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Abstract

We study active investment skills in relation to returns to scale in the active mutual
fund industry. Using a sample of 13,807 funds from sixteen domicile countries
investing in forty-two equity markets from 2001 to 2014, we find that they achieve
negative trading performance on average, driven mainly by particularly low returns
to their trades in US equities. Exploring their investment environment, we find con-
vincing evidence of decreasing returns to scale around the world, especially for the
US market. Based on theory of optimal fund size, we estimate the optimal size of the
active mutual fund industry. We find that the active mutual fund industry in USA has
exceeded the optimal level, whereas in the international markets, there may still be
room for further expansion. Consistent with this view, we find that mutual fund
managers have been gradually reallocating their assets away from the USA and
more into international equity markets.
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1. Introduction

The asset management industry has been expanding tremendously around the globe.

According to the Boston Consulting Group (2016), global assets under management in this

industry grew from $29 trillion in 2002 to $71 trillion in 2015. Among global asset
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managers, open-end mutual funds stand prominently in terms of industry size. The

Investment Company Institute (2017) estimates that as of the second quarter of 2017,

open-end mutual funds manage more than $36 trillion of assets worldwide, excluding funds

of funds.1 Since actively managed funds dominate the mutual fund industry, it is important

to understand how the global rise of active fund managers influences their performance.

Unfortunately, this question is not well understood for the global active fund industry.

In this paper, we fill the gap by studying how investment skills interact with the scale of

the active fund industry to impact their performance. To infer investment skills, we exploit

funds’ holdings-based and trades-based performance, which the literature has considered to

be more informative about active investment skills than performance measures based on

overall fund returns (see, e.g., Grinblatt and Titman, 1989; Chen, Jegadeesh, and Wermers,

2000). In addition, the use of holdings information allows us to disaggregate the perform-

ance of international mutual funds across the countries they invest in. Our sample com-

prises 13,807 actively managed mutual funds from sixteen domicile countries investing in

forty-two equity markets during the period 2001 to 2014. Through this global lens, we ex-

tend a growing literature on this important topic that focuses on the US active fund industry

(e.g., Berk and Green, 2004; Pastor, Stambaugh, and Taylor, 2015; Berk and van

Binsbergen, 2017).

We start by describing the average performance of trading by active funds around the

world. We find that, in the aggregate, mutual funds tend to lose money on their trading,

even before costs: the stocks they buy underperform those they sell by 18 basis points (bps)

per month in the subsequent quarter (t-statistic ¼�2.0), after adjustments for passive

benchmarks. Using the measure of dollar value added proposed by Berk and van

Binsbergen (2015) (BvB), we estimate that global active mutual funds tend to destroy value

by $1.19 billion per month (t-statistic ¼ �2.5) in total through their trading activities.

Although the negative trading performance comes from both US and internationally domi-

ciled funds, it tends to concentrate in the US equities they trade. For instance, US domiciled

funds achieve an average negative return of 34 bps per month (t-statistic ¼�2.4) to their

trades in US equities, whereas their trades largely break even in the international equity

markets. A similar pattern holds for internationally domiciled funds. This initial result sug-

gests that the US equity market may be more crowded with active funds, which constrains

their trading performance.

To formally examine the impact of the scale of active funds on their performance, we

test for the presence of decreasing returns to scale in the USA and international equity mar-

kets. To this end, we extend the instrumental-variables approach developed by Pastor,

Stambaugh, and Taylor (2015) with the modifications of Zhu (2018), and use both trading

and holdings-based performance of mutual funds to test for diseconomies of scale. To

measure benchmark-adjusted performance, we use both the traded funds approach pro-

posed by BvB and the Daniel et al. (1997) (DGTW) adjustment procedure. At the industry

level, we find strong evidence of decreasing returns to scale in active fund management

when they invest in US equities. For instance, based on the BvB alpha, a 1% expansion of

active funds relative to the US equity market value associates with a decline of 14 bps per

month (t-statistic ¼�3.1) in returns to their equity trades, and a decline of 7 bps per month

1 The estimates in this paragraph are based on Boston Consulting Group’s 2016 Global Asset

Management report “Doubling Down on Data,” and the Investment Company Institute’s global

research and statistics, available from https://www.iciglobal.org/iciglobal/research/stats.

678 T. Dyakov et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article-abstract/24/3/677/5540328 by Erasm

us U
niversiteit R

otterdam
 user on 14 M

ay 2020

https://www.iciglobal.org/iciglobal/research/stats


(t-statistic ¼ �2.1) in returns to their equity holdings; based on the DGTW alpha, we ob-

tain a consistent pattern. These results clearly illustrate the adverse impact of crowded ac-

tive investing at the industry level on individual funds’ performance.

For international equities, we find that the DGTW alpha generates sharper results. This

is primarily driven by the fact that the offering of region-specific index funds along the

value and momentum dimension is a recent phenomenon, which does not allow us to use

those style benchmarks in the traded funds approach for our international sample. It is for

this practical reason that the DGTW procedure may be able to offer sharper inference on

diseconomies of scale for international mutual funds. Grouping international mutual funds

together, we find that an increase in active fund industry size has a strong negative impact

on their trading performance. The magnitudes are comparable to those for the US funds.

Looking at each region individually, we are able to find reliable evidence of decreasing

returns to scale for the funds investing in Asia-Pacific, Europe, and Emerging Markets

(EMs). Our data do not enable us to find statistically significant evidence of decreasing

returns to scale for Canada and Japan, although the point estimates have the correct sign.

These findings naturally raise the question: What is the optimal size of the active mutual

fund industry in these markets? To make initial progress in addressing this difficult but im-

portant question, we build on the optimal fund size model as in Berk and Green (2004) and

Berk and van Binsbergen (2017). Assuming a linear relation between gross (before-fees)

fund alpha and fund size, Berk and van Binsbergen (2017) postulate a simple closed-form

solution for the optimal fund size. The optimal size is driven by two parameters, the gross

alpha on the first cent a fund manager extracts from financial markets and the rate at which

a fund’s gross alpha decreases with fund size. Extending their theoretical results, we de-

velop a simple statistical distribution theory for the BvB estimator of the optimal industry

size. Our results indicate that the size of active fund industry has exceeded the optimal level

at the 95% confidence level in the USA at the end of our sample period. For international

markets, however, the actual size lies within the 95% confidence interval across the five

regions. The point estimates for efficient industry size show that for Asia-Pacific and EMs,

there is still substantial room for further expansion of the active fund industry.

Our findings on the optimal industry size need to be interpreted with caution, for three

reasons. First, the international results are estimated using DGTW alpha and may be too

harsh on active managers. Implementing factor-based strategies may be considered as a skill

too, and the DGTW alpha cannot capture this skill component. Second, even though the

holdings based approach is informative about managerial skill, it is based on quarter-end

portfolio snapshots. Thus, we may miss the value active managers generate between the

quarterly snapshots (e.g., Kacperczyk, Sialm, and Zheng, 2008). Finally, our sample period

is relatively short and captures a very specific period of time when active management did

not fair particularly well.

Although our statistical estimation is surely crude, it has a clear, directional implication:

fund managers investing primarily in the US market would have incentives to diversify their

investments into markets with a less crowded active fund industry. To examine this predic-

tion, we compute changes in the amount of assets that US domiciled funds invest in the US

and international equity markets. We find that, over our sample period from 2001 to 2014,

US domiciled funds cumulatively withdrew $400 billion of assets out of US equity, while

increasing their investments in international equity by a similar amount. As a result, the al-

location to US equity by US domiciled funds decreased from 91% to 71% over our sample

period (see, e.g., BvB for a related observation).
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So far, our empirical analyses are at the level of individual mutual funds. To exploit the

richness of our data sets, we perform multivariate regressions at the stock-level to test for

the influence of diseconomies of scale on trading performance. Our panel regressions show

that, in equity markets with more active mutual fund money chasing investment opportuni-

ties, fund trades tend to achieve lower performance. The negative association between stock

returns and the interaction of mutual fund trades and fund industry size is strong, and ro-

bust to controlling for country-fixed, time-fixed, and stock-industry-fixed effects and many

stock characteristics. The size of the active industry appears to be a statistically stronger

predictor of future returns than stock-level herding. These results corroborate the close con-

nection between poor trading performance and decreasing returns to scale in active fund

management.

The remainder of this paper starts with a brief discussion of related literature evaluating

the trading performance of active mutual funds. In Section 3, we provide more details on

the data construction and descriptive statistics. After discussing the choice of benchmarks

in Section 4, we continue analyzing the performance of aggregate mutual fund trades in

Section 5 by relating changes in mutual fund holdings to subsequent stock returns. In

Section 6, we relate the trading performance at the fund level to the size of the active fund

industry in the country of investment and fund size to investigate the nature of the decreas-

ing returns to scale. This section also includes our calculations of optimal industry size. We

also relate performance at the stock-level to fund trading, the size of the active industry and

herding. After a number of robustness checks in Section 7, Section 8 provides a more

detailed analysis of the trading performance among US stocks by US mutual funds, for

which a longer times series is available. The results confirm the poor trading performance

since 2000, and support our general conclusion that the crowdedness of the US equity mar-

ket has become detrimental to active funds’ trading returns.

2. Related Literature

The literature on mutual fund performance is vast. To conserve space, we focus this review

on the trading performance of actively managed mutual funds. This literature has offered a

number of techniques to evaluate their trading skills.

First, the most commonly used approach is to proxy mutual fund trades using changes

in their quarterly stock holdings. For instance, using this method, Chen, Jegadeesh, and

Wermers (2000) show that stocks bought by domestic US equity mutual funds outperform

stocks sold by 0.73% per quarter during the period 1975–95, after adjusting for common

style exposures. Their evidence is in line with the estimates offered by Daniel et al. (1997).

Baker et al. (2010) find that mutual funds’ stock purchases outperform their sales around

subsequent earnings announcements. These earlier studies point to the existence of trading

skills among active mutual funds.

Studies using more recent data, however, paint a less optimistic picture. For instance,

Duan, Hu, and McLean (2009) extend the sample of Chen, Jegadeesh, and Wermers (2000)

by 8 years and find that during the period 1995–2003, the difference in abnormal returns

between the stocks US mutual funds buy and sell is statistically indistinguishable from zero.

In the cross-section of stocks they are able to find evidence of trading skills among stocks

with higher idiosyncratic volatilities, consistent with the story of higher limits to arbitrage

for these stocks. It is notable that the suggestive evidence reported in Duan, Hu, and

McLean (2009) is in line with a general decline in mutual fund alpha observed by, for
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example, Barras, Scaillet, and Wermers (2010) and Lewellen (2011). In this context, our

study represents a leap in terms of the sample of mutual funds, equity markets, and time

periods examined; it also brings us closer toward understanding the shifts in mutual fund

trading performance in terms of increased competition among mutual funds in a deteriorat-

ing investment environment (see Berk and Green, 2004; Pastor and Stambaugh, 2012) and

their increased tendency to trade in herds.

A number of studies, using the same quarterly stock holdings data, examine the per-

formance of a specific form of mutual fund trading, namely, their herding activities. Using

the LSV measure (Lakonishok, Shleifer, and Vishny, 1992), earlier studies such as

Grinblatt, Titman, and Wermers (1995) and Wermers (1999) find a positive relation be-

tween mutual fund herding and subsequent returns. Our study using broader and more re-

cent mutual fund data find an inverse relation between fund herding and subsequent stock

returns. Our results are consistent with Dasgupta, Prat, and Verardo (2011) and Jiang and

Verardo (2018), who show lower performance of herd-like trades.

Second, several recent studies have used institutional trading data from Abel Noser

(ANcerno Ltd.) to assess trading performance. This data set covers the trades executed by

the institutional clients of Abel Noser at daily frequency. With it, Puckett and Yan (2011)

estimate that during the period between 1999 and 2005, interim (intraquarter) trades by

these institutions generate abnormal returns between 0.20% and 0.26% per year after trad-

ing costs. Based on this evidence, they argue that studies using quarterly mutual fund trades

are likely to underestimate the trading skills of mutual funds. In a subsequent study using

the same data set, Chakrabarty, Moulton, and Trzcinka (2017) argue that the classification

of interim trades by Puckett and Yan (2011) is overly narrow and represents only a small

portion of short-term fund trades. With their broader definition of short-term fund trades,

they find that short-term fund trading achieves negative returns on average. They argue

that the high-frequency trading data support the conclusions reached by studies using quar-

terly fund holdings data.

Third, many studies have used the association between mutual fund turnover and fund

performance to evaluate the trading skills of mutual funds. The literature has reached

mixed conclusions. For instance, Elton et al. (1993) and Carhart (1997) find that turnover

is negatively related to fund performance, Edelen, Evans, and Kadlec (2007) find an insig-

nificant relation between turnover and fund returns, and Dahlquist, Engström, and

Söderlind (2000) find a positive relation between turnover and fund returns. More recently,

Pastor, Stambaugh, and Taylor (2017) argue that it is important to include fund-fixed

effects in the turnover-performance regressions, which leads to a positive relation. There

are at least two advantages of using fund turnover to capture fund trades: first, it is a catch-

all measure of fund trading activities, reflecting both interim and interquarter fund trades;

second, it can be directly connected to observed mutual fund alpha, which can be used by

investors for mutual fund selection. The downside of this measure is that it combines mu-

tual fund buys and sales at the fund portfolio level, which makes it less powerful to evaluate

fund trading skills; on the other hand, stock-level trading measures could render the ana-

lysis of trading skills richer and statistically more powerful.

