in order to induce

atherogenesis. The rise in plasma cholesterol, plasma triglycerides

and body weight as a result of the diet was similar in both groups

(Figures 1A, 1B and 1C). In addition, relative levels of circulating

leukocyte populations (monocytes, granulocytes, T and B lym-

phocytes) after the transplantation did not differ between the

groups (data not shown). After 12 weeks of diet, plasma levels of

the NF-kB dependent pro-inflammatory cytokines IL-6, IL-12,

TNF-a and IFNc, the anti-inflammatory cytokine IL-10 and the

Figure 1. Plasma values and body weight of mice transplanted with either IkBafl/fl or LysMCre-IkBafl/fl bone marrow. (A) Cholesterol
levels, (B) triglyceride levels and (C) body weight measured before the start of the high fat diet (0w HFD), after 4 weeks of diet (4w HFD) and upon
sacrifice of the mice (12w HFD). (D–I) Plasma cytokine concentrations at the end of the experiment, measured by a bead array.
doi:10.1371/journal.pone.0022327.g001
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chemokine MCP-1 (CCL2) were not influenced by the absence of

myeloid IkBa (Figures 1D–1I).

Upon sacrifice, atherosclerosis in the aortic root was analyzed.

Interestingly, lesion area measurements using toluidine blue-

stained sections (Figures 2A, 2B) showed a two-fold, significant

increase in plaque formation in IkBadel mice compared to IkBaWT

mice (4974069142 mm2 vs. 9433068803 mm2 for IkBaWT and

myeloid-specific IkBadel respectively; p = 0.0014) (Figure 2C).

Moreover, classification of the lesions according to their severity

showed that IkBadel mice had relatively more advanced and

less early atherosclerotic lesions (Chi square test; p,0.0001)

(Figure 2D).

With additional analyses on sections of the aortic root, the

phenotype of these plaques was further characterized. Plaque-

stabilizing collagen was stained with Sirius Red but no significant

differences were found in collagen content between the two groups

(Figure 3A). Also analysis of T cell and neutrophil content revealed

no significant differences (Figures 3B and 3C). Finally, both groups

appeared to have the same number of proliferating and apoptotic

cells in their plaques, as shown by Ki-67 and a TUNEL stainings

(Figures 3D and 3E). Thus despite having larger and more

advanced lesions, the IkBadel lesions showed no other changes in

their plaque characteristics.

Next to the lesions in the aortic root, atherosclerotic plaque

formation was also assessed in the aortic arch. In RNA isolated

from this tissue, a 49.6% increase in the expression of macrophage

marker CD68 was found (p = 0.0384, data not shown), indicating

enhanced macrophage accumulation in the vessel wall of IkBadel-

transplanted mice.

Myeloid IkBa deficiency promotes in vitro macrophage
adhesion

To investigate the mechanism behind the enhanced athero-

genesis in the IkBadel mice, in vitro experiments were done.

Surprisingly, the reduced production of IkBa shown in Figure 4A

and Figure S1A did not result in an increased activation of the p65

NF-kB subunit (Figure S1B–C), suggesting a potent compensatory

mechanism operating in the absence of IkBa. As a result, hardly

any difference was found in the expression of some genes known to

be NF-kB targets, NF-kB inhibitors or inflammatory mediators

when assessed in unstimulated as well as LPS stimulated bone

marrow-derived macrophages from LysMCre-IkBafl/fl mice and

compared to wild type cells (Figure 4A and Figure S1D). How-

ever, the expression of the chemokine CCL5 (or RANTES) was

significantly elevated 2.8 fold in macrophages lacking IkBa. CCL5

was previously shown to be involved in the adhesion of macro-

phages to endothelial cells. In line with these findings, static

adhesion of IkBadel macrophages to a monolayer of the bEND.5

endothelial cell line was significantly enhanced compared to wild-

type macrophages (1461061163 AU vs. 2172061810 AU for

IkBaWT and IkBadel respectively; p = 0.0298) (Figure 4B).

