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Notch2 and B cell antigen receptor (BCR) signaling determine if transitional B cells 

become marginal zone B (MZB) or follicular B (FoB) cells in the spleen, but it is 

unknown how these pathways are related. We generated Taok3–/– mice and found 

cell-intrinsic defects in the development of MZB, but not FoB cells. Type 1 

transitional (T1) B cells required Taok3 to rapidly respond to ligation with the Notch 

ligand Delta-like 1. BCR ligation by endogenous or exogenous ligands induced the 

surface expression of the metalloproteinase ADAM10 on T1 cells in a Taok3-

dependent manner.  T1 B cells expressing surface ADAM10 were committed to 

become MZB cells in vivo, whereas T1 B cells lacking expression of ADAM10 were 

not. Thus, during positive selection in the spleen, BCR signaling causes immature 

T1 cells to become receptive to Notch ligands via Taok3-mediated surface 

expression of ADAM10.   
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Introduction 

B lymphocytes are categorically divided in B1 and B2 cells.  B1 cells derive from fetal 

progenitors and react to a restricted set of microbial ligands in a T cell-independent (TI) 

manner in serosal cavities and spleen1.  B2 cells develop continuously in the bone marrow 

and further mature into follicular B (FoB) cells and marginal zone B (MZB) cells.  FoB cells 

have a broad repertoire of specificity, recirculate between lymphoid organs and give rise 

to germinal center B cells that undergo somatic hypermutation in a T-cell dependent (TD) 

manner. MZB cells shuttle continuously between the marginal zone and follicles of the 

spleen and produce antibodies to encapsulated bacterial and polysaccharide TI antigens. 

It is still poorly understood how immature transitional B cells are instructed to become a 

FoB or MZB cell, and when exactly this lineage choice is made. It is widely accepted that 

MZB instruction requires triggering of Notch2 on developing B cells by Delta-like 1 (Dll1) 

expressed by splenic red pulp sinus endothelial cells or marginal zone reticular cells 

(MRCs).  Notch2 cleavage by a metalloproteinase and disintegrin-10 (ADAM10) and -

secretase then releases the intracellular domain of Notch (NICD) that binds to the 

transcription factor RBP-J in the nucleus, and instructs MZB development, together with 

NF-B signaling emanating from the BAFF receptor2-13. The quality of B cell antigen 

receptor (BCR) signals during positive selection of B cell precursors in the spleen is 

equally important in B cell fate decisions14-16, and it was proposed that weak or strong 

BCR signals might render cells receptive or resistant to Notch instruction17, 18. Yet how 

BCR repertoire or signaling controls Notch responsiveness is currently poorly understood.  

The Ste20 family kinases are serine-threonine kinases that participate in a variety of 

signaling pathways triggered by cellular stress19, 20. The Tao kinase subfamily has three 

members in mammals (TAOK1, also known as proteins MAP3K16, PSK2 or MARKK; 

TAOK2 (MAP3K17, PSK1) and TAOK3 (MAP3K18, JIK or DPK)), whose function is 

largely unknown. Here, we generated Taok3–/– mice and found that these mice lacked 

MZB cells, whereas FoB cells were intact.  By carefully unraveling the molecular 

mechanism of this deficiency we have discovered how BCR signaling intersects with 

Notch signaling in immature transitional B cells undergoing positive selection. 

RESULTS 
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Taok3–/– mice lack MZB cells 

In wild-type mice, the expression of mRNA for Taok3 was predominantly found in bone 

marrow and immune tissues like spleen, thymus and lymph nodes, but also in lung and 

gut (Fig. 1a).  To gain insight into the biology of Taok3, we generated Taok3–/– mice 

(Supplementary Fig. 1a-e). Overall there was no difference in the cellularity of the 

various lymphoid organs in 6-12 week old mice (Supplementary Fig. 1f). In the spleen, 

there were no gross differences in the percentage of eosinophils, monocytes, natural 

killer (NK) cells and NKT cells between Taok3–/–  and wild-type mice, yet there was a 

consistent reduction in the amount of CD11c+ dendritic cells in Taok3–/–  mice (Fig. 1b). 

There was a small yet consistent increase in the percentage of Ly6G+ granulocytes in 

the spleen of Taok3–/–  mice. The distribution of CD3+ T cells and CD19+ B cells was 

comparable, yet there was a 25-30% reduction in the amount of CD8+ T cells (Fig. 1c). 

Within the B cells of the spleen, analysis of cell surface expression of CD21/35 and CD23 

discriminates between transitional CD21/35–CD23–B cells that are immature B cells that 

have just arrived from the bone marrow, CD21/35intCD23hi FoB cells and 

CD21/35hiCD23– MZB cells. Transitional B cells express CD93 and can be further divided 

in CD93+ IgMhi CD23– T1, and CD93+IgMhiCD23hi T2 cells. In Taok3–/– splenocytes, the 

percentage of T1, T2, and FoB cells were comparable to wild-type, whereas MZB cells 

were almost completely absent (Fig. 1d-f).  

Histological examination of the spleen revealed that the characteristic rim of IgM+CD1d+ 

MZB cells separated from the IgMlo B cell follicles by the marginal sinus was absent in 

Taok3–/–  mice (Fig. 1g).  Resident marginal zone metallophillic macrophages (MMM, 

expressing CD169) that line the marginal sinus were present and correctly localized in 

Taok3–/–  mice (Fig. 1h). MZB cells are specialized in capturing TI type 2 antigens like 

Ficoll21. Two h after i.v. injection of FITC-Ficoll, we detected labeled B cells in vicinity of 

CD169+ MMM in wild-type mice but not Taok3–/–  mice (Fig. 1h).  Collectively, Taok3–/–  

mice lack MZB cells without compensatory alterations in other B cell subsets. 