Our study is also related to a nascent literature on the performance of international mu-

tual funds. BvB shows the growing importance of foreign equity for the performance of US

mutual funds—the fraction of assets under management of funds that exclusively hold US

equities has dropped from 45% in 1977 to <23% in 2011. Ferreira et al. (2013) provide

the first systematic investigation of the net performance of mutual funds around the world.
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They find that between 1995 and 2007, local mutual funds from twenty-seven countries,

that is, those investing in their domestic markets only, underperform their benchmarks by

0.20% per quarter after fees. However, they do not study the performance of international

funds, that is, those investing in both local and international markets. Moreover, Ferreira

et al. (2017) compare the effect of local and foreign institutional ownership on subsequent

stock returns. Using their broad sample of institutions, they find that the level of local insti-

tutional ownership forecasts future returns, but changes in local institutional ownership do

not. They also find that trading by foreign institutions is negatively correlated with subse-

quent returns. However, it is difficult to infer what type of foreign institutions drives their

results. Leippold and Rueegg (2018) find that internationally, most active funds have zero

alphas when compared with investable benchmarks. Similarly to our work, their paper indi-

cates that the Berk and Green equilibrium is unlikely to be rejected outside of the USA.

There are, however, important differences between our studies. Their findings are based on

estimated net alphas, whereas we employ gross alphas exploiting the underlying stock hold-

ings. This allows us to estimate diseconomies of scale across different markets. Using the

optimal size theory of BvB, we are able to show that the US industry has become larger

than its optimal size. Our approach has the additional advantage that we are better able to

identify where funds invest.

Several recent papers document the existence of decreasing returns to scale in the mutual

fund industry. Building upon Berk and Green (2004) and Pastor and Stambaugh (2012),

Pastor, Stambaugh, and Taylor (2015) find a negative relation between industry size and

fund performance, controlling for the endogeneity of fund size using a recursive demeaning

procedure. This analysis is extended by Zhu (2018). BvB stress that value added is a better

measure of managerial skill than (gross or net) alpha; Berk and van Binsbergen (2017) ex-

pand upon this by stressing the implications of rational expectations equilibrium in money

management. One implication is the existence of optimal sizes for mutual funds and the in-

dustry as a whole. Our paper is unique in fleshing out the link between trading performance

and industry-level diseconomies of scale in international equity markets, and the first to em-

pirically establish a rough estimate for the optimal size of the active mutual fund industry

in the USA and other international markets.

3. Data Construction and Descriptive Statistics

For our analysis we construct a representative survivorship free data set of actively man-

aged international mutual funds and their quarterly trades, with as little biases as possible.

Our datasets combine portfolio holdings data from Factset and stock-level information

from Datastream and Worldscope and cover quarterly snapshots of the equity holdings of

active mutual funds around the world in the period 2001–14.2 We complement our inter-

national trading dataset with the more traditional sample of trades by domestic US open-

end mutual funds, starting in 1980, that combines the Thomson Financial/CDA S12 fund

holdings database, the CRSP Mutual Fund Database, and the CRSP daily and monthly

stock files. The complete sample construction is described in Appendices A–D.

2 Note that our sample selection procedures differ from earlier research utilizing the Factset hold-

ings, such as Ferreira and Matos (2008), who focus on aggregate institutional ownership, including

pension funds, insurances, etc., and do not restrict their sample to domiciles where reporting

biases are least likely.
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The summary statistics of the two samples are reported in Table I. In total, the 13,807

active funds in the international sample are domiciled in sixteen developed countries (Panel

A), 4,569 of them in the USA. The US sample, starting in 1980, includes only 2,394 domes-

tic equity funds. Thus, the international sample covers more US domiciled funds than the

US sample. There are two reasons for this. First, the coverage of the international sample is

broader—there are both domestic and international funds, as well as funds that may not be

necessarily equity-only. In contrast, the US sample only covers actively managed domestic

US equity mutual funds that cover specific investment objectives: growth, aggressive

growth, or growth and income. Second, the data filters available in Factset used to identify

actively managed open-ended funds may perform imperfectly and thus accidentally include

funds that are not necessarily active or open-ended. Consistent with earlier research, we ob-

serve that the average size [total net assets (TNAs)] of mutual funds in the USA has been

growing over time (e.g., BvB) and is much larger than for funds domiciled outside the USA

(e.g., Khorana, Servaes, and Tufano, 2005; Ferreira et al., 2013). Means among both fund

samples are higher than medians due to the presence of a few very large funds. Net fund

returns among US funds are much smaller in the most recent decade, which is driven by the

crisis period after 2007. Lastly, we note that reported turnover among the sample of US

funds is generally higher than the turnover we infer from the reported holdings of funds in

the international sample. Note that there is no information in Factset regarding net returns,

flows, and expenses. Thus, the last three columns of Panel A are empty.

In Panels C and D, we report summary statistics of stock characteristics for the inter-

national and US samples, respectively. Note that the US stock sample data are based on

CRSP, whereas the international stock sample comes from Datastream and Worldscope.3

On average, stock ownership by active funds in the USA is twice as large as in the inter-

national sample (7.1% versus 3.7%). Trading, or changes in ownership, are at similar levels

at 0.07% per stock per quarter. The mean stock size among international stocks is larger,

because of the presence of many small stocks in the US sample. Notably, turnover among

US stocks is larger, whereas most other stock characteristics are distributed similarly.

The average active fund ownership among international stocks, based on Factset hold-

ings, is lower than the institutional ownership reported in previous research. For example,

Ferreira and Matos (2008) report an average 7.4% institutional ownership among inter-

national stocks. In contrast, the average stock ownership among active funds in our sample

is 3.7%. The difference arises due to two key data selection procedures. First, previous

studies focus on total institutional ownership, while our focus is on ownership by active

mutual funds only. Second, since we are interested in aggregate trading performance, we re-

strict our sample selection to fund domiciles where reporting biases are least likely.

Appendix A outlines how we restrict our sample to funds from the sixteen domiciles listed

in Table I and investing in forty-two equity markets.

4. Constructing Benchmarks

For the main part of our analyses, we use two different approaches to construct relevant

benchmarks to evaluate the performance at the fund, stock, or aggregate level. Our primary

methodology is based on comparing a fund’s trading returns with a set of alternative

3 Further note that for consistency, US stock-specific information in the international sample is also

based on data from Datastream and Worldscope.
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investment opportunities as represented by low-cost passive funds (BvB). There are both

theoretical and empirical reasons why this approach is more suitable than the traditionally

used factor models, such as the Fama–French factor portfolios. First, factor portfolios are

based on hypothetical stock portfolios and do not incorporate transaction costs, trade im-

pact, and trading restrictions (Huij and Verbeek, 2009). Accordingly, they do not represent

alternative investment opportunities. For example, investors do not have the opportunity to

invest in momentum funds. From an empirical point of view, it is puzzling that index funds

have positive alpha when their excess returns are regressed on the set of Fama–French fac-

tors. This could result in systematic biases in estimated fund alphas and thus lead to wrong

inferences. Thus, we use a set of passive funds as the alternative investment opportunity set.

The benchmark-adjusted return of a fund’s trades at any time is defined as the fund’s

trading return minus the closest return of the set of passive funds:

aB
ft ¼ Rft �

XnðtÞ
j¼1

bj
f R

j
t; (1)

where Rft denotes the trading return of fund f in month t, Rj
t is the excess gross return

earned by investors on the jth index fund at time t, and bj
f is the sensitivity of fund f to the

jth index fund. As reflected in the notation, the number of available benchmark funds may

vary over time. To avoid a bias in selecting index funds, we follow BvB who select

Vanguard index funds as benchmarks.4 Vanguard funds are among the most popular pas-

sive investment opportunities and hence offer a reasonable representation of an investor’s

alternative investment opportunity set. We select passive funds offered by Vanguard in the

following way. First, we select only equity funds and drop Morningstar Global Categories

that span specific sectors of the stock market, such as technology and health care. Next,

within each Global Category we select the oldest fund(s), offered in USD, that span all

stocks in the category. We do not select funds from the Brazil Equity and Australia Equity

Global Categories, as funds in those categories are not offered in USD and their coverage is

already spanned by the EMs Equity category and the Asia-Pacific category, respectively.

This selection procedure results in seven domestic US funds and six international funds. For

US equity, we use the seven US funds. For international equity, we use the three Global

Equity index funds. For European equity, we add the European Equity index fund. For

Asia-Pacific equity, we add the Asia-Pacific Equity fund. Similarly, for EMs equity, we add

the EMs equity fund. Due to geographical proximity, we further add the Asia-Pacific equity

index fund to the alternative investment opportunity set for EM stocks from the Asia-

Pacific region. For Canadian stocks, we add the S&P 500 index fund as a third passive al-

ternative investment opportunity, due to geographical and economic proximity with the

USA. The full list of benchmark funds is available in Panel B of Table II. Note that the

resulting set of passive investment opportunities is very similar to that of BvB. Due to the

international focus of our study, our alternative investment opportunity set includes more

international funds. Importantly, there are no international benchmarks funds in our sam-

ple period with a distinctive regional value or momentum focus.5

4 See Section 5 and Table 1 in Berk and van Binsbergen (2015) for more details on their fund selec-

tion procedure.

5 Research suggests that global markets are not integrated (Fama and French, 2012) and risk premia

are potentially driven by local factors (Griffin, 2002). Thus, the global Vanguard funds may not span
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Table II. The aggregate performance of the stocks traded by active mutual funds—gross month-

ly alphas and monthly dollar value added

This table presents the performance of the aggregate trades of mutual funds in the international

sample. We define buys (sales) as stocks with aggregate increases (decreases) in fractional

holdings during quarter t. Next, we weigh stocks in the buys (sales) portfolio using aggregate

volume bought (sold) during the quarter. Gross trading performance is calculated as the differ-

ence in performance between the buys and the sales. We track the excess return of the aggre-

gate trading portfolio during the next 3 months and repeat the calculations. Next, we estimate

the benchmark-adjusted trading performance using the Vanguard index funds as an alternative

investment set. In Panel A, we report monthly alphas and aggregate dollar value added (in mil-

lion USD) with standard errors in parentheses, separately for all, US, and non-US stocks as well

as for all funds, US funds, and funds domiciled outside of the USA. * denotes significance at

the 10% level, ** at the 5% level, and *** at the 1% level. In Panel B, we report descriptive infor-

mation about the set of Vanguard index funds used for estimating benchmark-adjusted returns

in Panel A.

Panel A: Benchmark-adjusted performance of the aggregate trades

Domicile Monthly gross alpha Monthly dollar value added (in million USD)

All USA Non-USA Difference All USA Non-USA Difference

All �0.18** �0.31*** �0.05 �0.26** �1,193** �917*** �276 �641**

(0.09) (0.11) (0.09) (0.11) (466) (309) (254) (321)

USA �0.21* �0.34** 0.03 �0.36** �723** �682** �40 �642**

(0.12) (0.14) (0.14) (0.16) (355) (302) (119) (291)

Non-USA �0.14* �0.26*** �0.10 �0.16* �354* �179*** �174 �5

(0.08) (0.08) (0.09) (0.09) (214) (66) (170) (144)

Panel B: List of Vanguard benchmark funds

Fund name ISIN Asset class Inception date

S&P 500 Index US9229081081 US equity large cap blend August 31, 1976

Value Index US9229086783 US equity large cap value November 13, 2000

Mid Cap Index US9229088433 US equity mid cap blend May 21, 1998

Extended Market Index US9229082071 US equity mid cap growth December 21, 1987

Small Cap Index US9229087021 US equity small cap blend October 3, 1960

Small Cap Growth Index US9229088276 US equity small cap growth May 21, 1998

Small Cap Value Index US9229087930 US equity small cap value May 21, 1998

Total Intl Stock Index US9219096024 Global equity large cap blend April 29, 1996

International value US9219392035 Global equity large cap value May 16, 1983

FTSE All-Wld ex-US

SmCp Index

US9220427341 Global equity mid/Small cap

blend

April 2, 2009

European Stock Index US9220422052 Europe equity large cap blend June 18, 1990

Pacific Stock Index US9220421062 Asia equity large cap blend June 18, 1990

Emerging Mkts

Stock Index

US9220423043 Emerging markets equity

large cap blend

May 4, 1994

all risk. Recently, index funds that track region-specific value and momentum risk premia have be-

come available and thus should be considered as part of the set of benchmark traded funds avail-

able to current investors. For instance, Blackrock offers Europe-specific value and momentum

ETFs since the beginning of 2015.
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The benchmark loadings in (1) are estimated by regressing the fund’s trading

returns upon the relevant benchmark returns over the entire sample period that the

fund is active. Here, we employ the benchmark funds’ gross returns, defined as the

reported net returns in Morningstar plus one-twelfth of the reported net annual ex-

pense ratio. Because one of the two global funds is not available throughout our sam-

ple period, we estimate betas by using an augmented basis of the factors where the

factor returns are orthogonalized with respect to all other variables and missing returns

are replaced with the mean of the orthogonalized factor. Alphas are then estimated by

using the estimated betas and the augmented basis where we replace missing returns

with zero.6

Our second approach is based on the comparison of every stock i with a set of stocks

with similar size, book-to-market, and momentum characteristics [also known as DGTW-

adjusted returns, following Daniel et al. (1997), Wermers (1999), and Wermers (2003),

who introduced this methodology]. Specifically, the benchmark-adjusted return on a stock

is given by

aDGTW
i;t ¼ Ri;t � Rbench

i;t ; (2)

where Rbench
i;t denotes the return of a benchmark portfolio of stocks with similar size, book-

to-market, and momentum characteristics. In Appendix E, we provide a detailed method-

ology for computing benchmark-adjusted returns for international stocks belonging to

broad geographical regions, where we tackle a number of problems related to the size of

equity markets and differences in accounting standards.7 Where relevant, the stock level

alphas from Equation (2) are aggregated to fund or industry level using the appropriate

weights. The DGTW methodology offers several advantages. First, it identifies the closest

benchmark for each individual asset traded and thus offers a relatively precise risk-

adjustment. Second, calculated alphas are not affected by estimation error, which can be

substantial during our relatively short sample period. Third, as they compare the local re-

turn of assets with the local return of a benchmark portfolio, DGTW returns are not

affected by currency returns. On the negative side, the DGTW benchmark portfolio may

not represent the actual investment opportunity set faced by fund managers, as they might

be constrained in their trading, due to regulation, prohibitive trading costs, or other

frictions.