Atherosclerotic lesions in mice lacking myeloid IkBa
show increased leukocyte adhesion and migration

To investigate whether the observed increased in vitro macro-

phage adhesion could also be observed in the in vivo atherosclerosis

model, cells adhering to luminal side of the endothelial cells

covering the atherosclerotic plaques were quantified in the

toluidine blue-stained sections. Indeed, the IkBadel mice displayed

Figure 2. Myeloid IkBa deficiency promotes atherosclerosis in ldlr2/2 mice. Representative pictures of toluidine blue-stained sections in the
aortic root of (A) IkBaWT or (B) myeloid-specific IkBadel mice, original magnification 640. (C) Lesion area in the aortic root of IkBaWT and IkBadel mice
(** p,0.01; n = 18/16). (D) Lesion severity in the aortic root of IkBaWT and IkBadel mice (Chi square test; *** p,0.0001; n = 54/48) was typed as absent
(0), early (1+2), or advanced (4+5), as described before [15].
doi:10.1371/journal.pone.0022327.g002
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a significantly higher number of adhering cells compared to the

IkBaWT mice (7.861.3 cells vs. 15.961.8 cells for IkBaWT and

IkBadel respectively; p = 0.0009) (Figures 5A–5C), suggesting en-

hanced recruitment of new cells to the plaque in mice lacking IkBa
in their myeloid cells.

To further analyze this recruitment of monocytes to the lesions,

we used a marker that is specifically expressed on circulating

immature myeloid cells but that is lost upon differentiation to

macrophages. This marker, detected by the antibody ER-MP58,

has previously been used in other studies to analyze recruitment of

cells from the circulation to tissues [21,22,23]. Sections from the

aortic root were stained with ER-MP58 and positive cells were

quantified. As expected, these cells were predominantly observed

on the luminal side of the plaque. However, also on the adventitial

side, some myeloid recruitment could be observed. Interestingly,

ER-MP58-positive cells were also seen in inflammatory regions in

the vicinity of the plaques. Quantification showed that IkBadel

mice had significantly more newly recruited myeloid cells in their

plaques compared to IkBaWT mice (15.89063.164 cells vs. 37.590

65.568 cells; p = 0.0014) (Figures 5D–5F). These data indicate

that atherosclerotic lesions in the aorta of ldlr2/2 mice lacking

myeloid IkBa may be larger because of enhanced recruitment and

infiltration of myeloid cells, suggesting that myeloid IkBa is

important in regulating the migratory phenotype of cells in

atherogenesis. A possible role for CCL5 in this mechanism is

illustrated by the observation that the expression of this chemokine

was significantly elevated in the aforementioned aortic arch-

derived RNA (40.7% increase, p = 0.0270, data not shown).

Discussion

In this paper we show that myeloid-specific deletion of the

inhibitor of NF-kB, IkBa, in ldlr2/2 mice results in larger

atherosclerotic plaques without affecting the general plaque

composition. Studying cell adhesion to the luminal side of the

endothelial layer covering atherosclerotic plaques, we observed

increased adhesion of leukocytes in the absence of myeloid IkBa.

Through a marker specific for circulating myelomonocytic cells

that is lost upon maturation to macrophages, ER-MP58, we found

that lesions from mice lacking myeloid IkBa are characterized by

more newly recruited leukocytes. Moreover, we found an increase

in macrophage content in the vessel wall of the aorta. These data

suggest that IkBa in myeloid cells may have a pivotal role in

regulating the recruitment of cells to atherosclerotic lesions.

Atherosclerosis is known to be driven by inflammation and

aggravated by the production of pro-inflammatory cytokines [24].

Since cytokine expression is highly dependent on NF-kB, it can be

expected that the atherosclerotic process is proportional to the

activation level of this transcription factor. Indeed, Gareus et al.

showed that endothelial-specific inhibition of NF-kB by NEMO

deletion impaired macrophage recruitment to the plaque and

hereby impaired atherogenesis [16]. Another paper, by Wolfrum

et al., describes how haploinsufficiency for the NF-kB activation

inhibitor A20 results in enhanced atherogenesis while A20 over-

expression reduced plaque formation [25]. Our group also showed

that the role of NF-kB in macrophages is not as straightforward.