 

Humoral immune response of Taok3–/–  mice 

The baseline serum concentration of immunoglobulins (Ig) was comparable to wild-type, 

with a tendency for increased IgG3 in Taok3–/– mice  (Supplementary Fig 2). MZB cells 
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acutely produce TI Ig to polysaccharide particulate antigens like Ficoll1, 22.  However, in 

response to immunization with trinitrophenyl (TNP) hapten-conjugated Ficoll, there was 

no reduction in the concentration of TNP-specific IgG1, IgG3 and IgM in Taok3–/–

compared with wild-type mice (Fig. 1i and Supplementary Fig 2 ). The intact TNP-

specific Ig response as not due to compensatory increase in recirculating MZB cells 

outside the spleen (data not shown). B1 B cells can also respond to TNP-Ficoll antigen, 

in the complete absence of MZB cells2.  The numbers of B220+CD5+ B1a and CD5- B1b 

B cells of the peritoneal cavity were identical in wild-type and Taok3–/–  mice (Fig. 1j), 

which may explain the intact humoral immune response to TNP-Ficoll.  MZB cells are 

indispensable for mounting low affinity IgM phosphorylcholine (PC)-specific antibody 

responses to encapsulated bacteria like Streptococcus pneumonia when these reach the 

bloodstream1, 2, 23.  We injected 1 × 108 heat inactivated pneumococci i.v. and measured 

the IgM response antigen 5 days later. Whereas wild-type mice readily mounted an anti-

PC IgM response, the titer of PC-specific IgM was severely reduced in Taok3–/–  mice (Fig. 

1k).  These findings show that Taok3–/–  mice form normal responses to the TI-2 antigen 

Ficoll, but not to the TI-1 antigen S. pneumoniae. 

 

MZB defect of Taok3–/–  mice is B cell-intrinsic 

The development and survival of MZB cells depends on integrin signaling and correct 

positioning in the marginal zone18, 24-26. As the structure of the marginal zone was not 

normal in Taok3–/–  mice, and other defects were found in neutrophils, DCs and CD8+ T 

cells, we next addressed if the defect in MZB cell development was cell intrinsic, or caused 

by changes in the stromal structures or other hematopoietic cells.  We therefore created 

mixed bone marrow chimeric mice by lethally irradiating CD45.1.CD45.2 C57BL/6 mice 

and reconstituting them with an equal mix of CD45.1 wild-type and CD45.2 Taok3–/–  BM 

cells. Chimerism was complete 6-8 weeks after transfer with each donor genotype 

contributing to 50% of monocytes and neutrophils in the blood and various organs (data 

not shown). Whereas CD23hiCD21/35lo Fo B were completely chimeric (Fig. 2a), 

CD21hiCD23loMZB cells were generated almost exclusively from the CD45.1 wild-type 

hematopoietic cells.  As the marginal zone was fully restored in chimeric mice (data not 

shown), these findings demonstrate that the defect in MZB development is not due to 
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changes in environment, but cell-intrinsic.  We next evaluated at which stage of B cell 

development the MZB development might be compromised. In the bone marrow of 

chimeric mice, pro-B cells, cycling pre-B cells, pre-B cells and immature B cells were all 

equally distributed amongst both genotypes (Fig. 2b).  In the spleen however, there was 

an overrepresentation of T1 cells of the CD45.1 wild-type genotype.  This effect was less 

marked in T2 B cells.  Collectively, loss of MZB cells in Taok3–/–  mice is cell intrinsic and 

B cell development is compromised from the T1 stage onwards. 

Gene dosage effect of Taok3 deficiency  

To address if the amount of Taok3 affects B cell development, we analyzed heterozygous 

Taok3+/–   mice and took advantage of the fact that the gene trap construct made to 

inactivate the Taok3 locus contained a splice acceptor that was flanked by loxP sites, 

allowing the partial reversal of the gene trap in cells of interest (Supplementary Fig. 1a).  

We therefore crossed wild-type, Taok3+/– and Taok3–/–  mice to mb1Cre mice, in which 

Cre recombinase expression is under the control of the Cd79a promoter, active from the 

pre B cell stage onwards27. When we analyzed the composition of splenic B cells in wild-

type Cre+, Taok3–/–  Cre– or Taok3–/–  Cre+ mice, we found that MZB cells were partially 

recovered by gene-trap reversal exclusively in the B cell lineage (Fig. 2c,d). The numbers 

of MZB cells of heterozygous Taok3+/–  were intermediate between those of wild-type and 

Taok3–/–  mice, and gene trap reversal of Taok3+/–  mice led to a stronger recovery of MZB 

cells compared with reversal in Taok3–/–  mice. Collectively, the defect in MZB 

development in Taok3–/–  mice can be partially reversed by B cell specific gene trap 

removal.  

Defective Notch activation in Taok3–/– B cells  

The gene dose-dependent lack of MZB cells and preserved induction of immune 

responses to TNP-Ficoll in Taok3–/–  mice resembles the phenotype of mice lacking 

Notch2 or RBP-J in the B cell lineage2, 6, 7. It has been shown that transitional B cells are 

instructed to become MZB cells via interaction with the Notch ligand Delta-like 1 (Dll1) 

expressed on stromal cells4, 5. To address if Notch–mediated development of MZB cells 

was disrupted in Taok3–/–  mice, we cultured CD93+ transitional splenic B cells on OP9-
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GFP cells, or on OP9 cells stably transfected with Delta-like 1 (OP9-Dll1). Notch signaling 

was studied  by measuring the mRNA of direct Notch targets genes Dtx1,  Hes1, Hes5 

and Hey111.  When transitional B cells were cultured for 4h on OP9-Dll1 cells, there was 

induction of Notch target genes in wild-type but much less efficiently so in Taok3–/–  mice 

(Fig. 3a).  Strikingly, these differences were no longer apparent 18h later (data not 

shown), demonstrating that Taok3 was mainly involved in controlling rapid 

responsiveness to Dll1 ligation.   