Quantifying the impact of every possible investment constraint is a daunting task. To

obtain some idea about the relevance of constraints due to frictions in international equity

markets, we zoom into the holdings of the largest passively managed international fund in

the Morningstar database—Vanguard Global Stock Index Fund. Because the fund is pas-

sively managed, it should ideally be able to closely mimic its benchmark, the MSCI World

Index. However, potential frictions in financial markets should result in deviations from its

benchmark portfolio. We collect index constituents from Morningstar and hand-match

6 The Appendix in Berk and van Binsbergen (2015) shows that alphas can be consistently estimated

using this approach for dealing with missing passive index returns. Because the set of passive

funds differs across equity markets, the augmented basis is calculated separately for European,

Asia-Pacific, Canadian, EMs from Asia-Pacific, and other EMs equity.

7 The DGTW benchmark returns are available from the first author upon request.
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them to Datastream and Worldscope.8 We then construct the fund’s Active Share in the spi-

rit of Cremers and Petajisto (2009) which quantifies funds’ deviations from the benchmark.

According to Petajisto (2013), index funds keep their Active Share below 20%. The Active

Share of Vanguard’s fund stands at 17% at the beginning of our sample period drops to

10% in 2004 and remains at levels under 5% after 2005. Thus, any potential investment

constraints in the first couple of years of our sample have quickly disappeared.

Mutual funds, however, may also constrain their investment universe based on geo-

graphical preferences or perceived information advantages. A large literature documents

the tendency of investors to overweight geographically close assets, potentially because of

the difficulty of acquiring information for distant stocks (e.g., Coval and Moskowitz, 1999)

or because of cognitive biases (e.g., Graham, Harvey, and Huang, 2009). This “home-bias”

is also the driver behind Vanguard’s benchmark deviations in the early years of our sam-

ple.9 Therefore, equities that are not within close geographical proximity may offer super-

ior returns but will not be part of the investment opportunity set. For these reasons, the

DGTW risk-adjustment methodology is a second choice to the alternative set of index

funds.

As a robustness check, we also estimate alphas using traditional factor regressions. This

standard approach computes alphas by subtracting the realized factor portfolio returns

times the estimated fund factor sensitivities of a fund’s excess returns. We consider the

CAPM, the Fama–French three factor model, the Fama–French three factor plus momen-

tum (Carhart, 1997), and the Fama–French five factor models, using, where relevant, inter-

national versions of the factor returns.

5. The Performance of Aggregate Mutual Fund Trades

5.1 Gross Alpha

Consistent with previous studies (e.g., Chen, Jegadeesh, and Wermers, 2000), we use

changes in fractional holdings for classifying the aggregate buys and sales of mutual funds.

For each stock at each point in time, fractional holdings are defined as the number of shares

owned by funds in our sample relative to the total number of shares outstanding. We define

stock i in quarter t as a buy (sale) if funds increased (decreased) their fractional holdings in

that stock between quarters t and t–1. Consequently, the portfolio of aggregate buys (sales)

of the actively managed equity funds consists of all stocks that experience an increase (de-

crease) in fractional holdings across two consecutive quarters. We weigh the stocks in the

buys and sales portfolios using dollar volume traded. This way we give higher weight to

stocks for which there is a stronger trading consensus among mutual funds, represented by

the difference among the buying and selling volume in those stocks (the aggregate change in

holdings times the price per share at the end of quarter t–1). We define trades as the differ-

ence between the buys and sales portfolios.

We track the subsequent returns of the trades portfolio and report its benchmark-

adjusted performance in Table II. Overall, mutual fund trades worldwide have a poor trad-

ing record—the stocks they purchase underperform the stocks they sell by 0.18% per

8 We contacted MSCI to double-check the quality of Morningstar Data. MSCI sent us four monthly

snapshots of the MSCI World Index constituents which we verified are identical to the constituents

data provided by Morningstar.

9 The home bias is 13% in the beginning of the sample and decreases to below 1% after 2005.
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month, after comparing their returns with the returns of the Vanguard index funds. Among

US stocks, the poor trading record is even more pronounced and amounts to �0.31% per

month. In the aggregate, trades among US stocks significantly underperform trades among

non-US stocks. Among US domiciled funds, trades in the domestic stocks underperform

trades among international stocks by 0.36% per month. Non-US funds also perform poorly

among US stocks, but the difference in performance with respect to internationals stocks is

weaker. In Section 7, we show that these findings are robust to using DGTW-adjusted

returns and conventional factor regressions as well as alternative definitions of aggregate

trades.

5.2 Dollar Value Added

The economic size of the aggregate trading performance can be further assessed using a dol-

lar measure of value added. The dollar measure of performance is particularly useful in dis-

tinguishing skilled from unskilled fund managers. BvB show that in competitive markets, a

fund with a small gross alpha but relatively large amount of dollar value added is more

skilled than a fund with a relatively large gross alpha but small amount of dollar value

added. We therefore follow BvB and quantify the amount of money added or destroyed by

the trades of fund managers. In our study, the quarterly aggregate dollar value added is

defined as the alpha on the funds’ trading portfolio scaled by the dollar amount traded.

Time-series averages are reported in Panel B of Table II. Among US stocks, funds in the

international sample destroy combined $1,193 million per month via their trades. This

number corresponds to an average of $85,700 destroyed per fund per month. In contrast,

BvB report that the average US fund adds $270,000 per month. There are, however, im-

portant differences between our studies. The focus of BvB is on total fund performance,

whereas we study trading performance only. Thus, a likely explanation for our findings is

that long-term fund holdings may capture fund value-adding decisions, whereas funds may

destroy value using impatient trades. This view is consistent with Cremers and Pareek

(2016) and Lan, Moneta, and Wermers (2018), who find that only fund managers with lon-

ger investment horizons are able to outperform the market. In addition, the industry may

be beyond its optimal size and new dollars flowing into funds may end up in value-

destroying trades. We examine this conjecture more thoroughly in the subsequent sections.

Similarly to the gross alpha findings in Panel A, US funds destroy significantly more

value via trades in domestic stocks—an average of $682 million per month. Non-US funds,

in contrast, destroy a combined $179 million per month.

5.3 Trading Costs

Data from Investment Technology Group10 indicate that average round-trip commission

and brokerage costs among international stocks range between 47 bps in the UK and

90 bps in Asia-Pacific emerging markets during the 2009 to 2014 period. Edelen, Evans,

and Kadlec (2013) investigated the transaction costs among active US equity funds and find

bid-ask spreads of similar order of magnitude to commission costs. Assuming a comparable

relation among international stocks, a conservative estimate of the total round-trip transac-

tion costs of active funds trading outside of the USA is at least 100 bps. Although an

10 See the company’s Global Cost Review on https://www.itg.com/assets/ITG_Global-Cost-Review-

2017Q2-Prelim-BrokerCostUpdated.pdf.
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investigation of the net returns to investors in international markets is beyond the scope of

our study, these returns are likely to be more similar to the net returns to investing in US

stocks.

6. Has the Active Industry in the USA Become Too Large?

6.1 Active Industry Size

The US domestic market has witnessed a dramatic increase in the size of the fund industry.

At the same time, the direct holdings by retail investors have shrunk by >50% in the past

three decades (French, 2008). Such crowding of the investment management industry in the

USA might have pronounced effects on the potential of fund managers to identify profitable

opportunities for stock picking. For instance, Stein (2009) demonstrates that when too

much capital from sophisticated investors is chasing the same opportunities, prices might

deviate from fundamentals due to correlated trading. Related, Berk and Green (2004) and

Pastor, Stambaugh, and Taylor (2015) show that increases in the fund industry can have a

perverse impact of fund performance. Across different countries, Khorana, Servaes, and

Tufano (2005) report an overall fraction of the market owned by funds that is much larger

in the USA than the rest of the world, which is consistent with our data. As a result, the pes-

simistic picture of the crowded US equity market may not necessarily translate to inter-

national markets. Consistent with this conjecture, our results in the previous section

document that the trading performance of active mutual funds is statistically lower among

US relative to non-US stocks.

To further analyze this, we define active industry size in country (market) m as the total

ownership of stocks in that market by all funds in our sample scaled by the total size of the

market, that is,

AISm;t ¼
P

i Holdi;t � Pricei;tP
i SOi;t � Pricei;t

; (3)

where Holdi;t refers to active fund ownership (holdings) in stock i at time t, defined as the

number of shares owned by all funds, SOi;t refers to total shares outstanding in stock i at

time t, and where summations are taken over all stocks i in country m. Note that the size of

the active fund industry is defined in terms of the country where investments take place

(i.e., the market), not the country where the funds are domiciled.11

The average Active Industry Size (AIS) between 2001 and 2014 for the forty-two stock

markets represented in our sample is provided in Table III. The fund industry is largest in

the USA, where active funds from the international sample hold on average 13.2% of the

market capitalization of all stocks. In the other countries, the size of the active industry

amounts to on average 0.9–7.9%. The ownership of active funds is typically higher among

developed markets and lower in emerging markets, with some exceptions. We also report

Active Industry Size at the end of our sample period (2014). Most notably, the US fund in-

dustry has decreased from an average of 13.2–11.4%. The 2014 active industry size is

higher than its mean in most emerging markets countries. Among developed markets, the

fund industry in the UK has the highest growth of >2%. Growth in other countries is more

moderate while some developed markets have even experienced a decrease. Further note

11 This is different from Ferreira et al. (2013), who explain fund performance from, among others,

country characteristics related to a fund’s domicile.
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that the descriptive statistics reported in Table III are based on aggregation across the hold-

ings of funds from the sixteen domiciles covered by our database and thus understate the

amount of actively managed capital.

6.2 Theoretical Framework

In order to analyze whether the active industry in the USA has become too large, we need a

theoretical model that relates performance to scale. Berk and Green (2004) and BvB pro-

pose a rational equilibrium framework that helps explain some well-known stylized facts of

the active industry, such as the lack of return persistence and the predictability of fund

flows. In the context of our study, the rational equilibrium has predictions for the effect of

Table III. Average size of the active mutual fund industry across countries

This table presents average size of the active fund industry across investment countries be-

tween 2001 and 2014, based on the ownership of active funds in the international sample.

Active industry size in a given market is defined as the total equity ownership by all active funds

in that market, scaled by the combined market capitalization of all equities in that market.

Region Country name Industry size Region Country name Industry size

Average End of

sample

Average End of

sample

North

America

Asia Pacific

Canada 0.071 0.069 Australia 0.023 0.018

USA 0.132 0.114 Hong Kong 0.030 0.036

Japan New Zealand 0.019 0.015

Japan 0.031 0.027 Singapore 0.040 0.038

South Korea 0.062 0.058

Europe Emerging

markets

Austria 0.038 0.041 Brazil 0.010 0.022

Belgium 0.030 0.042 Chile 0.011 0.020

Denmark 0.048 0.071 China 0.011 0.015

Finland 0.079 0.060 Colombia 0.004 0.010

France 0.045 0.047 Czech Republic 0.028 0.028

Germany 0.011 0.010 Hungary 0.052 0.070

Greece 0.026 0.016 India 0.023 0.055

Ireland 0.037 0.035 Indonesia 0.053 0.035

Italy 0.029 0.038 Malaysia 0.025 0.027

Luxembourg 0.019 0.027 Mexico 0.049 0.031

The Netherlands 0.055 0.056 Peru 0.009 0.023

Norway 0.055 0.034 Philippines 0.043 0.038

Portugal 0.031 0.042 Poland 0.032 0.027

Spain 0.026 0.027 Russia 0.016 0.038

Sweden 0.054 0.054 Taiwan 0.057 0.066

Switzerland 0.045 0.057 Thailand 0.033 0.041

UK 0.062 0.088 Turkey 0.042 0.058
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the size of the industry on performance. Below we restate a basic version of the model of

Berk and Green (2004) and BvB under neoclassical assumptions.

First, note that managers cannot infinitely scale positive NPV projects. In other words,

as investors allocate money to successful funds, managers eventually run out of ideas and

cannot generate extra alpha. In addition, as funds grow larger, their trades have growing

impact on prices. Empirical evidence by Pastor, Stambaugh, and Taylor (2015) and Zhu

(2018) provide ample support that funds do not operate under constant returns to scale.

The literature establishes two related arguments why fund performance may suffer in a

largely developed market, reflecting diseconomies of scale at either the fund or industry

level. For instance, larger funds may run out of ideas or suffer from large price impact of

their trades (Berk and Green, 2004). Alternatively, all funds in a relatively large fund indus-

try may suffer from the fierce competition among them (Pastor and Stambaugh, 2012). Of

course, the two arguments are closely related as a large fund industry can only arise if indi-

vidual funds grow to be sufficiently large. To set the stage, assume that a fund’s gross alpha

ag is decreasing in industry size:

ag ¼ a� bAIS: (4)

In this equation, b> 0 stands for diseconomies of scale and a corresponds to the gross alpha

on the first dollar invested. In the original work of BvB, ag is decreasing in fund size.

However, because we are interested in the optimal industry size, we treat the aggregate in-

dustry as one fund. Thus, we assume returns are decreasing in the aggregate industry size.