Myeloid-specific blocking of the canonical activation of NF-kB

through deletion of IKK2 resulted in plaques that were not only

larger but also more advanced and more necrotic, highlighting the

fact that NF-kB also acts as an anti-apoptotic transcription factor

and is involved in regulating anti-inflammatory mechanisms [15].

In contrast, the present study demonstrates that deletion of

myeloid IkBa, aiming at myeloid-specific NF-kB activation, also

induces larger and more advanced plaques but without affecting

the plaque composition.

Figure 3. Myeloid IkBa deficiency does not influence plaque phenotypic characteristics. (A) Collagen content is not different between
IkBaWT and IkBadel mice, as shown by a Sirius Red staining. Also the relative number of (B) T cells, (C) neutrophils, (D) proliferating and (E) apoptotic
cells was similar in both groups.
doi:10.1371/journal.pone.0022327.g003
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Studying gene expression in LysMCre-IkBafl/fl bone marrow-

derived macrophages and comparing it to wildtype cells, we found

an increase in the expression of the chemokine RANTES (Re-

leased upon Activation, Normal T-cell Expressed and Secreted,

or CCL5). This molecule belongs to a relatively limited set of

chemokines and adhesion molecules that are described to be

influencing atherogenesis through the recruitment of new cells to

the plaque [26,27]. In a recent publication, our group showed that

IFNb-induced expression of CCL5 augments the static adhesion of

macrophages to endothelial cells in vitro as well as the adhesion of

leukocytes to the vessel wall at atherosclerosis-prone sites in vivo,

thereby promoting the attraction of new cells to the plaques [28].

Macrophages from LysMCre-IkBafl/fl mice indeed adhered more

efficiently to an endothelial cell layer in vitro, while in the

atherosclerosis model, more monocytes were found adhering to

the endothelial layer covering the plaques in the IkBadel mice

compared to the IkBaWT mice.

To confirm the hypothesis that the lesions in the IkBadel mice

were larger because of an increased attraction of leukocytes, we

applied a staining detecting a marker specific for immature

myeloid cells, ER-MP58. The target is an antigen with a yet

unknown function, which is present on the bone marrow-derived,

myeloid-committed progenitor cells. It continues to be expressed

on neutrophils and monocytes but disappears progressively upon

maturation of the M-CSF-responsive cells to macrophages [21,29].

Thus, both Ly-6C-high and Ly-6C-low subsets of circulating

monocytes are positive for ER-MP58 while tissue macrophages

have lost the marker [29,30]. Previously, detection of this marker

has been used to distinguish infiltrating immature myeloid cells

from the resident macrophages already present within the site of

inflammation, both in thioglycollate elicited macrophage recruit-

ment to the peritoneum [21,22] and in the restoration of the

Kupffer cell population in the liver, following injection with

liposome-entrapped dichloromethylene diphosphonate [23]. In

this paper, we show that ER-MP58 is also a valid marker for newly

recruited myeloid cells to the atherosclerotic plaque, with a

positivity that is limited to small, recently infiltrated cells in the

vicinity of the luminal plaque surface and inflammatory regions.

Contrary to the upregulation of CCL5 expression in the

LysMCre-IkBafl/fl macrophages, many typical NF-kB-dependent

genes were not influenced by the deletion of IkBa. This suggests

that in these cells, NF-kB is not continuously activated, but

inhibited by other feedback mechanisms which, like IkBa, prevent

NF-kB translocation to the nucleus or terminate NF-kB activation

by exporting it back to the cytoplasm. Indeed, studying the nuclear

translocation of several NF-kB subunits, we found that the

LysMCre-IkBafl/fl macrophages had the same degree of translo-

cation as wildtype cells (data not shown) and no increase in p65

phosphorylation was observed in the IkBadel macrophages (Figure

S1B–C). In addition, only mild to no upregulation of other IkB

family members was detected by gene expression analysis, indi-

cating alternative mechanisms of regulation of NF-kB dependent

transcription. Recent studies indeed show that, besides IkB

inhibitors, also nuclear ubiquitin ligases can terminate chronic

NF-kB activation by its nuclear degradation, a mechanism that

might compensate the deletion of IkBa [31].