It is exceedingly difficult to model MZB development in vitro28, 29.  However, when wild-

type CD93+ transitional B cells were co-cultured with OP9-GFP cells in the presence of 

the B cell growth factor BAFF, there was induction of CD21 and IgM on 8-10% of Taok3+/+ 

cells.  Culture on OP9-Dll1 induced expression of IgM and CD21 on roughly 20% of cells. 

However, Taok3–/–  transitional B cells only upregulated CD21 and IgM on 10% of B cells 

when cultured on OP9-Dll1 cells (Fig. 3b). These differences were not due to alterations 

in BAFF signaling (Supplementary Fig. 3a) or BAFF induced survival (Supplementary 

Fig. 3b). Thus, Taok3 was necessary in transitional B cells for rapid Notch signaling and 

differentiatiation towards the MZB phenotype. 

To address this point more directly, we performed a rescue experiment in which Notch2 

expression was increased in Taok3–/–  B cells. It was recently reported that Irf4–/– mice 

have an increase in MZB cells explained through a stabilization of intracellular Notch212.  

We set up breedings of Taok3–/–  and Irf4–/–  mice.  We confirmed that Irf4–/– mice had a 

strong increase in MZB cells compared with Irf4+/+ mice (Fig. 3c-d).  When Taok3–/– Irf4–

/– mice were analyzed, the deficiency of MZB cells was completely reversed, and there 

were even higher percentages MZB cells compared with wild-type animals. We validated 

that Taok3–/–  mice did not have an increased intracellular accumulation of IRF4 protein 

(data not shown). These data show that Taok3-deficiency leads to defective Notch 

signaling in transitional B cells and that the MZB phenotype of Taok3–/–  mice can be 

rescued by IRF4 deficiency. 

 

Taok3 controls the surface expression of ADAM10 
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We next studied how lack of a kinase might lead to reduced Notch signaling.  By 

immunoblot analysis on lysates, Notch2 expression in Taok3–/–  was similar to wild-type 

mice (Supplementary Fig 4).  Looking at immunostained splenic sections and flow 

cytometry we found that the intensity of CD23 staining on B cell follicles (Fig. 4a) and FoB 

cells (Fig. 4b) were consistently higher in Taok3–/–  compared with Taok3+/+ mice.  This 

was not caused by altered Cd23 mRNA (data not shown). We have previously shown that 

the metalloproteinase ADAM10 determines the intensity of CD23 on the B cell plasma 

membrane, by cleaving CD23 to generate a sCD23 fragment10, 30.  We found that the 

baseline serum concentration of sCD23 was significantly reduced in Taok3–/–  mice 

compared with wild-type mice (Fig. 4c). Injection of the 19G5 antibody against the CD23 

stalk causes a conformational change in CD23 rendering it highly sensitive to cleavage 

by ADAM1010.  After 19G5 injection in wild-type mice, there was an almost 100-fold 

increase in the serum levels of sCD23.  This effect was strongly reduced in Taok3–/–  mice, 

suggesting a defect in the enzymatic activity of ADAM10 (Fig. 4d). The defect in ADAM10 

bioactivity was addressed further by studying the cleavage of other ADAM10 substrates.  

A well-known substrate of ADAM10 is the amyloid precursor protein (APP), involved in 

the pathogenesis of Alzheimer’s disease31.  The ADAM10 causes the cleavage of cell 

bound APP into a membrane bound APP -stub and the release of soluble APP.  As 

APP is produced by mouse fibroblasts as well as neuronal cells, we generated mouse 

embryonic fibroblast (MEF) cell lines of wild-type and Taok3–/–  mice and found that Taok3–

/–  MEFs had a consistently lower expression of the APP -stub on their cell surface, 

suggestive of reduced ADAM10 activity in Taok3–/–  mice.  When MEFs were transfected 

with full length APP, we could also measure the release of sAPP in the concentrated 

supernatant, and found that MEFs derived from Taok3–/–  mice generated less sAPP 

compared with Taok3+/+ mice, suggestive indeed of reduced ADAM10 bioactivity 

(Supplementary Fig. 5).   

ADAM10 is known to cleave substrates when expressed on the cell surface, and we have 

reported that ADAM10 can be detected by flow cytometry on lymphocytes10.  We found 

that 5-6% of CD93+ transitional B cells of the spleen of wild-type mice expressed ADAM10 

on their cell surface, yet this expression was almost completely absent in Taok3–/–  mice 
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(Fig. 4e). However, the expression of the pool of ADAM10, composed of pro- and of 

mature ADAM10, in cell lysates of transitional B cells was identical between wild-type and 

Taok3–/–  mice (Supplementary Fig. 6). In Irf4-/- T1 B cells there was a marked increase 

in surface ADAM10 staining compared with Irf4+/+ mice.  In compound Taok3–/– Irf4–/– mice 

the defect of ADAM10 expression seen in Taok3–/–  mice was restored well above the 

intensity seen in Taok3 wild-type mice, suggesting that lack of IRF4 restored MZB 

numbers through upregulation of ADAM10 on T1 B cells (Fig.  4f).  There was a strong 

correlation between the number of T1 cells expressing surface ADAM10 and the final pool 

of mature MZB cells in mice of various genotype (Fig 4g). Collectively, Taok3-/- mice 

lacked surface ADAM10 on T1 B cells and the return of ADAM10 on T1 B cells was 

accompanied by return of MZB cells, suggesting that the expression of ADAM10 on the 

surface of might be a crucial event in MZB development 

 