Similarly to BvB and Berk and van Binsbergen (2017), we assume that managers maxi-

mize value-added V (AIS). In other words, their combined objective function maximizes the

total dollar value extracted by the aggregate fund industry

VðAISÞ ¼ AISag ¼ AISða� bAISÞ: (5)

Taking first-order conditions with respect to the size of the active industry and setting it to

zero produces

AIS� ¼ a

2b
: (6)

This implies the following maximum aggregate value added by the active industry (pro-

vided a>0 and b> 0):

ag AIS�ð Þ ¼ a2

4b
: (7)

We can interpret the skill measure (7) as the upper bound of the dollar amount that the ac-

tive industry can generate, relative to the total size of the market [see Equation (3)]. When

markets are competitive and agents rational, investors allocate capital to funds with good

past performance, as measured by net alpha. However, because projects are not infinitely

scalable, managers cannot extract the same percentage return from financial markets. An

equilibrium is reached when the industry has grown up to levels where net alpha going for-

ward is zero.

Our focus is on the prediction of the optimal active industry size as given in Equation

(6). Because managers’ objective function is quadratic in the size of the industry, there is an

optimal industry size that maximizes the total value added of the industry (provided a>0

and b> 0). Beyond this optimal size, extra dollars cannot be put into productive use, which
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could explain why in the aggregate funds destroy value via their trades. Consider an ana-

logy with equity investments. Rational investors would bid the prices of undervalued stocks

up until their returns going forward are zero on a risk-adjusted basis. However, if they bid

the prices too high, then future returns would be negative. Similarly, rational investors

would allocate capital to active funds as long as managers can generate value. Beyond the

optimal point, investors would earn negative returns. In the next two subsections we give

empirical content to these predictions.

6.3 Fund-Level Regressions: Estimating Diseconomies of Scale

In this subsection, we test empirically for the impact of scale on performance. We build on

Pastor, Stambaugh, and Taylor (2015) and Zhu (2018) and estimate diseconomies of scale

separately for USA and international markets. Consider a group of mutual funds, indexed

f ¼ 1; . . .;N, which can invest in multiple markets m ¼ 1;2; . . .;M.12 Denote the

benchmark-adjusted return in month t of fund f in market m as rm
ft . Denote the total market

value of the fund at the end of the previous month as qf ;t�1 We then regress the benchmark-

adjusted performance of mutual funds in a particular market on the size of the active indus-

try in this market and the natural logarithm of the total size of the fund. That is,

rm
ft ¼ am

f þ bm
1 AISm;t�1 þ bm

2 logqf ;t�1 þ �mft : (8)

In this equation, am
f captures unobserved market-specific managerial skill (which is

assumed to be time-invariant). The coefficient bm
1 < 0 identifies decreasing returns at the

industry level. Similarly, the coefficient bm
2 < 0 identifies decreasing returns to scale at the

fund level. We include the natural logarithm of the total dollar value of the fund due to its

robustness to outliers. The am
f are treated as fund-market-fixed effects, absorbing the cross-

sectional variation in fund skill within a given market, and their inclusion is crucial for

identifying the effect of log qf ;t�1 on trading performance. We consider specifications where

the dependent variable tracks either the total holdings or trading performance of a fund.

The effect of diseconomies of scale is likely to be reflected in both.

A standard fixed effects estimator requires the regressors in Equation (8) to be strictly

exogenous. That is, regressors should be uncorrelated with �mft across all time periods. As

stressed by Pastor, Stambaugh, and Taylor (2015) this is not the case here, because (a) fund

size mechanically relates to past performance (even without flows), and (b) investor flows

respond to past performance. In addition, in our case, (c) funds may reallocate across mar-

kets depending upon past performance. To address this problem, we follow Pastor,

Stambaugh, and Taylor (2015) and Zhu (2018) and first eliminate the fixed effects am
f by

forward-demeaning Equation (8). The forward-demeaned version of a variable x is

defined as

�xft ¼ xft �
1

Tf � t þ 1

XTf

s¼t

xfs; (9)

where Tf denotes the number of time periods for which fund f is observed. The coefficients

in Equation (8) are then estimated by two-stage least squares (2SLS), employing instru-

ments that are plausibly uncorrelated with the forward-demeaned error term. Pastor,

Stambaugh, and Taylor (2015) propose to use backward-demeaned fund size as an

12 Note that not every fund needs to invest in every market.
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instrument for forward-demeaned fund size, where the backward-demeaned version of a

variable x is defined as

x
�f ;t�1 ¼ xf ;t�1 �

1

t � 1

Xt�1

s¼1

xf ;s�1: (10)

We implement this by means of a 2SLS approach, where in a first stage a reduced form is

estimated for the endogenous regressor, the fitted values of which are substituted into the

forward-demeaned version of Equation (8) (without an intercept).

Zhu (2018) argues that, unlike Pastor, Stambaugh, and Taylor (2015), an intercept term

should be included in the reduced forms, and we follow this recommendation. In addition,

she advocates the use of lagged fund size qf ;t�1 as an instrument, because it is obviously cor-

related with the forward-demeaned lagged fund size and it is plausibly uncorrelated with

the forward-demeaned error term. This instrument could be stronger if the fit of the first-

stage regressions is improved.

We implement three versions of the recursive-demeaning 2SLS estimator. The first ver-

sion follows Pastor, Stambaugh, and Taylor (2015) while allowing for an intercept term in

the reduced form. We refer to this estimator as RD1. The second one extends Zhu (2018)

and employs lagged fund size as an instrument for the forward-demeaned version. We refer

to this estimator as RD2. Both estimators are expected to be (asymptotically) unbiased,

their precision depending upon the relevance of the employed instruments. Simulation

results in Zhu (2018) suggest that RD2 is more accurate than RD1. Given the availability

of multiple instruments, it is natural to combine them into one estimator, which should be

even more precise. We therefore also consider a third estimator that includes both the

backward-demeaned and the lagged values of fund size as instruments. The resulting esti-

mator, which is our preferred one, is referred to as RD3.13 In order to minimize the impact

of estimation error on our findings, we drop fund-market observations with <4 years of

data. The specific steps to construct the three estimators are described in more detail in

Appendix F.

The results from the diseconomies of scale regressions are summarized in Table IV. As

results are consistent across the three estimators, we only report results using our preferred

choice RD3. In Panel A, we focus on the holdings and trades among US stocks. In

Specifications (1)–(6), we use the Vanguard funds as benchmarks. Our findings using funds’

holdings returns are consistent with Pastor, Stambaugh, and Taylor (2015) and Zhu

(2018), who find diseconomies of scale on the industry and fund level. Both the effect of

fund size and active industry size are statistically negative when included together in

Specification (3). The regressions using trading return as the dependent variable reveal a

similar effect of the size of the industry on performance, and the magnitude of the estimated

coefficient is larger. In contrast to the holdings-based regressions, fund size loses its statis-

tical significance when included together with the active industry size, though it still points

in the right direction.

In Panel B, we estimate the second-stage regressions jointly across all non-US stocks,

while estimating the first-stage regression per market. In Specifications (1)–(6), where we

use traded funds as benchmarks (BvB), the estimated coefficients of active industry size and

log fund size are not statistically significant. We further estimate the second-stage

13 Note that our numbering of these estimators does not match the one in Zhu (2018).
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regressions separately for each market and report these results in Panels C–G.14 The US

market stands out with significant estimates of diseconomies of scale. Within each of the

other regions, the estimated coefficients are not statistically significant although they most-

ly point in the negative direction, as predicted by theory. There are a few potential explana-

tions for the weaker evidence of diseconomies of scale in international stocks. First, the

power of our tests might be low. Funds in our sample hold a relatively smaller fraction of

their assets in international stocks, making it harder to estimate the diseconomies of scale

parameters. Second, because of the relatively smaller presence of active funds, the overall

fund industry outside of the USA might not be sufficiently large for the true impact of

decreasing returns to scale to be revealed in our data. This could also explain why the ag-

gregate trading performance of funds in our sample is better in international stocks than it

is in domestic stocks.

Another concern is that, for markets other than the USA, the availability of low-cost re-

gion-specific benchmark funds is very limited over the sample period. Accordingly, for

investments in non-US markets it would be relatively easy for fund managers to obtain posi-

tive alpha by having a non-zero value or momentum exposure, as the traded benchmarks

may not be correcting for this. Related to this, it is likely that the benchmark returns soak

up less variation outside the USA, and therefore result in low power of our tests.

With the above results in mind, in Specifications (7)–(12) we replace the benchmark-

adjusted alphas with DGTW-adjusted returns. For the US market in Panel A, the results

based on the DGTW-adjustment are very similar to those using traded benchmarks, but for

non-US markets the changes in the coefficients for industry size (which determine the pres-

ence of diseconomies of scale), as well as their statistical significance, are substantial.

Among the non-US stocks in Panel B, we find statistically significant impact of the active in-

dustry size on performance. The estimated coefficient using the holding-based regression in

Specification (7), –0.0146, is about half of the estimate obtained for the USA (–0.0299).

The trades-based coefficient in Equation (10) is larger and statistically even stronger than

the one for the US market. As predicted by theory, (almost) all estimated coefficients on

Active Industry Size are negative—and the many of them statistically significant—when we

estimate the model per region (Panels C–G). Despite the fact that the estimated coefficients

on Active Industry Size are negative, corresponding to decreasing returns to scale, there is

considerable variation across specifications and across regions. For example, using the

holdings-based returns it appears a bit more challenging to separate out the role of fund

size and industry size [Specification (9)].

To estimate optimal industry size for regions other than the USA in the next subsection,

we rely upon the estimation results based upon the DGTW-adjusted returns. Whereas there

is very limited availability of passive funds that track value indices around the world and

literally no momentum funds throughout sample period, during the last few years

Vanguard (and other fund families) have started to offer passive funds that track regional

value and momentum indices. Going forward, an investment set that includes passive expo-

sures to region-specific value and momentum would better represent a relevant benchmark.

Therefore, we the currently present diseconomies of scales may be better estimated with a

characteristics-based benchmark that includes value and momentum.

14 We follow MSCI classification when grouping countries in broad regions.
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6.4 Estimates of Optimal Industry Size

Our results in the previous sections raise the possibility that the active US industry has sur-

passed its optimal size. The rational equilibrium framework reveals that the optimal fund

size is jointly determined by the alpha on the first dollar and the coefficient on decreasing

return to scale [see Equation (6)]. If we assume that the industry acts like one fund, we can

use Equation (6) to estimate an optimal industry size. If we look at this problem from an-

other angle, if all funds in our sample have the same level of skill and are at their optimal

size, then Equation (6) specifies the optimal size of the industry. Similarly to Zhu (2018),

we back out the parameter a from the observed gross alpha, the estimated coefficient on

diseconomies of scale, and the empirically observed size of the active industry:

âm ¼
1

T

XT

t¼1
ðag

mt þ b̂m AISm;tÞ; (11)

where b̂m is taken to be the negative of the estimate of bm
1 from Equation (8) with log fund

size omitted. For the US market, b̂m is based on Specifications (1) and (7) from Table IV,

using Vanguard funds and DGTW as benchmarks, respectively. We decide to work with

the estimated coefficient based on the holdings-based returns as these are more closely con-

nected to overall fund performance. To remain consistent, the gross alpha estimates are

based on the same benchmarks as those underlying the estimation of b̂m.

Results are reported in Table V. Using the two alternative benchmarks to obtain gross

alpha and b̂m, we find an optimal size of the US active industry of 6.8–7.4% of the overall

stock market. Given the size of the US equity market in 2014, this corresponds to an opti-

mum of nearly $2:3 trillion. To put this in perspective, actively managed US-domiciled mu-

tual funds in our sample manage $3 trillion in domestic equity at the end of our sample

period. In addition, there is $0:5 trillion actively managed by funds domiciled outside the

USA. This implies that in 2014, there is an excess of nearly $1:2 trillion that is actively man-

aged. The precision of our estimated optimal industry size is driven by the standard errors

of both b̂m and average gross alpha. We use this to derive standard errors for our estimates

of the optimal industry size in Appendix G. Based on 95% confidence intervals, our find-

ings indicate that the active industry in the USA has become significantly larger than its op-

timal size as the current size of the active industry is outside of the 95% confidence bounds.

For international markets, we use the pooled estimate of b̂m from Specification (7) in

Panel B of Table IV to reduce noise. The optimal active industry size varies between 2.9%

and 7.9% across the five geographical areas. Relating this to the actual size of the active in-

dustry at the end of our sample period, it shows that for Canada and Japan, the actual size

is roughly equal to its optimum. For Europe, the optimal size is roughly two-third of its ac-

tual size, similar to our findings for the USA. For emerging markets and the Asia-Pacific re-

gion, however, the actual industry size is only about half of the optimal size, suggesting that

equilibrium forces, from the side of investors or fund managers, are likely to push further

growth in these markets (and reduce net alpha going forward). In a rational expectations

equilibrium, investors will chase investment opportunities with positive net present value,

while fund managers, in the aggregate, will reallocate across geographical markets or adjust

their degrees of active management across the globe, so as to maximize the total amount

they extract from financial markets (Berk and van Binsbergen, 2017).

Of course, our estimates on the optimal size of the industry need to be interpreted with

caution. As reflected in the 95% confidence intervals, our estimates of the optimal active in-

dustry size in international markets are relatively imprecise because of the difficulty of

700 T. Dyakov et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article-abstract/24/3/677/5540328 by Erasm

us U
niversiteit R

otterdam
 user on 14 M

ay 2020



accurately estimating gross alphas. In addition, they are sensitive to the functional form

used to estimate diseconomies of scale. Moreover, by assuming that the whole industry acts

like one fund, we oversimplify the nature of active investing. Yet, the findings that the ac-

tive fund industry has grown beyond its optimal in the USA are consistent with the evidence

of poor trading performance. Moreover, our findings are consistent with Leippold and

Rueegg (2018) who find that with the possible exception of the US market, the Berk and

Green equilibrium describes the data well. As our estimates provides only a first glance at

the important issue of how large the active industry should be, we leave it for future re-

search to provide a more thorough investigation on the best way to describe diseconomies

of scale on the industry level and derive an optimal industry size.