Figure 4. Deletion of IkBa in bone marrow-derived macrophages has limited effect on the expression of NF-kB-dependent
and/or –regulating genes but enhances in vitro static macrophage adhesion. (A) Gene expression in triplicates of LysMCre-IkBafl/fl

macrophages was compared to IkBafl/fl macrophages by Q-PCR. (B) Adhesion of fluorescently labeled macrophages to an endothelial monolayer (bars
represent triplicate wells 6 SEM; * p,0.05). Data shown are representative for at least 3 experiments.
doi:10.1371/journal.pone.0022327.g004
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In conclusion, we found that myeloid-specific deletion of IkBa
resulted in an upregulation of the chemokine CCL5 and enhanced

static in vitro adhesion of macrophages to an endothelial cell layer.

Moreover, this correlated in vivo with increased leukocyte adhesion

to the activated endothelial lining of the blood vessel, enhanced

recruitment of ER-MP58+ immature myeloid cells to the athero-

sclerotic plaque and increased atherosclerotic lesion formation in the

aortic root and arch. Hereby we show that the role of myeloid IkBa
in the regulation of inflammation is complex but that it is involved in

the recruitment of macrophages to the atherosclerotic plaque.

Materials and Methods

Mice
C57BL/6 mice and ldlr2/2 mice on a C57BL/6 background

were obtained from Jackson Laboratory (Bar Harbor, ME). IkBafl/fl

mice on a C57BL/6 background were described before [32]. All

animal experiments were approved by the DierExperimenten

Commissie (DEC) of the Maastricht University (permit numbers

2005-090 and 2009-168).

Bone marrow transplantation
One week before transplantation, female ldlr2/2 mice were

housed in filter top cages and provided with acidified water

containing neomycin (100 mg/l; Gibco, Breda, The Netherlands)

and polymyxin B sulphate (66104 U/l; Gibco). The animals

received 10 Gy total body irradiation and on the following day,

bone marrow was isolated from 6 LysMCre-IkBafl/fl mice

(IkBadel) and 6 IkBafl/fl littermates (IkBawt) and 107 cells/mouse

were injected intravenously to rescue the hematopoietic system of

the irradiated mice. Four weeks after the transplantation, mice

were fed a high fat diet (0.15% cholesterol, 16% fat, Arie Blok,

The Netherlands) for 12 weeks.

Mouse blood parameters
At several time points during the in vivo atherosclerosis

experiment, blood was drawn from the mice. Plasma lipid levels

were monitored enzymatically (Sigma Aldrich, Zwijndrecht, the

Netherlands) and plasma cytokine levels were measured by flow

cytometry using a Cytometric Bead Array kit (BD-Pharmingen,

San Diego, CA). Leukocytes were counted using a Coulter counter

and blood cell distribution was quantified by flow cytometry after

antibody staining with either Mac1-PE and Gr1-FITC for

macrophages and granulocytes or 6B2-PE and KT3-FITC for

B- and T-cells (BD-Pharmingen, Erembodegem, Belgium).

Atherosclerosis analysis
Upon sacrifice, the hearts from the bone marrow transplanted

mice were taken out and cut perpendicular to the heart axis just

below the atrial tips. Tissue was frozen in tissue-tec (Shandon,

Veldhoven, The Netherlands) and cut into sections of 7 mm as

described before [15]. Serial cross-sections from every 42 mm were

stained with toluidine blue. All lesion areas were quantified using

Adobe Photoshop software. The lesions were also typed according

to severity as early, moderate and advanced, as described before

[15].

Figure 5. Increased leukocyte adhesion and newly recruited myeloid cells in IkBadel mice. (A) In IkBadel mice, more leukocytes adhere to
the endothelial cell layer delineating the lesion (*** p,0.0001; n = 17/17). Representative pictures from (B) IkBaWT and (C) IkBadel lesions, original
magnification6200. (D) Lesions from IkBadel mice contain more ER-MP58 positive cells, suggesting an increased attraction myeloid cells (** p,0.001;
n = 19/17). Representative pictures from (E) IkBaWT and (F) IkBadel lesions, original magnification 6200.
doi:10.1371/journal.pone.0022327.g005
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Immunohistochemical staining
Lesions from the aortic root were fixed in acetone and

incubated with antibodies against neutrophils (1A8, BD-Pharmin-

gen), T cells (KT3, directed against CD3, a gift from G. Kraal),

proliferating cells (Ki-67, Dako, Glostrup, Denmark) and newly

recruited macrophages (ER-MP58, P. Leenen), followed by

detection with a biotin labeled rabbit anti-rat antibody and

staining with the ABC kit (Vector Labs, Burlingame, CA).