ADAM10 marks MZB commitment in T1B cells 

The lineage choice of transitional B cells to become FoB or MZB cell depends on the 

repertoire of the BCR and the strength of BCR signaling14-16.  We therefore reasoned that 

positive selection events of MZB cells acting through the BCR in transitional B cells might 

affect the surface expression of ADAM10.  To test this, we first purified CD93+ transitional 

B cells and stimulated them with soluble BCR crosslinking using anti-IgM F(ab')2 

fragments.  In unstimulated wild-type cells, ADAM10 expression was mainly found in 

discrete punctate area inside transitional B cells.  Within 20 min following BCR stimulation, 

there was a relocalization of ADAM10 to a single cap-like region on the B cell, a lipid-raft 

and tetraspanin rich region concentrating the BCR, Ig, Ras, and BLNK32. Simultaneous 

staining for IgM revealed colocalization with ADAM10 with the capped BCR (data not 

shown). This capping of ADAM10 was not seen in BCR cross-linked Taok3–/–  transitional 

B cells (Fig. 5a).   

We next studied if positive selection in a more physiological context would also affect 

ADAM10 surface expression on T1 B cells. Previously, we have created transgenic mice 

expressing the VH81x heavy chain, that pairs with a limited repertoire of endogenous light 
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chains through binding constraints, thus generating a BCR that recognizes an 

endogenous self- or microbiome-derived ligand. These mice have been used to 

understand the mechanisms of positive selection of cells in the MZB pool14. We crossed 

Taok3–/–  mice to VH81x Tg mice, and stained spleen sections for the presence of 

clonotype specific B cells (Fig 5b).  In VH81x Tg mice with wild-type levels of Taok3, the 

clonotype+ cells were almost exclusively found in the splenic marginal zone, whereas in 

VH81x Tg Taok3–/–  mice, these cells were absent. Flow cytometry also showed massive 

expansion of MZB cells in VH81x Tg mice, yet when Taok3 was inactivated, MZB cells 

were absent (Fig. 5c). We also performed flow cytometry using antibodies recognizing 

the VH81x Ig heavy chain and the pairing V1C light chain. This staining revealed that in 

Taok3+/+ VH81x Tg mice the majority of the clone was found in the CD21hi MZB cell gate, 

whereas in Taok3–/–  VH81x Tg there were less clonotype specific B cells among splenic 

CD19+ cells, and the majority of remaining clonotype specific cells had a FoB cell 

phenotype (Fig 5d-e). The percentage of T1 cells expressing surface ADAM10 was 

strongly increased in VH81x Tg mice, an effect that was abolished by crossing these mice 

to Taok3–/–  mice (Fig. 5f).  Again there was a strong correlation between the percentage 

of mature MZB cells and the percentage of surface ADAM10+ T1 cells in mice across all 

genotypes (data not shown). 

We finally reasoned that expression of ADAM10 on T1B cells might mark commitment of 

these cells to become MZB cells.  The high numbers of T1 B cells in the spleens of VH81x 

Tg mice allowed us to obtain sufficient cells to perform adoptive transfer experiments into 

B cell-deficient Rag2-/- mice. We therefore purified CD45.2+ CD93+ transitional B cells by 

magnetic pre-enrichment and subsequently sorted cells into ADAM10 surface-positive 

CD23- T1B cells, ADAM10 surface-negative CD23- T1B cells, and CD23+ T2B cells (which 

do not express high levels of ADAM10 anyway, see fig. 4e). These were injected 

simultaneously with ten times higher numbers of CD45.1 wild type splenic cells, to avoid 

homeostatic proliferation that might bias to MZB development (Fig. 5g).  Five days after 

transfer, the fate of transferred CD45.2 cells was studied by flow cytometry on spleen cells 

and confocal analysis of the spleen. Whereas T2B cells and ADAM10 surface-negative 

T1 B cells gave rise to both FoB and MZB cells, the ADAM10 surface-positive T1 B cells 

exclusively gave rise to CD21hi CD23- MZB cells (Fig. 5h).  Histological analysis of the 
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spleen also revealed that these CD45.2+ ADAM10+ T1 derived MZB cells were 

predominantly found in the marginal zone of the spleen (Fig. 5i).  Previously, others have 

proposed that preMZB cells can be identified amongst a pool of TB cells, and that these 

cells exhibited higher expression of CD21 and CD1d, but it is unclear if this would be a 

T1B or T2B stage6, 16.  We found that T1 B cells that expressed surface levels of ADAM10 

were higher in the expression of CD21 and CD1d, compared with T1B cells lacking 

ADAM10 surface expression (Supplementary Fig 7). These data confirm our hypothesis 

that ADAM10 surface expression marks progenitor T1B cells committed to become MZB 

cells after positive selection. 

  



 12 

Discussion 
 
Our understanding of the development of splenic MZB from immature transitional B cells 

is dominated by three lines of thought18.  First, integrin and chemokine signals are crucial 

for retention and complex shuttling of MZB cells in and around the marginal zone. Loss of 

these interactions led to loss of MZB cells in many mouse strains21, 25, 26, 33. Secondly, 

Notch2 ligation by Dll1 expressed on stromal cells is required for MZB development2-13, 

and maintenance of MZB identity12, 34. Thirdly, the quality and the strength of the BCR 

repertoire determine whether positive selection of immature B cells by self ligands or 

microbiome derived ligands leads to deletion, FoB cell or MZB development14-16, 35.  It has 

been unclear how these three pathways are related. 