6.5 Potential Reasons Why US Equity Markets Have Become More Crowded

There are a number of potential reasons why the US equity market have become more

crowded over time. French (2008) documents the gradual displacing of retail investors with

more sophisticated institutional investors over a few decades. This trend naturally leads to

increased competition. Khandani and Lo (2011) document a drastic increase in the number

of hedge funds involved in arbitrage activities on equity markets and the subsequent decline

of the expected returns of typical quant equity strategies. Technological advances may

allow high frequency traders to detect the informed orders of institutional investors and

thus lower their expected profits (Menkveld, 2016). Next, the unconventional monetary

policy of the FED lead pension funds to increase their allocations to equity markets

Table V. Optimal active industry size around the world

This table presents the calculations of optimal industry size, separately for the USA, developed

Asia-Pacific excl. Japan (APA), Canada (CAN), Emerging Markets (EME), developed Europe

(EUR), and Japan (JPN) active mutual fund industries. In column Benchmarks, we indicate

whether the estimated coefficient on diseconomies of scales b̂ is from regressions using

Vanguard Indices or DGTW as benchmarks. To remain consistent, the gross alpha estimates

are estimated using the same benchmarks as b̂. We first average alphas across all funds (using

TNAs in equities in the given market as the weight) and then report time-series averages,

expressed in percentages per month. Optimal industry size is estimated from Equation (6),

where alpha on the first dollar is calculated according to Equation (11). The confidence intervals

are determined using the variance of the optimal industry size estimator as defined in

Appendix G. We further set a lower bound of the optimal industry size to 0. For comparison, we

also provide the size of the active industry for each region at the end of our sample.

Market Benchmarks: Gross

alpha

b̂ Optimal active industry size Active

industry size

(in % per

month)

Estimate 95% confidence interval (end of sample)

USA Vanguard funds 0.05 0.073 0.068 0.042 0.094 0.114

USA DGTW 0.06 0.030 0.074 0.038 0.110 0.114

APA DGTW 0.17 0.015 0.079 0.000 0.191 0.039

CAN DGTW 0.07 0.015 0.060 0.000 0.243 0.069

EME DGTW 0.14 0.015 0.067 0.000 0.206 0.038

EUR DGTW 0.05 0.015 0.044 0.002 0.086 0.065

JPN DGTW 0.04 0.015 0.029 0.000 0.095 0.027
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(Boubaker et al., 2017). Concurrent with these developments, the number of public compa-

nies in the USA has been falling.15 As a result, the previous landscape of a limited amount

of active money chasing attractive investment opportunities may have shifted toward one

with an excessive amount of money chasing deteriorating investment opportunities.

In addition, there are at least a few regulatory changes that could have increased the

crowdedness of financial markets. Agarwal et al. (2015) study the impact of a 2004 regula-

tory change that mandated more frequent portfolio disclosure. Their intuition is that when

funds disclose more information, other market participants can trade on the same informa-

tion and thus increase the competition informed funds face. Regulation Fair Disclosure

(Reg FD) was promulgated in 2000 and limited the selective access to firm-specific informa-

tion that mutual funds enjoyed at the time. This may lead to fewer information signals for

mutual funds and thus increased competition. In line with this argument, Bhojraj, Cho, and

Yehuda (2012) find that mutual fund performance decreased as a response to Reg FD.

A couple of regulatory changes may have increased the execution costs of active funds and

thus lowered the profits from their information signals. Bollen and Busse (2006) show that

following decimalization, market depth declined and increased the trading costs of active

funds while not affecting the trading costs of passive funds. Chung and Chuwonganant

(2012) observe increases in trading costs following Regulation National Market System

(NMS) too.

6.6 Capital Allocation Decisions

The rational expectations equilibrium framework has another interesting implication. If

there is too much capital managed in the USA, we would expect funds to respond to the in-

tense competition by diversifying across the rest of the world. In Figure 1, we report the

Figure 1. Cumulative capital allocation by active mutual funds domiciled in the USA. This figure

presents the cumulative capital allocated by US funds in the international sample to non-US and US

stocks. Numbers are expressed in $bln.

15 See, for example, Grullon, Larkin, and Michaely (2019) for broad evidence, and Doidge, Karolyi,

and Stulz (2009, 2013) for cross-listings of international stocks on US exchanges and the number

of domestic IPOs, respectively.
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cumulative investments of US domiciled funds in crowded US stocks versus less crowded

non-US stocks. During the period 2000–14, US funds have bought $400 billion in foreign

stocks, while withdrawing a nearly identical amount from US equities. Because of this cap-

ital shift, the total assets under management of US funds among US equity has decreased

from 91% to 71% during our sample period. Consistent with those findings, the size of the

active industry in the US market at the end of our sample is lower than its sample mean

(11% vs. 13%). These findings may indicate that the active US industry is declining in order

to move closer to its optimal size.

6.7 Stock-Level Regressions: Industry Size and Herding

The diseconomies of scale regressions in Section 6.3 can establish patterns within markets,

driven by time-series changes in the active industry size. In addition, the potentially detri-

mental impact of intense competition between fund managers can be identified cross-

sectionally across and within markets. To investigate this, we regress quarterly stock

returns on a measure of active fund trading (changes in fractional holdings, DFracHold),

the size of the active fund industry in a given country (AIS), and their interaction. Results

are reported in the first two columns of Table VI and include a wide range of controls.

Following Gompers and Metrick (2001), we add lagged active fund ownership (FracHold)

as a proxy for institutional demand. Standard errors are clustered at the stock level, though

results remain consistent when we additionally cluster on the time dimension. All of our

specifications include country-, time-, and industry-fixed effects. Hence, our regression ana-

lysis isolates the effect of trading by active funds on performance while taking into account

any possible influences of country-level characteristics studied in previous research (e.g.,

Khorana, Servaes, and Tufano, 2005; Ferreira et al., 2013).

In Specification (1), we find that trading by active funds is statistically significantly asso-

ciated with negative subsequent returns (t-statistic ¼�4.97). This confirms the central

results of Panel A in Table II, while allowing us to control for a wide variety of other char-

acteristics: trades correlate negatively to subsequent returns. Adding active industry size to

the regression, and—most importantly—its interaction with changes in fractional holdings,

allows us to explore how the relation between changes in holdings and subsequent stock

returns varies across markets (countries) with different importance of the active fund indus-

try, as well as over time [Specification (2)]. Consistent with our central hypothesis that the

trading performance is poorer for markets that are more crowded, we find a significantly

negative relationship with AIS interacted with changes in fractional holdings. The inter-

action term between changes in fractional holdings and active industry size enters the equa-

tion with a coefficient of –3.634 (t-statistic ¼�4.50). This implies that a one standard

deviation increase in ownership by active funds in markets where funds hold only 1% of all

assets is associated with 6 bp lower returns in the subsequent quarter. A similar in magni-

tude trading in markets where active funds own 5% of all assets leads to a subsequent re-

duction in performance of 29 bp. In Specification (2) we further find a positive coefficient

on AIS. Thus, markets with a larger fund presence may still offer high investment returns,

as long as funds engage in less trading. This finding is consistent with recent evidence by

Cremers and Pareek (2016) and Lan, Moneta, and Wermers (2018), who show that more

patient positions are characterized with positive abnormal returns. The message from these

results is that trades correlate negatively to subsequent returns, and more so if the active in-

dustry size in a country is larger.
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Table VI. Regressions of international quarterly stock returns on trading, active mutual fund in-

dustry size, and stock-level herding

This table presents the results of predictive regressions of quarterly stock returns on trading,

active industry size, and stock-level herding, among the sample of international stocks during

the period 2001–14. The dependent variable in each specification is stock return in local cur-

rency in quarter tþ 1. Depending on the specification, we include changes in fractional holdings

by active funds (DFracHold) in quarter t; signed LSV measure taking the value of LSV if

DFracHold is greater than zero and negative LSV otherwise; and active industry size (AIS),

defined as total equity ownership by all active funds in that market, scaled by the combined

market capitalization of all equities in that market. All specifications include industry-, country-,

and time-fixed effects. Control variables are defined in Table I. All variables are winsorized at

the 0.05% level and we divide the coefficient on PRICE by 1,000. We estimate coefficients using

pooled regressions and report robust standard errors clustered on the stock level. * denotes

significance at the 10% level, ** at the 5% level, and *** at the 1% level.

(1) (2) (3) (4)

DFracHoldt –0.179*** 0.159** –0.166*** 0.183**

(0.036) (0.080) (0.040) (0.083)

AIS * DFracHoldt �3.634*** �3.702***

(0.807) (0.810)

AIS 0.220*** 0.220***

(0.021) (0.021)

LSVs �0.008** �0.008*

(0.004) (0.004)

FracHoldt–1 0.066*** 0.062*** 0.066*** 0.062***

(0.006) (0.006) (0.006) (0.006)

BTM 0.007*** 0.007*** 0.007*** 0.007***

(0.000) (0.000) (0.000) (0.000)

SIZE �0.009*** �0.009*** �0.009*** �0.009***

(0.000) (0.000) (0.000) (0.000)

RET 0.009*** 0.009*** 0.009*** 0.009***

(0.002) (0.002) (0.002) (0.002)

TURN �0.036*** �0.035*** �0.036*** �0.035***

(0.004) (0.004) (0.004) (0.004)

VOL 0.026*** 0.026*** 0.026*** 0.026***

(0.002) (0.002) (0.002) (0.002)

PRICE �0.021 �0.016 �0.021 �0.016

(0.014) (0.014) (0.014) (0.014)

DY 0.004*** 0.004*** 0.004*** 0.004***

(0.000) (0.000) (0.000) (0.000)

ANALYSTS 0.001*** 0.001*** 0.001*** 0.001***

(0.000) (0.000) (0.000) (0.000)

ILLIQ �0.013 �0.015 �0.013 �0.015

(0.050) (0.050) (0.050) (0.050)

MOM 0.024*** 0.024*** 0.024*** 0.024***

(0.001) (0.001) (0.001) (0.001)

MSCI 0.008*** 0.008*** 0.008*** 0.008***

(0.001) (0.001) (0.001) (0.001)

Observations 793,981 793,981 793,981 793,981

R2 0.154 0.154 0.154 0.154
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The perverse effect of industry size is closely related to herding. Typically, herding is

defined as the tendency of funds to follow the contemporaneous trades of their peers. We

employ the widely used LSV herding measure, introduced by Lakonishok, Shleifer, and

Vishny (1992). Herding is likely to be stronger in countries with larger active fund presence.

However, in contrast to active industry size, LSV is a stock-level variable that allows us to

exploit differences in stock level crowdedness and link it to subsequent returns. The LSV

herding measure is based on the premise that if funds follow each other into and out of the

same stocks over the same time interval, then funds would be primarily buyers or sellers of

those stocks over that period. Specifically, the LSV herding measure for stock i in quarter t

is defined as

LSVi;t ¼ jpi;t � Etðpi;tÞj � Ei;tjpi;t � Etðpi;tÞj; (12)

where pi;t refers to the relative number of traders for stock i in quarter t, calculated as the

number of funds buying stock i in quarter t divided by the sum of the number of funds buy-

ing stock i in quarter t and the number of funds selling stock i in quarter t. Etðpi;tÞ refers to

the cross-sectional average of pi;t in quarter t. If institutions follow each other into and out

of the same securities within the same quarter, pi;t will differ much from Etðpi;tÞ and the

LSV herding measure will be positive. If, however, funds do not follow each other into and

out of the same security within the same quarter, then jpi;t � Etðpi;tÞj tends to zero and con-

sequently the LSV measure will be low. Ei;tjpi;t � Etðpi;tÞj is a stock-time specific adjustment

factor which accounts for the fact that simply by chance, the number of buyers will be

higher or lower than the number of sellers.16 The LSV herding measure has been widely

used in previous research (e.g., Grinblatt, Titman, and Wermers, 1995; Wei, Wermers, and

Yao, 2014).

In Specification (3) of Table VI, we include a signed version of the LSV measure taking

the value of LSV if DFracHold is greater than zero and negative LSV otherwise. This allows

us to test whether stock level herding is negatively associated with subsequent returns. The

results support this conjecture—the coefficient on signed LSV is negative and statistically

different from zero, albeit marginally. In Specification (4) we include both LSV and the

interaction between AIS and DFracHold. The size of the active industry appears to be a stat-

istically stronger predictor of future returns than stock-level herding. In countries where the

active fund industry is more important, their trading returns tend to be poorer.

7. Alternative Performance Measures and Evaluation Methods

7.1 Alternative Definitions of Aggregate Trades

We investigate the robustness of the trading performance using alternative definitions of

the aggregate buys and sales portfolios. Results are reported in Table VII. First, we define

buys (sales) as stocks with institutional demand higher (lower) than the cross-sectional

average, where a stock’s institutional demand is defined as the number of funds buying the

stock relative to all funds trading the stock (in each direction). The patterns are similar and

the economic magnitude and statistical significance of the findings is even stronger. For

16 Following LSV, the adjustment factor is calculated under the null hypothesis of no herding. To

compute it, we assume that the number of institutional investors buying a security i follows a bino-

mial distribution with probability Et ðpi ;t Þ; see Lakonishok, Shleifer, and Vishny (1992) for further

details.
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instance, the monthly underperformance by all funds in our sample amounts to 0.28% per

month in US stocks. Notably, however, the trading performance outside of the USA appears

to be more positive than the one reported in Table II. In addition, we define buys (sales) as

stocks with an increase (decrease) in weight in the aggregate holdings portfolio. The results

are again largely consistent and similar in economic magnitude to the findings when trades

are defined using changes in fractional holdings as in Table II, albeit with lower statistical

significance.