Apoptotic cells in the plaques were stained by the TUNEL

staining (Roche Diagnostics, Mannheim, Germany) according to

the manufacturer’s protocol. Collagen areas were analyzed on

Sirius red stained sections. Adhering leukocytes were quantified on

toluidine blue-stained sections.

In vitro murine bone marrow macrophage culture
Bone marrow cells were isolated from femurs and tibiae of

either wild-type (IkBafl/fl) or deleted (LysMCre-IkBafl/fl) mice.

Cells were cultured in RPMI-1640 (GIBCO Invitrogen, Breda,

The Netherlands) with 10% heat-inactivated fetal calf serum

(Bodinco B.V., Alkmaar, The Netherlands), penicillin (100 U/ml),

streptomycin (100 ug/ml), and L-glutamine 2 mM (all GIBCO

Invitrogen, Breda, The Netherlands) supplemented with 15%

L929-conditioned medium (LCM) for 8–9 days to generate bone

marrow-derived macrophages (BMM), as described previously

[15].

Western blotting
Protein was isolated from BMM with an SDS lysis buffer,

supplemented with complete protease inhibitor cocktail (Roche

Diagnostics) and PhosSTOP phosphatase inhibitor cocktail

(Roche Diagnostics). After Western blotting, blots were incubated

with P-p65 antibody (1:500, Cell Signaling, Danvers, MA) in PBS

with 0.05% Tween and 5% BSA (Sigma Aldrich).

Gene expression
RNA was isolated from BMM with the High Pure RNA

Isolation Kit (Roche, Basel, Switzerland) or from snap-frozen

aortic arches with the RNeasy Mini Kit (Qiagen, Venlo, The

Netherlands). 500 ng total RNA was reverse transcribed using the

iScript cDNA Synthesis Kit (BioRad, Veenendaal, The Nether-

lands). Quantitative PCR (Q-PCR) was performed using 10 ng

cDNA, 300 nM of each primer, and SensiMix (Quantace-Bioline,

London, UK) in a total volume of 20 ml. All gene expression levels

were corrected for cyclophilin A as housekeeping gene. Primer

sequences are available upon request.

In vitro adhesion assay
A confluent monolayer of bEND5 endothelial cells was grown

in fluorescence 96-well microplates (Greiner Bio-one, Frickenhau-

sen, Germany). Triplicate wells were incubated for 30 min with

105 BMM that had been fluorescently labeled with a PKH67 dye

according to the manufacturer’s instructions (Sigma Aldrich,

Zwijndrecht, The Netherlands). Subsequently, the wells were washed

three times with the aforementioned macrophage medium, and

adherent cells were measured by fluorometry in a Synergy HT

microtiter plate reader (BioTek, Bad Friedrichshall, Germany) at an

excitation of 485 nm and an emission of 520 nm.

Statistical analysis
The statistical analyses were performed using Graphpad Prism

(Graphpad Software). Differences between 2 groups were eva-

luated using a t-test, unless stated otherwise. Values are repre-

sented as mean 6 SEM. A P value of less than .05 was considered

to be statistically significant. All mouse data passed a normality

test.

Supporting Information

Figure S1 Deficiency of IkBa does not lead te increased
NF-kB activity and subsequent gene expression. (A)

Western blotting for IkBa on lysates of bone marrow derived

IkBaWT or IkBadel macrophages confirmed a reduction in IkBa
production, both before and after LPS activation. (B–C) A western

blot for phosphorylated NF-kB subunit p65 showed that NF-kB is

not continuously activated in IkBadel macrophages, (D) resulting

in a lack of differential expression patterns for NF-kB dependent

genes.

(TIF)
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