Pillai et al. proposed that strong BCR signals favour FoB, whereas weak BCR signals 

promote MZB cell development17, 18, 36, 37, although other investigators refuted this idea11, 

15.  It was proposed that strong BCR signals render transitional cells in the follicle 

impervious to the presence of Dll1 mediated triggering of Notch2, whereas weak BCR 

signaling may enhance the expression of one or more components of the Notch2 signaling 

pathway36.  These inhibitory or enhancing signals or the precise stage of B cell 

development where BCR signaling and Notch permissiveness intersect have never been 

identified to date.  Here, by careful analysis of Taok3–/–  mice we show that BCR mediated 

positive selection of B cell progenitors at the T1B cell stage is linked to MZB development 

through acquisition of membrane expression of ADAM10 that cleaves and activates 

Notch2. ADAM10 is expressed on a subset of transitional B cells, is redistributed to the 

immunocap following BCR crosslinking, and highly expressed on the surface of T1B cells. 

We believe that the 5-10% of ADAM10+ transitional B cells that are found in the steady 

state represent the cells that are undergoing positive selection to become MZB cells, 

supported by our observation that these cells only become MZB cell upon adoptive 

transfer. 

How exactly B cell positive selection and BCR signaling intermediates cause Taok3 

activation and ADAM10 surface expression will require further study.  The levels of 

Taok3mRNA remain stable throughout B cell development from hematopoietic cells, and 

are not altered during B cell activation (data not shown) suggesting that Taok3 might be 
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mainly regulated by posttranslational modifications or protein stabilization.  It was recently 

proposed that ADAM10 forms a homodimer in the cell membrane as does ADAM17, a 

key feature in the proposed regulation mechanism of ADAM activation38.  Although we did 

observe differences in the processing and oligomerization of ADAM10 in Taok3–/–  mice 

(data not shown), more research is warranted. Much more is known about the regulation 

of ADAM17, which can also cleave Notch.  The phosphorylation of ADAM17 by ERK 

kinase on Threonine735 regulates ADAM17 dimerization and enzymatic activity39. A 

conserved threonine in position 719 might have the same effect on dimerization of 

ADAM10, a hypothesis we are currently testing.  Taok3 is a serine/threonine MAP3 Kinase 

and is likely upstream of ERK, JNK or p38 Map Kinase (unpublished observations and 40). 

Although it is likely therefore that lack of MAPK mediated ADAM10 surface expression is 

the explanation for the MZB phenotype of Taok3-deficient mice, we also need to consider 

additional effects of Taok3 on MAPK-driven activation of NF-B, as canonical NF-B1 

collaborates with Notch 2 in driving MZB fate determination8. 

We found that the ADAM10 mediated cleavage of APP is also reduced in Taok3–/–  mice, 

suggesting that the BCR is not the only upstream regulator of Taok3 and ADAM10 

bioactivity.  However, Taok3 is not absolutely or always required for ADAM10 or Notch2 

activation, as Taok3–/–  mice do not phenocopy all aspects of ADAM10 or Notch2 

deficiency.  Adam10–/– or Notch2–/– mice are embryonic lethal, whereas Taok3–/–  mice are 

not.  Our in vitro findings using OP9-Dll1 cells to stimulate transitional B cells suggest that 

the phenotype of Taok3–/–  mice is the result of disruption of short-lived Notch-Notch-ligand 

interactions.  Such short-lived interactions might occur on the MRC network of the B cell 

follicles, and might be restricted in time due to the continuous shuttling behavior of MZB 

cells from the MZ to the B cell follicles5, 24. 

Our data resolve a longstanding confusion in the field as to the precise identity of MZB 

precursors. It was long held that MZB cells emanate from progenitors with a CD23+ T2B 

phenotype that express CD1d and CD216, 10, 17, 41.  Others have also proposed that FoB 

cells can develop into MZB cells, particularly in immunodeficient and lymphopenic hosts, 

a process that might be driven by homeostatic proliferation24, 41, 42. Data from mice in which 

the repertoire of developing MZB cells was followed by measuring the junctional diversity 
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of the heavy chain CDR3 region revealed that T1B cells were the most likely direct 

progenitors for MZB cells16.  Our data using adoptive transfer, as well as the strong 

correlations between ADAM10 expression on T1B cells and final population size of the 

MZB pool suggest that indeed commitment of MZB cells is made at the T1B cell stage, 

and that surface ADAM10 staining is a robust marker for identifying cells in which MZB 

commitment is complete. However, we could show that some T2B cells could still 

differentiate into MZB cells.  We predict that also those T2B cells upregulate ADAM10 

surface expression after adoptive transfer in vivo10.   

In conclusion, we have shown that signals from the BCR control MZB lineage choice by 

regulating the surface expression of the metalloproteinase ADAM10 that has the potential 

to cleave and activate Notch2 in T1 transitional B cells undergoing positive selection.   
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METHODS 
Mice 

We generated Taok3–/–  mice from ES cells (clone CC0463 from the Sanger Institute Gene 

Trap Resource (SIGTR), Cambridge, UK) in which a loxP flanked splicing acceptor (SA) 

preceding a nuclear -galactosidase–neomycin resistance cassette and poly A tail was 

inserted as a gene trap in the intronic region between exon 1 and exon 2 of the Taok3 

gene, leading to premature transcriptional termination. ES cells were originally made in 

Sv129 background, but germline transmitting mice were backcrossed for 10 generations 

to C57Bl/6 mice.  Control animals for Taok3–/–  mice were Taok3+/+  littermates from a 

heterozygous Taok3+/–  breeding.  Irf4-/- mice were obtained from Dr W. Agace, Lund 

University, and were originally derived from The Jackson laboratory.  VH81x mice 

expressing the VH81x heavy chain, that pairs with a limited repertoire of endogenous light 

chains through binding constraints have been previously described14 .  Mb1Cre mice, in 

which Cre recombinase expression is under the control of the Cd79a promoter, active 

from the pre B cell stage onwards were obtained from The Jackson laboratory and have 

been previously described27.  Mice were maintained under specific pathogen free 

conditions.  All animal experiments and procedures were approved by the local animal 

ethics committee of Ghent University. 