7.2 Trading Performance Using DGTW-Adjusted Returns

In addition to benchmark-adjusted returns, we assess trading performance using DGTW-

adjusted returns. We use this to establish the performance of the aggregate trades over dif-

ferent horizons. The results of the trading performance over quarterly and yearly holding

horizons are reported in Table VIII. Overall, results in Panel A are consistent with those in

Table II—the stocks funds purchase underperform the stocks they sell by 0.28% per quar-

ter, after adjusting for size, book-to-market, and momentum. The underperformance, how-

ever, is statistically indistinguishable from zero. Among US stocks, the poor trading record

is statistically significant and amounts to �0.61% per quarter. This negative trading return

does not reverse over the course of the year and even increases to �1.90%. In the aggregate,

trades among US stocks significantly underperform trades among non-US stocks. The

Table VII. Gross alphas of the stocks traded by active mutual funds: alternative definitions of

trades

This table presents the gross performance of the aggregate trades of mutual funds in the inter-

national sample using alternative definitions to trades. We define buys (sales) in two different

ways: stocks where the number of funds buying the stock relative to all funds trading the stock

is higher (lower) than the cross-sectional average during quarter t (“relative number of trad-

ers”); and stocks with an increase (decrease) in weight in the aggregate mutual fund portfolio

during quarter t (“changes in aggregate Weight”). Next, we weigh stocks in the buys (sales)

portfolio using aggregate volume bought (sold) during the quarter. Gross trading performance

is calculated as the difference in performance between the buys and the sales. We track the ex-

cess return of the aggregate trading portfolio during the next 3 months and repeat the calcula-

tions. Next, we estimate the benchmark-adjusted trading performance using the Vanguard

index funds as an alternative investment set. We report monthly alphas with standard errors in

parentheses, separately for all, US, and non-US stocks as well as for all funds, US funds, and

funds domiciled outside of the USA. * denotes significance at the 10% level, ** at the 5% level,

and *** at the 1% level.

Domicile Relative number of traders Changes in aggregate weight

Stock location Stock location

All USA Non-USA Difference All US Non-USA Difference

All 0.12 �0.28*** 0.54 �0.82** 0.09 �0.25 0.46 �0.72*

(0.32) (0.10) (0.33) (0.34) (0.37) (0.16) (0.38) (0.39)

USA 0.02 �0.31** 0.73 �1.04* �0.05 �0.27 0.43 �0.69

(0.37) (0.12) (0.58) (0.59) (0.42) (0.18) (0.64) (0.65)

Non-USA 0.23 �0.21** 0.44 �0.64** 0.26 �0.22* 0.48 �0.70**

(0.42) (0.09) (0.32) (0.32) (0.46) (0.13) (0.34) (0.35)
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Table VIII. The gross alpha of the stocks traded by active mutual funds using DGTW returns

This table presents the gross performance of the aggregate trades of mutual funds in the inter-

national sample using DGTW-adjusted returns. We define buys (sales) in three different ways:

stocks with aggregate increases (decreases) in fractional holdings during quarter t (“changes in

fractional holdings,” Panel A); stocks where the number of funds buying the stock relative to all

funds trading the stock is higher (lower) than the cross-sectional average during quarter t

(“relative number of traders,” Panel B); and stocks with an increase (decrease) in weight in the

aggregate mutual fund portfolio during quarter t (“changes in aggregate weight,” Panel C).

Next, we weigh stocks in the buys (sales) portfolio using aggregate volume bought (sold) dur-

ing the quarter. Trading performance is calculated as the difference in performance between

the buys and the sales. We track the risk-adjusted trading returns (DGTW returns) during the

following one quarter and 1 year. We repeat the calculations every quarter and obtain a time-

series of trading returns. We calculate aggregate trading returns separately for all, US, and

non-US stocks as well as for all funds, US-domiciled funds, and funds domiciled outside of the

USA. We report time-series means with standard errors in parentheses. * denotes significance

at the 10% level, ** at the 5% level, and *** at the 1% level.

Domicile Quaterly Dgtw Ret Yearly Dgtw Ret

Stock location Stock location

All USA Non-USA Difference All USA Non-USA Difference

Panel A: Changes in fractional holdings

All �0.28 �0.61** 0.19 �0.80*** �1.10 �1.90** 0.12 �2.01***

(0.29) (0.29) (0.38) (0.29) (1.02) (0.82) (1.07) (0.64)

USA �0.25 �0.48* 0.27 �0.75** �1.02 �1.61** 0.49 �2.11***

(0.25) (0.29) (0.34) (0.33) (0.80) (0.77) (0.77) (0.73)

Non-USA �0.40 �0.77** �0.22 �0.55 �1.14 �1.69** �0.85 �0.84

(0.35) (0.39) (0.39) (0.35) (1.07) (0.79) (1.10) (0.75)

Panel B: Relative number of traders

All �0.59* �0.97*** 0.24 �1.21*** �2.03* �3.42*** 0.08 �3.50***

(0.31) (0.29) (0.38) (0.34) (1.14) (0.86) (1.22) (0.76)

USA �0.48* �0.77** 0.01 �0.77* �1.94** �3.33*** 0.23 �3.56***

(0.25) (0.30) (0.34) (0.40) (0.89) (0.89) (0.85) (0.95)

Non-USA �0.50 �0.97*** �0.26 �0.71*** �1.31 �2.01*** �1.12 �0.88

(0.38) (0.34) (0.40) (0.27) (1.14) (0.73) (1.16) (0.86)

Panel C: Changes in aggregate weight

All �0.53 �0.83* 0.02 �0.85** �1.50 �2.51** 0.12 �2.63***

(0.44) (0.45) (0.50) (0.34) (1.42) (1.22) (1.40) (0.72)

USA �0.49 �0.77* 0.20 �0.98** �1.10 �2.27* 0.46 �2.73***

(0.35) (0.41) (0.39) (0.38) (0.96) (1.17) (0.96) (0.81)

Non-USA �0.63 �0.85* �0.51 �0.33 �0.97 �1.55 �0.90 �0.66

(0.52) (0.52) (0.54) (0.35) (1.43) (1.08) (1.39) (0.83)
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quarterly difference in returns between trades in US and non-US stocks amounts to –0.75%

(t-statistic ¼ –2.8), increasing to –2.01% (t-statistic ¼ –3.1) after 1 year. Yet, the return

among non-US trades does not significantly beat the benchmark portfolio of stocks with

similar characteristics, both over the short and long term. Using an alternative definition of

trades (Panels B and C), we report similar results. The economic magnitude and statistical

significance of the findings appear to be even stronger.

7.3 Robustness to Factor Regressions

Since Hou, Karolyi, and Kho (2011) point that the international evidence on which factors

and characteristics price stocks may differ from US findings, it is further important to

examine the robustness of our findings to alternative performance measurements. In add-

ition, there is uncertainty as to what asset model is used by investors to assess performance

(see Barber, Huang, and Odean, 2016; Berk and van Binsbergen, 2016). Therefore, we ob-

tain risk factors for the developed regions of North-America, Europe, Asia-Pacific, and

Japan from Ken French’s website. We estimate separately alphas for each region and then

weigh them using average volume traded in those markets monthly estimated alphas are

reported in Table IX and are largely consistent with the results in Table II. Alphas of the US

trading portfolios based on changes in fractional holdings are typically significantly smaller

than alphas of international trading portfolios. When momentum is included as an add-

itional factor, however, performance among non-US stocks appears to be closer to that

among US stocks. These results are consistent when gross alphas are defined using relative

number of traders and changes in aggregate weight.

8. Results from the US Market Using Longer Time-Series

The poor trading performance among US stocks stands in stark contrast to earlier work by

Chen, Jegadeesh, and Wermers (2000), who find that stocks funds buy outperform the

stocks they sell. In order to reconcile our findings with previous research, we complement

the recent international sample with a sample of domestic US funds that stretches back to

1980. The returns of the aggregate trades of domestic US equity mutual funds are summar-

ized in Table X. Prior to 2000, we find results similar to those of Chen, Jegadeesh, and

Wermers (2000)—the aggregate trading performance is positive and statistically different

from zero both in the short and long run. In contrast, following 2000, funds lose money

through trading. When gross alpha is defined via changes in fractional holdings, the differ-

ence in trading performance amounts to –1.62% (t-statistic ¼�3.2) in the subsequent quar-

ter increasing to –2.51% (t-statistic ¼�2.5) in the year following trading. These reversals in

performance are statistically and economically stronger when trading is defined using the

relative number of traders and changes in aggregate weight. In unreported results, we find

consistent results when performance is assessed using factor portfolios.

The longer time-series and richer stock- and fund-level data allow us to investigate this

finding in more detail. This helps us not only to better understand the dramatic change in

trading performance in the US sample, but also the cross-country differences in the more re-

cent international sample. Consequently, we investigate the secular trend in the tendency of

mutual funds to trade in herds as a possible driver for their deteriorating trading perform-

ance. We measure time-series trends in herding using average LSV as well as the intertem-

poral herding measure of Sias (2004). The LSV herding measure captures a temporal

dimension of fund herding, that is, the tendency of funds to trade in the same direction as
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other funds during the same time period. On the other hand, the Sias (2004) captures the

intertemporal dimension of fund herding, defined as the tendency of funds to trade in the

same direction as other funds in the previous time interval. More specifically, the intertem-

poral herding measure is calculated as the estimated coefficient from a cross-sectional re-

gression (using all stocks i in quarter t) of the relative number of traders on its lagged value:

pi;t ¼ btpi;t�1 þ �i;t; (13)

where we standardize pi;t to have mean zero and unit variance in order to compare coeffi-

cients across time. The estimated coefficient bt captures the tendency of funds to follow

their trades across two consecutive quarters. Hence, if funds follow their trades, we would

expect the estimated bt coefficient to be positive.

We investigate secular trends in herding among mutual funds in the US sample in

Table XI. In Panel A, we report the average LSV measure in the two time periods. The

mean LSV scores in our study are consistent with previous research (e.g., Lakonishok,

Shleifer, and Vishny, 1992; Grinblatt, Titman, and Wermers, 1995). On average, we find a

Table X. The performance of the stocks traded by active mutual funds in the US sample—quar-

terly and yearly DGTW returns

This table presents the performance of the aggregate trades of mutual funds in the US sample.

We define buys (sales) in three different way: stocks with aggregate increases (decreases) in

fractional holdings during quarter t (“changes in fractional holdings”); stocks where the num-

ber of funds buying the stock relative to all funds trading the stock is higher (lower) than the

cross-sectional average during quarter t (“relative number of traders”); and stocks with an in-

crease (decrease) in weight in the aggregate mutual fund portfolio during quarter t (“changes

in aggregate weight”). We weigh stocks in the buys (sales) portfolio using aggregate volume

bought (sold) during quarter t. Trading performance is calculated as the difference in perform-

ance between the buys and the sales. We track the risk-adjusted trading returns (DGTW returns)

during the following one quarter. We repeat the calculations every quarter and obtain a time-

series of trading returns. We calculate aggregate trading returns separately for the subperiods

1980–2000 and 2001–12. We report time-series means with standard errors in parentheses. *

denotes significance at the 10% level, ** at the 5% level, and *** at the 1% level.

Quarterly DGTW Ret Yearly DGTW Ret

1980–2000 2001–12 Difference 1980–2000 2001–12 Difference

Changes in fractional holdings

0.94*** –0.68* –1.62*** 1.33* –1.17* –2.51**

(0.33) (0.38) (0.51) (0.73) (0.67) (0.99)

Relative number of traders

1.09*** –0.95** –2.04*** 1.56* –1.57* –3.13***

(0.39) (0.44) (0.59) (0.83) (0.82) (1.16)

Changes in aggregate weight

0.90** –1.27** –2.17*** 1.47* –1.38 –2.85**

(0.35) (0.55) (0.65) (0.80) (1.01) (1.29)
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slightly positive LSV score of 0.025 prior to 2000. However, we find a significant increase

in the average LSV score of 0.006 in the second half of the sample, indicating that temporal

herding has increased over time. In Model 1 of Panel B, we present the average slope coeffi-

cients of Equation (13). Similarly to Sias (2004), we find that funds exhibit positive inter-

temporal herding—there is a positive correlation of the fraction of funds buying stock i in

quarter t with the fraction of funds buying stock i in quarter t–1. This positive association

is significantly stronger after 2000—the estimated slope coefficient in Equation (2)

increases from 0.108 to 0.231 across the two periods. Thus, the increase in intertemporal

herding shown in Panel B is consistent with the increase in cross-sectional herding docu-

mented in Panel A.

The slope coefficient in Equation (13) can further be decomposed in the part that comes

from funds following their own trades and the part that comes from funds following other

funds’ trades.17 The results, reported in Model 2 of Panel B, indicate that the increase in the

average intertemporal herding is due to both increased tendency of funds to follow their

own trades, as well as an increased tendency of funds to follow other funds’ trades.

However, most of the increase in herding is due to funds following each other—the part of

Table XI. Changes in herding over time among active mutual funds in the US sample

This table presents the results of the average cross-sectional herding and the extent of inter-

temporal herding among funds in the US sample, separately for the subperiods of 1980–2000

and 2001–12 as well as for the difference between the two sub-periods (“Difference”). In Panel

A, we report the average LSV (1992) measure across all stock quarters. In Panel B, Model 1, we

present the results from the average cross-sectional regressions of standardized relative num-

ber of traders (RelNumTraders) in quarter tþ 1 on its lagged value in quarter t, where relative

number of traders is defined as the fraction of funds buying a stock divided by the total number

of funds trading that stock. We standardize the variable by subtracting the cross-sectional mean

and dividing by the cross-sectional standard deviation. In Model 2, we decompose the esti-

mated slope from Model 1 in the part that comes from funds following their own trades and the

part that comes from funds following other funds’ trades. Standard errors are reported in

parentheses. * denotes significance at the 10% level, ** at the 5% level, and *** at the 1% level.

1980–2000 2001–12 Difference

Panel A: Cross-sectional herding

LSV mean 0.025*** 0.031*** 0.006***

(0.00026) (0.00029) (0.00039)

Panel B: Intertemporal herding

Model 1

RelNumTraders 0.108*** 0.231*** 0.123***

(0.008) (0.020) (0.022)

Model 2

RelNumTradersown 0.048*** 0.079*** 0.031***

(0.006) (0.011) (0.012)

RelNumTradersothers 0.061*** 0.152*** 0.091***

(0.006) (0.013) (0.014)

17 See Sias (2004) for the exact derivation of the two coefficients.
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the average bt that comes from institutions following other funds’ trades increases from

0.061 to 0.152, while the component of the average bt that comes from institutions follow-

ing their own trades increases from 0.048 to 0.079.

In Table XII, we regress subsequent stock returns on trading and herding, utilizing the

rich time-series of the US sample. All specifications include a wide range of controls as well

as stock industry and time-fixed effects. In Specification (1), we find that overall during the

1980–2012 period, trades by active funds lead to subsequent positive returns. In

Specification (2), we include the interaction of a dummy variable D2001, taking the value

of 1 if the sample date is from year 2001 or later, with trading by active funds.18 Consistent

with the results in Table II, we find a negative coefficient of –0.133 (t-statistic ¼�4.2) on

the interaction term. Thus, mutual fund trading in the US sample following 2000 destroys

value: on average, a one standard deviation increase in institutional ownership is associated

with 1.36% lower returns in the following quarter. In Specification (3), we find a negative

coefficient of –0.034 (t-statistic ¼�4.8) on the interaction between D2001 and signed LSV.

Thus, the trading losses following 2000 are stronger among stocks with more pronounced

herding—stocks where funds herd more have significantly poorer performance in the subse-

quent quarter.

To be consistent with the international sample, Specifications (4) and (5) add an inter-

action of AIS with DFracHold. As this variable exhibits little independent variation over

time for any given stock, it is not surprising to see that it enters the models insignificantly.

The fixed effects and DFracHold alone explain >98% of its variation and thus leave very

little variation in this interaction variable to explain stock returns. The coefficients for the

interaction terms between D2001 and changes in fractional holdings, and between D2001

and signed LSV, are hardly affected in these final two columns.

9. Conclusion

In this paper, we study the investment skills of actively managed mutual funds from sixteen

domicile countries investing in forty-two equity markets over the period 2001–14, in rela-

tion to returns to scale in the industry. In US equity mutual funds achieve particularly poor

trading performance: after benchmark adjustment, the stocks they buy underperform those

they sell by 0.31% per month (t-statistic ¼�2.8). In non-US equity, their trades perform

better, achieving an insignificant gross monthly return of –0.04%. Exploring the investment

environment for the mutual fund industry around the world, we find evidence of disecono-

mies of scale in the US equity market. Internationally, the statistical significance depends

on the choice of market and also indicate the presence of diseconomies of scale.

Importantly, mutual funds achieve particularly low returns when they trade equities in mar-

kets with a larger-scale active fund industry. This result suggests a link between negative

trading performance and diseconomies of scale in active fund management.

Building upon the theoretical models of Berk and Green (2004) and BvB, we use these

results to derive estimates of the optimal size of the active industry across different inter-

national regions. This allows us to address an important asset allocation question: how

much money to allocate to indexing versus active investing across these regions. Keeping

the limitations and imprecision of our estimates into account, there is strong evidence that

18 Note that the effects of D2001 in Specification (2)–(5) and AIS in Specifications (4) and (5) are sub-

sumed by the time-fixed effects and hence not reported.
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Table XII. Regressions of US quarterly stock returns on trading, active mutual fund industry

size, and stock-level herding

This table presents the results of predictive regressions of quarterly stock returns on trading,

active industry size, and stock-level herding, among the sample of US stocks during the period

1980–2012. The dependent variable in each specification is stock return in USD in quarter tþ 1.

Depending on the specification, we include changes in fractional holdings by active funds

(DFracHold) in quarter t; a dummy variable D2001 taking the value of 1 if the sample year is

2001 or higher and zero otherwise; signed LSV measure taking the value of LSV if DFracHold is

greater than zero and negative LSV otherwise; and active industry size (AIS), defined as total

equity ownership by all active funds in the US market, scaled by the combined market capital-

ization of all equities in that market. All specifications include industry- and time-fixed effects.

Control variables are defined in Table I. All variables are winsorized at the 0.05% level and we

divide the coefficient on PRICE by 1,000. We estimate coefficients using pooled regressions and

report robust standard errors clustered on the stock level. * denotes significance at the 10%

level, ** at the 5% level, and *** at the 1% level.

(1) (2) (3) (4) (5)

DFracHoldt 0.021** 0.033* 0.026** 0.074 –0.014

(0.009) (0.017) (0.013) (0.054) (0.055)

D2001 * DFracHoldt –0.133*** –0.116*** –0.131*** –0.118***

(0.032) (0.030) (0.032) (0.032)

LSVs 0.027*** 0.027***

(0.004) (0.004)

D2001 * LSVs –0.034*** –0.035***

(0.007) (0.007)

AIS * DFracHoldt –0.271 0.262

(0.401) (0.389)

FracHoldt–1 0.002 0.004 0.003 0.004 0.003

(0.006) (0.006) (0.006) (0.006) (0.006)

BTM 0.018*** 0.018*** 0.018*** 0.018*** 0.018***

(0.001) (0.001) (0.001) (0.001) (0.001)

SIZE –0.024*** –0.024*** –0.024*** –0.024*** –0.024***

(0.001) (0.001) (0.001) (0.001) (0.001)

RET 0.039*** 0.039*** 0.039*** 0.039*** 0.039***

(0.003) (0.003) (0.003) (0.003) (0.003)

TURN –0.050*** –0.050*** –0.050*** –0.050*** –0.050***

(0.002) (0.002) (0.002) (0.002) (0.002)

VOL –0.008*** –0.008*** –0.008*** –0.008*** –0.008***

(0.003) (0.003) (0.003) (0.003) (0.003)

PRICE 0.356*** 0.354*** 0.353*** 0.354*** 0.353***

(0.043) (0.043) (0.043) (0.043) (0.043)

DY –0.002* –0.002* –0.002* –0.002* –0.002*

(0.001) (0.001) (0.001) (0.001) (0.001)

ANALYSTS 0.004*** 0.004*** 0.004*** 0.004*** 0.004***

(0.000) (0.000) (0.000) (0.000) (0.000)

ILLIQ –0.001*** –0.001*** –0.001*** –0.001*** –0.001***

(0.000) (0.000) (0.000) (0.000) (0.000)

MOM 0.033*** 0.033*** 0.033*** 0.033*** 0.033***

(0.001) (0.001) (0.001) (0.001) (0.001)

Observations 541,836 541,836 541,836 541,836 541,836

R2 0.152 0.152 0.152 0.152 0.152
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for the US market, the active fund industry has surpassed its optimal size. While we also

find decreasing returns to scale outside the USA, it does not appear that the active industry

has reached its optimal size, perhaps with the exception of Europe. This suggests that fund

managers, in the aggregate, would increase the amount of money they extract from finan-

cial markets by decreasing their level of active trading in the USA and reallocating their

investments toward international markets. In a similar spirit, rational investors are

expected to learn about international funds and their performance, increasing their flows to

funds that invest in international markets where the active industry size is still relatively

small. In the future, we plan to investigate psychological and institutional forces that might

inhibit fuller international diversification and hamper the move toward the long-run

equilibrium.

Appendix A

Overview Construction of the International and US Samples

In this Appendix, we provide an overview of the construction of the International and US

samples used in this study. In Appendices B–E, we provide a more detailed overview of the

stock selection procedures and the methodology for constructing characteristic-adjusted

portfolios for the International Sample.

A.1 International Sample

The international sample builds upon the portfolio holdings data available in Factset.

Factset currently provides the reported holdings of >90,000 funds located in eighty-nine

domiciles. The database covers active and passive mutual funds, insurances, pension funds,

and other funds and includes both alive and defunct funds. Similarly to Thomson Reuters,

Factset acquires the quarterly positions of US funds via forms N-Q and N-CSR, available

on SEC’s EDGAR system, or directly from active management companies. In some coun-

tries, such as Spain and Sweden, fund holdings data are provided by the regulatory author-

ity of the country or the mutual fund association. Positions of Canadian funds are obtained

from the Interim and Annual Financial Statements on Canada’s SEDAR system. For other

countries, Factset obtains portfolio holdings data from the websites of, or from communi-

cations with, the respective asset management companies.

Similar to Chuprinn, Massa, Schumacher (2015), we exclude fund reports before 2001

because the coverage of Factset prior to this year is limited. Following Elton, Gruber, and

Blake (2001) and Chen et al. (2004), we exclude funds with net assets of <15 million USD,

as their data are potentially biased. Next, we drop any fund report in which a single secur-

ity constitutes >25% of the total assets of the fund. We further drop index funds and select

funds classified by Factset as either open-ended or offshore. Note that Factset classifies

funds from Luxembourg and Ireland as offshore rather than open-ended funds. Thus, this

selection criterion ensures our sample covers funds from those major fund domiciles. Next,

we keep only funds that hold at least 50 stock holdings (equities and/or depository receipts)

in their portfolios. This way we capture only funds with active equity components and ex-

clude funds that may hold equities for diversification purposes only. This procedure also

ensures we drop funds from countries with lax portfolio reporting regulations, such as

Australia where funds are required to report only their top 10 portfolio holdings. Some

portfolio reports contain likely data errors because the TNA value appears to bounce back

Trade Less and Exit Overcrowded Markets 715

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article-abstract/24/3/677/5540328 by Erasm

us U
niversiteit R

otterdam
 user on 14 M

ay 2020



close to its original value after a spike in either direction. We exclude such reports.

Specifically, we exclude fund portfolio reports across two periods where reported TNAs in-

crease/decrease by a factor of >9 (quarter q–1 vs. quarter q) and which is subsequently

reversed by a factor of at least 4.5 in the opposite direction (quarter q vs. quarter qþ 1)

while the increase/decrease across both periods does not exceed 4.5 in the original direction

(quarter qþ1 vs. quarter q–1).19 We further include fund reports only if the same fund has

another report available in one of the previous two quarters in order to be able to calculate

changes in holdings. This way we exclude domiciles with infrequent portfolio disclosure,

for which it is hard to approximate trading decisions. For example, most Singaporean funds

in Factset report only once a year and are therefore dropped. As a result of this choice, for

80% of the portfolio holding reports of funds, there exists a portfolio holding report in the

previous quarter. For the remaining 20%, we use a lagged portfolio report that is two quar-

ters old. In some cases, there exist more than one report per quarter or the report does not

refer to end-of-quarter positions (i.e., February rather than March). In such cases, we al-

ways choose the portfolio snapshot closest to the end of the quarter and use the reported

holdings as if they were reported at the end of the quarter. Because coverage of some coun-

tries may be scarce, we only include domiciles with at least 20 funds present during at least

75% of the time. For example, this data selection procedures result in the exclusion of

funds from China, which are present in Factset only between 2008 and 2011, and funds

from Japan, which appear to be a very small number in Factset (most years <20). This

yields 322,628 unique fund-quarterly report date observations.

We match the reported fund holdings with stock specific information from Worldscope

and Datastream using CUSIP, ISIN, and SEDOL identifiers. Because idiosyncratic shocks in

stocks from these countries are potentially not easy to diversify, we drop countries that are

not members of the Standard & Poor’s BMI indices for developed and emerging markets

(Europe, the Americas, Japan, and the Asia Pacific). Moreover, fund holdings in such stocks

are negligible and data quality is likely to be low. We further follow the data-cleaning pro-

cedures prescribed in Ince and Porter (2006), Schmidt et al. (2011), and Dyakov and

Wipplinger (2020). Specifically, we exclude (a) stock issues with >20% difference in mar-

ket capitalization between Datastream and Factset, (b) stocks where a single fund is

reported to own >25% of the shares, and (c) stocks with some key missing information in

either Factset or Datastream.20 We also note a potentially spurious pattern among some of

the stock holdings: Some funds increase their reported holdings by a factor of, for example,

100 only to decrease their holdings by a similar factor in the next reporting period. Such

changes are apparent data errors and we exclude them using the same screen for individual

holdings as the one used for large reversals of total reported assets mentioned above.

A detailed overview on the stock-level country selection, the merging of Factset with

Datastream, and the cleaning of stock information from Datastream is available in

Appendices B–E.

19 For example, suppose that this quarter TNA is $9 mln. If the previous quarter TNA was $1 mln,

then the increase was by a factor of 9. If next quarter TNA dropped to $2 mln, then the subse-

quent drop is by a factor of 4.5. Between the previous and next quarter, however, the increase is

only by a factor of 2 ($2 mln vs. $1 mln). Hence, the TNA “bounces” from $1 mln up to $9 mln and

then back to $2 mln and the portfolio snapshot is excluded.

20 Stocks with key missing information from Datastream and Worldscore are also not included in the

benchmark portfolios and also not part of the return-predictive regressions.
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A.2 US Sample

The US sample is built upon the Thomson Financial/CDA database which covers quarterly/

semi-annual holdings of mutual funds, as reported to the SEC or voluntarily reported by

the funds. We select funds with an investment objective code of growth, aggressive growth,

and growth and income. We further exclude all index funds by deleting funds that have the

strings INDEX, INDE, INDX, S&P, or MSCI in their names. We link the Thomson

Financial/CDA database to the CRSP Mutual Fund Database using the MFLINKS tool pro-

vided by WRDS. The final dataset covers funds included in both mutual fund databases, for

which we have two consecutive quarterly (or semi-annual) reports in Thomson Financial/

CDA. Since most actively managed US equity funds offer different share classes to invest-

ors, we sum the net assets over different share classes and take asset-weighted share class

averages of different attributes such as returns and expense ratios.