Flow cytometry 

Cells suspensions were obtained from the spleen, lymph nodes or the bone marrow of 6-

8 week old mice through a 100 m mesh and red blood cell lysis. Surface stainings were 

performed in PBS using the following antibodies: CD19 (1D3; eBiosciences), CD93 

(AA4.1; ebiosciences), CD23 (B3B4; eBiosciences), CD21/35 (4E3; eBiosciences), IgM 

(Il/41; BD biosciences), CD1d (1B1; BD Biosciences), CD3 (17A2; eBiosciences), CD4 

(RM4-5; ebiosciences), CD8 (53-6.7; eBiosciences), CD11c (N418; eBiosciences), MHCII 

(M5/114.15.2; eBiosciences), Ly-6G (1A8; eBiosciences), Siglec F (E50-2440; BD 

biosciences), NK1.1 (PK136; BD biosciences), ADAM10 (139712; R&D systems). 

For analysis of various B cell progenitors in the bone marrow, we stained red blood cell 

lysed bone marrow cells with antibodies to B220, CD43, CD24, CD19, lineage (CD3, 

Ly6G, CD11b, Ter119, NK1.1), according to a staining panel obtained from the Immgen 
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consortium.  For live-dead cell discrimination, we used a fixable viability dye eFluor506 

(eBiosciences).  Sample data were acquired with a 4 laser BD LSR Fortessa flow 

cytometer (BD Biosciences) using the BD FACSDiva Software. Data analysis was 

performed using FlowJo software (Treestar).  

 

Immunizations 

For experiments addressing humoral immune responses, mice (n=6 per immunization and 

per genotype) were immunized with TNP-Ficoll (50 ug/ animal, i.v or i.p. in 200 ul PBS) or 

TNP-KLH in alumunium hydroxide (100 g/ animal, i.p. + 1 mg Alum in 200 l PBS) on 

day 0, followed by a booster of TNP-KLH of 100 g at day 35. TNP-Ficoll and KLH-TNP 

were from Biosearch Technologies and alumunium hydroxide.  Immune responses were 

read out at day 0 (baseline), 7 (for TNP-Ficoll), 35 (pre-booster) and 42 for TNP-KLH/alum 

by measuring serum immunoglobulin levels.  TNP-specific IgG1, IgG2, IgG3 and IgM 

antibodies were measured by commercially available ELISA (Biosearch Technologies). 

For measuring the response to Streptococcus pneumoniae, 1x108 heat inactivated 

pneumococci were injected intravenously into wild-type (WT) and Taok3–/–  mice and the 

IgM Ab response to the PC antigen 5 days later by commercially available ELISA. 

Levels of sCD23 were measured in the serum at day 5 after 2 injections of 20 g of 19G5 

antibody (directed against the stalk region of CD23) on day 0 and day2, by commercially 

available sCD23 ELISA (R&D systems), as described10, 30.  This 19G5 antibody causes 

ADAM10-dependent cleavage of sCD23. 

Cleavage of amyloid precursor protein 

We generated mouse embryonic fibroblasts (MEF) from wild-type and Taok3–/–  embryos.   

Stimulation of transitional B cells on OP9-Dll1 cells 

OP9-Dll1 or control OP9-GFP cells were grown to 80% confluence in 24 well plates in 

optimized medium as described in detail43.   For enrichment of transitional B cells, red cell 
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lysis was performed first on spleen suspensions, cells washed and stained using CD93-

APC.  Cells were sorted using magnetic bead enrichment with anti-APC beads and LS 

columns (both from Miltenyi). Subsequently, 5x105 magnetically enriched CD93 (4AA.1)+ 

transitional B cells were added to the OP9 cells.  RNA was extracted at 4 and 18h after 

setting up the co-culture and cDNA was made using a commercially available kit 

(Transcriptor High Fidelty Kit, Roche).  In some experiments, the B cell growth and survival 

factor BAFF (10 ng/ml; R&D systems) was added according to a published protocol29, and 

cells were harvested for flow cytometry 3 days later. Survival was analyzed using flow 

cytometry by adding DAPI to the cells.  

Confocal imaging 

Confocal imaging was performed on spleen sections or magnetically enriched transitional 

B cells.  The following antibodies were used: ADAM10 (clone EPR5622, rabbit polyclonal) 

was purchased from Abcam. IgM (Il/41), B220 (RA3-6B2), CD45.2 (142) and CD1d (1B1) 

were obtained from BD Biosciences. CD3 (17A2) was obtained from ebiosciences. CD169 

(MOMA-1) was obtained from Serotec Biorad. Briefly, 7m spleen frozen sections or 

purified CD93+ transitional cells were fixed for 5 minutes in PFA 4%. After washing with 

PBS, sections were stained with the primary antibodies for 60 minutes at room 

temperature, followed by a 30 minute-incubation period with secondary antibodies (all 

obtained from Jackson Immunoresearch). For visualizing the NP-reactive pool of MZB 

cells, we injected FITC-labeled Ficoll (Biosearch Technologies) intravenously.  After two 

hours mice were euthanized and the distribution of FITC-Ficoll on spleen sections, which 

were also stained for CD169 to delineate the marginal zone. Sections were counterstained 

with DAPI. Images were acquired on a Zeiss LSM710 confocal microscope equipped with 

488nm, 561 nm and 633 nm lasers, and with a tunable 2-photon laser. Images were 

analyzed on Imaris software.  

To reveal the clonotypic B cells of VH81x Tg mice, we used in house generated antibodies 

to the heavy chain of VH81x (clone MZ21, rat IgG2a, FITC labeled) and the Vκ1C light 

chain (clone FO27, rat IgG2a, AF647-labeled)14. 

Immunoblots  
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Antibodies to Notch2 (D76A6, Rabbit) and NF-kappaB2 p100/p52 were from Cell 

Signaling Technologies. Antibodies Taok3 (Clone Ab70297), ADAM10 (EPR5622) were 

from Abcam.  For Western blotting, 500 l cold RIPA lysis buffer supplemented with 

protease and phosphatase inhibitors (Roche) were added to freshly collected spleens. 

These were then homogenized using a rod homogenizer and centrifuged at 14,000 g 4°C 

for 15min. Approximately 10 g of protein was loaded on polyacrylamide gels for Western 

blot.  

 

PCRs 

mRNA was extracted using the TRIreagent according to manufacturer’s specifications 

(Roche Applied Sciences). cDNA was synthesized with 0,5 mg of mRNA using the High 

Fidelity cDNA synthesis kit (Roche Applied Sciences). Real time PCR was the conducted 

on the samples using specific primers and the Roche Syber Green master mix.   

GAPDH: 5’: TGGTGCTTGTCTCACTGACC; 3’: TTCAGTATGTTCGGCTTCCC 

L27: 5’: CATGAACTTGCCCATCTCG; 3’: TGAAAGGTTAGCGGAAGTGC 

TAOK3: 5’: TTGCATGAAATTGGACATGGGA, 3’: CGATGGTGTTAGGATGCTTCAG 

Deltex1: 5’: AGGCGGTGATGAGCAATC, 3’: ACCCAGGCAAGAAGTTCACA 

Hes1: 5’:AAAGCCTATCATGGAGAAGAGGCG, 3’:GGAATGCCGGGAGCTATCTTTCTT 

Hes5: 5’: AAAGCCTATCATGGAGAAGAGGCG,3’ GGAATGCCGGGAGCTATCTTTCTT 

Hey1:5’: ACACTGCAGGAGGGAAAGGTT, 3’: CAAACTCCGATAGTCCATAGCCA 

 
Adoptive transfer of T1B and T2B cells 

Transitional B cells were first enriched from the spleens of CD45.2 VH81x Tg mice using 

CD93-APC staining and magnetic bead enrichment using anti-APC beads and LS 

columns (Miltenyi). DAPI- living cells were stained for CD23 and surface ADAM10 and 

sorted using flow cytometry.  Subsequently, 1x106 T1 ADAM10+ or ADAM10- subsets or 

T2 cells were mixed with 10x106 CD45.1 splenocytes and injected intravenously into 

CD45.1 Rag2-/- recipient mice in 200 l of phosphate buffered saline.  Analysis of splenic 

B cell subsets was performed 5 days later by perfoming flow cytometry on cell 

suspensions and donor cells were detected using antibodies to CD45.2 (clone A20 from 
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BD Biosciences).  We also analyzed the distribution of CD45.2 injected cells on spleen 

sections also stained for CD169 to delineate the marginal zone. 

Generation of mixed bone marrow chimeric mice 

Bone marrow cells were obtained from CD45.1 Taok3+/+ and CD45.2 Taok3-/- donor mice. 

(CD45.1xCD45.2)F1 acceptor mice were irradiated using 10Gy, followed by the 

intravenous injection of 2x106 Taok3+/+ cells and 2x106 Taok3-/- cells at least 4 hours after 

the irradiation. We did not add antibiotics to the drinking water. Mice were euthanized 6-8 

weeks after reconstitution. Bone marrow and spleen were analyzed for the presence of B 

cell progenitors and mature B cells, respectively. The reconstitution was validated using 

the ratio of CD45.1 wild-type vs CD45.2. Taok3–/– cells. 
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FIGURE LEGENDS 

 

Figure 1: Taok3–/–  mice lack marginal zone B cells and have reduced humoral 

responses to T-independent antigens. (a) Taok3 mRNA expression in different tissues 

of C57Bl/6 mice. (b) Percentage of innate immune cells in the spleens of Taok3+/+ and 

Taok3–/–  mice. (c) Percentage of T cell subsets in the spleens of Taok3+/+ and Taok3–/–  

mice. (d) Flow cytometry staining of spleens for CD21/35hi CD23lo marginal zone B cells 

(MZB) and CD21/35- CD23hi follicular B cells (FoB). (e) Percentage of FoB cells and MZB 

cells within splenic CD19+ B cells in Taok3+/+ and Taok3–/–  mice. (f) Percentage of CD93hi 

transitional T1B and T2B cells in the spleens of Taok3+/+ and Taok3–/–  mice. (g) 

Immunofluorescence staining of CD1d+ (green) IgM+ (red) marginal zone B cells (double 

positive MZB cells are yellow) in the spleens of Taok3+/+ and Taok3–/–  mice.  (h) 

Immunofluorescence uptake of i.v-injected FITC-labeled Ficoll (green) in the spleen of 

Taok3+/+ and Taok3–/–  mice. CD169+ metallophilic macrophages are stained in red. DAPI 

nuclear counterstaining in blue. (i) Serum IgM titers at baseline and 7 days following TNP-

Ficoll injection in Taok3+/+ and Taok3–/–  mice. (j) Percentage of B1a and B1b cells in 

peritoneal lavages of Taok3+/+ and Taok3–/–  mice. (k) OD values for phosphorylcholine-

specific IgM titers following injection of Taok3+/+ and Taok3–/–  mice with Streptococcus 

pneumoniae. *p<0.05 (Mann and Whitney test (b, c, e, k)). Data are representative of 

three experiments (b-f, j; mean + s.e.m.; n = 4-5 mice per experiment), or one experiment 

(g-I, k; mean + s.e.m of n = 6 mice per group in i and k, and at least 4 images in g-h).  

 

Figure 2: The marginal zone B cell defect in Taok3–/–  mice is B cell-intrinsic and 

subject to Taok3 gene dosage. (a) Flow cytometry staining of spleens from chimeric 

mice to evaluate the ratio between CD45.1 Taok3+/+ and CD45.2 Taok3–/–  cells within 

the marginal zone B (MZB) cell (upper right plot) and the follicular B (FoB) cell (lower right 

plot) gates. The numbers adjacent to the gates represent the percentage of cells within 

the gates. (b) Quantification of the ratios between CD45.1 Taok3+/+ and CD45.2 Taok3–

/–  cells on the populations gated as in (a).  (c) Gene-trap reversal recovery of marginal 

zone B cells in Taok3–/–  mice crossed to mb1Cre mice was analyzed by flow cytometry. 

(d) Quantification of the Gene-trap reversal recovery shown in (d) in different mouse 
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genotypes. Data are representative of three experiments (b), two experiments (d-e), or a 

pool of 2 independent experiments (c); n = 5-7 mice per experiment).  

 

Figure 3: Taok3–/–  transitional B cells have a defect in Notch activation.  

(a) Quantification of Notch target gene induction in CD93hi transitional B cells from 

Taok3+/+ and Taok3–/–  mice after 4 hours of culture on OP9-Dll1 in the absence of BAFF. 

(b) Flow cytometry analysis of the induction of CD21/35 expression on Transitional B cells 

cultured on OP9-GFP or OP9-Dll1 for 5 days in the presence of BAFF. (c) Flow cytometry 

analysis (upper panel) and quantification (lower panel) of marginal zone B cells in the 

spleens of Taok3+/+ and Taok3–/–  mice crossed to Irf4-/- mice. (d) Immunofluorescence 

staining of marginal zone B cells in the spleen of Taok3+/+ and Taok3–/–  mice crossed to 

Irf4-/- mice. Data are representative of two experiments (b-d). d: mean + s.e.m.; n = 2-6 

mice per experiment. i, at least 3 images per group were acquired. 

 

 

Figure 4: Taok3 controls the surface expression of ADAM10. (a) Immunofluorescence 

staining of CD23 (red) in the spleen of Taok3+/+ and Taok3–/–  mice. White, CD169+ 

metallophilic macrophages. Blue, DAPI nuclear counterstaining. Scale bar, 100m. (b) 

Flow cytometry analysis of CD23 expression on Taok3+/+ and Taok3–/–  splenic Follicular 

B cells. (c) Concentrations of soluble CD23 in serum of Taok3+/+ and Taok3–/–  mice. (d) 

Concentrations of soluble CD23 in serum of Taok3+/+ and Taok3–/–  mice mice treated or 

not with 19G5 antibody. (e) Flow cytometry analysis of surface ADAM10 expression on 

non-permeabilized splenic CD93hi transitional B cells of Taok3+/+ and Taok3–/–  mice. (f) 

Flow cytometry analysis (left panels) and quantification (right panel) of ADAM10 

expression on splenic CD93hi transitional B cells of Taok3+/+ and Taok3–/–  mice crossed 

to Irf4-/- mice. (g) Correlation between the percentage of marginal zone B cells and the 

percentage of ADAM10+ B cells in the spleen. *p<0.05 (Mann and Whitney test (c, d, f)). 

Data are representative of at least three experiments (b, e), two experiments (c, d), or one 

experiment (f). (c, d): mean + s.e.m.; n = 4-6 mice per experiment. (f): mean + s.e.m.; n = 

2 mice per experiment. 
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Figure 5: ADAM10 expression on transitional B cells marks commitment to the MZB 

cell fate. (a) Immunofluorescence staining of ADAM10 (red) on purified CD93+ 

transitional B cells obtained from Taok3+/+ and Taok3–/–  mice, and stimulated or not with 

anti-IgM F(ab')2 fragments for 15 minutes. Blue, nuclear counterstaining. Scale bar, 5 m. 

(b) Immunofluorescence staining of marginal zone B cells (green) in the spleens of 

Taok3+/+ and Taok3–/–  mice crossed to VH81x Tg mice using MZ-21 clonotypic antibodies 

recognizing the heavy chain Ig transgene. Blue, nuclear counterstaining. Scale bar, 100 

m.  (c) Percentage of marginal zone B cells within CD19+ B cells of Taok3+/+ and Taok3–

/–  mice crossed to VH81x Tg mice. (d) Flow cytometry analysis of the phenotype of 

clonotype+ cells in the spleen of Taok3+/+ and Taok3–/–  mice crossed to VH81x Tg mice. 

(e) Percentage of clonotype+ cells within B cells in the spleen of Taok3+/+ and Taok3–/–  

mice crossed to VH81x Tg mice. (f) Flow cytometry analysis of ADAM10 expression on 

splenic CD93hi transitional B cells of Taok3+/+ and Taok3–/–  mice crossed to VH81x Tg 

mice. (g) Flow cytometry staining of the spleens of Rag-/- recipients treated as in (f) for the 

presence of CD21/35hi CD23lo marginal zone B cells and CD21/35- CD23hi Follicular B 

cells. (h) Immunofluorescent staining of ADAM10+ CD45.2 (red) transferred T1B cells in 

the spleen of Rag-/- recipient mice. Green, CD169+ metallophilic macrophages. Blue, DAPI 

nuclear counterstaining. Scale bar, 100 m. *p<0.05 (Mann and Whitney test (c, e). Data 

are representative of at least two experiments. (c, e): mean + s.e.m.; n = 4-12 mice per 

experiment. 
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