Appendix B: Region Assignment

This Appendix outlines the selection of equity markets, part of the International Sample.

Note that this is different from the selection of fund domiciles, outlined in Appendix A.

Specifically, we select countries from Europe, the Americas, and the Asia Pacific region for

which Worldscope Constituent Lists are available in Datastream. We further restrict our

sample to countries which are also members of the Standard & Poor’s BMI indices for

developed (DEV) and emerging markets (EMs). Next, we assign countries to one of the fol-

lowing seven regions, based on broad geographical location and level of development:

• Developed North America (NAM)

• Developed Europe (EUR)

• Japan (JPN)

• Developed Asia Pacific (APA)

• Emerging Europe (EM_EUR)

• Emerging Asia Pacific region (EM_APA)

• Emerging Latin America (EM_LAM)

Table BI lists the selected forty-two countries and their, respectively, assigned regions. In

Appendices C–E, we use the region selection in order to assign stocks to benchmark port-

folios and compute characteristic-adjusted returns.

Appendix C: Stock Selection

In this Appendix, we provide an overview of the selection of stocks used in the

International Sample. The price and balance sheet data of all stocks part of the internation-

al sample stems from Datastream and Worldscope. The methodology builds upon Ince and

Porter (2006) and Schmidt et al. (2011) and closely follows Dyakov and Wipplinger

(2020). Further note that mutual funds, part of the Factset database, do not hold every pos-

sible stock in the universe of forty-two equity markets. However, we collect company level

and main issue level information for every stock in that universe because of (a) the calcula-

tion of benchmark portfolios and (b) the regressions of stock returns on changes in fraction-

al holdings, both of which require information on companies not part of the sample of

stocks held by mutual funds.
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C.1 Company Issue Selection

The stock-level analysis in the paper is carried on the company level. Since companies have

multiple issues, we carry a number of selection procedures in order to obtain a single pri-

mary security for every company in the forty-two equity markets.

First, we select candidate Datastream Codes (DSCD) from the Research, Dead, and

Worldscope constituent lists from Datastream in February 2015 for the countries selected

in Appendix B. The download order is (1) Worldscope, (2) Research lists, and (3) Dead

lists. This way we avoid missing defunct codes that may been moved to the dead lists during

the download time.

Next, we perform the following data-selection procedures:

1. We select issues at the end of June from 1999 to 2014 which are either listed in the

Worldscope lists of Datastream or listed as major securities in Datastream (Datastream

item MAJOR ¼ “Y”)21;

2. Furthermore, we consider only issues that refer to equities (Datastream item

TYPE ¼ “EQ”) and are neither depository receipts nor preferred equity; issues that

have at least 2 years of balance sheet data available in Wordscope; have a 13-month re-

turn at the end of June that is not zero;

3. We require that the stock is assigned to an Industry Classification Benchmark (ICB) in-

dustry subsector (Datastream item ICBSUC) and that Datastream contains information

on the exchange (Datastream item ISOMIC);

4. We remove penny stocks by requiring that the unadjusted stock price is >1 in local cur-

rency (Datastream item UP >1).

5. Last, we consider only issues where the exchange is either in the same region as the

Worldscope country of the stock or it is both the primary and major listing according to

Datastream (Datastream items ISINID ¼ “P” and MAJOR ¼ “Y”).

This selection is not sufficient to obtain a single primary security for each company at all

times because Datastream may report multiple listings and share classes for a company. In

order to select a primary issue among the issues selected above at each point in time, we

rank the Datastream equity listings (Datastream identifier DSCD) for each Worldscope per-

manent identifier (Worldscope item 06105): We prioritize securities in the following order:

1. Securities classified as major securities in Datastream (Datastream item

MAJOR ¼ “Y”);

2. Securities that are contained in the Worldscope lists (see Table BI);

3. Securities with non-zero trading volume in the prior month (Datastream item

UVO>0);

4. Securities classified as primary listing for the corresponding International Securities

Identification Number (ISIN, Datastream item ISINID ¼ “P”).

For each Worldscope identifier, we select only the top-ranked Datastream identifier at

each point in time and repeat the identifier ranking procedure every month. Table BI pro-

vides technical details on the Research, Dead, and Worldscope constituent lists from

Datastream used in this study.

21 Datastream sometimes reassigns the major label for dead securities. For example, dead securities

are sometimes replaced by new securities after re-emergence of a company from bankruptcy or

if a preferred stock remains in issue.
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C.2 Return Screens

First we select only dates between the first and last month where all unpadded unadjusted

prices are available (undocumented Datastream items UP#S and UP#T).22

Ince and Porter (2006) point to the low accuracy of reported price and return indices

(RIs) in Datastream—price indices (PIs) and total RIs generally contain only 1–2 decimal

digits, which can lead to substantial inaccuracies in returns for declining stocks or stocks

with long histories. Therefore, we calculate returns from unadjusted prices (Datastream

item UP), unadjusted dividends (Datastream item UDDE), and capital adjustment indices

(Datastream item CAI) whenever feasible. We also address Datastream reporting capital

adjustment indices with a similar low accuracy by using a rational approximation to the

ratio of capital adjustment indices. We use the rational approximation with the lowest ab-

solute integer denominator >100, which yields the same value as CAIt

CAIt�1
when rounded to

two decimal digits.

There are small differences between returns calculated from RIs from Datastream and

returns calculated using the unadjusted values. Typically, the returns from unadjusted val-

ues are more reliable because of the numerical accuracy issues mentioned above. However,

when there are large differences, RIs yield more reliable values because these contain less

errors in capital adjustments and dividends. We therefore check if returns are within round-

ing errors of returns obtained from RIs.

We ensure that returns Rt satisfy

1þ Rt <
RIt þ a

RIt�1 � a
when RIt�1 > a; (C.1)

1þ Rt >
RIt � a

RIt�1 þ a
when RIt > a; (C.2)

1þ Rt < 9:9 when RIt�1 � a; (C.3)

1þ Rt > 0 when RIt � a; (C.4)

with a¼0.005 (maximal error from rounding to two decimal digits) or we fall back to cal-

culating returns from the RI before cleaning for data errors.

Last, we closely follow Ince and Porter (2006) and Schmidt et al. (2011) and employ the

following dynamic screens. We set returns that exceed 890% to missing and remove large

return reversals by setting both Rt and Rt�1 to missing whenever ð1þ Rt�1Þð1þ RtÞ�
1 < 0:5, while Rt or Rt�1 exceed 300%. For daily returns which are required for the calcu-

lation of the Amihud (2002) illiquidity measure, we apply a similar filter that checks for re-

turn reversals within 5 weeks.23

22 UP#S and UP#T are unadjusted prices, unpadded while alive and unpadded while dead, respect-

ively. This replaces the static screens at the beginning and end of the sample of Ince and Porter

(2006) in order to remove prices of inactive or dead securities.

23 We obtain the set of daily returns where there is at least one return reversal within 5 weeks (35

calendar days equivalent to 25 trading days). That is we collect the set of daily returns fRu ; Rdg
for which the following conditions hold for d � 25 � u � d þ 25:

Rd > 3; (C.5)
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Appendix D: Linking Mutual Fund Holdings in the International
Sample to Datastream and Worldscope

Factset identifies holdings information at the security and listing level. In our study, we

match every reported holding to a primary company issue. This implies that we match pri-

mary, secondary listings, and depository receipts at the company level. Therefore, we first

obtain static identifiers from Datastream for the constituent lists of Table BI as well as iden-

tifiers from a Datastream search for all ISIN, SEDOL, and CUSIP codes reported in Factset.

We then obtain a list of all Datastream Codes which can be linked to a Factset reported mu-

tual fund position via either the ISIN, SEDOL, or CUSIP Codes of a security or via any of

these identifiers to the underlying of a depository receipt.24

We are able to obtain a raw link to a Datastream Code or Worldscope Permanent ID for

95.86% and 94.87% of all equity- and depository receipt-reporting date combinations in

Factset, respectively. When we additionally apply the screens of Appendix C, most notably

the requirement of available Wordscope data items, we are able to match 75.70% of all

position-reporting date combinations to a security in one of the benchmark portfolios (see

Appendix E.2 for procedures on calculating benchmark-adjusted portfolios for stocks in

the International Sample).

Appendix E: Benchmark Portfolios

E.1 Characteristic-Adjusted Portfolios for the US Sample

In order to measure the risk-adjusted returns of stocks, we follow the methods prescribed

by Daniel et al. (1997), Wermers (1999), and Wermers (2003), and compare the perform-

ance of stocks with that of stocks with similar size, book-to-market, and momentum char-

acteristics (also known as DGTW returns). In the DGTW methodology, at the end of each

June stocks are allocated to five size quintiles based on their market capitalization. Within

each size quintile, stocks are further ranked in five quintiles based on their book-to-market

ratios, yielding a total of 25 size and book-to-market sorted portfolios. Next, stocks within

each of the twenty-five portfolios are further subdivided in five additional portfolios, based

on their prior 12 month return. This procedure results in 125 stock portfolios. The bench-

mark returns are then computed as the returns of the 125 portfolios in the next 12 months,

after which the portfolios are updated. We obtain the stock allocation and the returns of

ð1þ RuÞð1þ RdÞ � 1 < 0:5 (C.6)

First, whenever both returns of fRu ; Rdg are assigned to exactly one unique pair within that set,

we only set Ru and Rd to missing. This covers cases where a single return reversal occurs: for

example, due to a capital adjustment recorded at a wrong date. Second, when either is part of

multiple pairs, we set all returns from min(u, d) to max(u, d) to missing as there are multiple

reversals within the period.

24 We consider both securities and securities underlying a depository receipt (linked via Datastream

item ADRP) since a mutual fund may hold a depository receipt. Worldscope also uses different

company level identifiers for depository receipts when compared with the company level identifier

of the underlying security.
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the benchmark portfolios from Russ Wermers’ webpage25 and calculate benchmark-

adjusted stock returns as returns in excess of the return of the relevant benchmark

portfolio.

E.2 Characteristic-Adjusted Portfolios for the International Sample

For international stocks, we follow the approach proposed in Dyakov and Wipplinger (2020)

that extends Wermers (1999) and Wermers (2003) to international stocks. Because global

markets are not integrated (Fama and French, 2012) and risk premiums could be related to

local factors (Griffin, 2002), we construct benchmark-adjusted portfolios separately for

stocks belonging to broad geographical regions. Specifically, benchmark-adjusted portfolios

are constructed for the developed regions of North-America, Europe, Japan, Asia-Pacific, as

well as the EM regions of Asia-Pacific, Europe, and Latin America. Due to the relatively small

number of stocks in some of these regions, we often resort to a number of stock buckets dif-

ferent form the original 5� 5� 5 used by DGTW. The final portfolio breakdown in North

America and Developed Europe splits stocks in 125 portfolios (5�5�5), 64 portfolios in

Japan (4�4�4), 27 portfolios in Developed Asia-Pacific and EMs Asia-Pacific (3�3�3), and

8 portfolios in Emerging Markets Europe and Emerging Markets Latin America (2�2�2).

Below we outline the construction of the benchmark portfolios in more details.

We begin the construction of the portfolios at the end of each June, when we assign com-

panies from each region to a portfolio of companies with similar size, book-to-market, and

momentum characteristics. We keep the assignment until next June, when we rebalance the

portfolios.

E.2.1 Size and Momentum Characteristics

For the size characteristic, we obtain the market value reported in Datastream (Datastream

item MV) as of the last trading day of each security in June. Then we use the exchange rates

from Worldscope to convert market values into US Dollars. Our measure of Momentum is

the 11-month total return in local currency (source: Datastream) of a security from June of

the previous year till May.

E.2.2 Industry-Adjusted Book-To-Market Ratio

We calculate raw book-to-market ratios from the most recent fiscal year-end report as of

December each year. We measure book equity (BE) as the sum of Total Common Equity

(Worldscope item 03501) and Deferred Taxes (Worldscope item 035263). Because multiple

share classes are common for international stocks, we use the values reported as

Worldscope’s Year-end Market capitalization (Worldscope item 08001) as market value of

equity (ME). We use this item because it aggregates across share classes.26 However,

25 The DGTW benchmarks are available on http://terpconnect.umd.edu/~wermers/ftpsite/Dgtw/cover

page.htm.

26 Note that the market value used to calculate size in Section E.2.1 is derived differently from the

market value used in calculating the book-to-market ratio. Size in this study is a security-level

variable and book-to-market ratio is a company level variable. We use different approaches be-

cause of multiple share classes: We require that book value and market value are using the same

base for book-to-market ratios. For size, we chose to go for a security level variable because it is

not possible to obtain only the relevant share classes from Datastream and we do require size to

reflect capital changes occurring after the last fiscal-year end.
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Worldscope reports this value as of different dates compared with the fiscal year-end de-

pending on country and we standardize all market values to the end of each December

using returns from Datastream.

E.2.3 Industry Group Assignment

Log book-to-market ratio is calculated as btm
ðjÞ
i;t ¼ logðBEi;t=MEi;tÞ. Following Wermers

(2003), we use a similar adjustment to the book-to-market ratio:

btm
adj
i;t ¼

btm
ðjÞ
i;t � btm

ðjÞ
t

rðjÞt

; (E.1)

where btm
ðjÞ
i;t is the individual logarithmic book-to-market of a stock i belonging to industry

group (j) and btm
ðjÞ
t is the logarithm of the aggregate book-to-market ratio of all N

ðjÞ
t stocks

in group (j) at time t.

We further generalize Wermers (2003) who assigns stocks to groups based on SIC codes in

the same industry to an international setting. Our group assignments additionally reflect that

global markets are not fully integrated (Fama and French, 2012) and that accounting stand-

ards may differ among legal traditions. Because the sample size is limited for some countries

we use the following assignment rules to allocate each stock i to an industry group (j).

1. We first attempt to match a stock i to a group (j) based on having the same country de-

velopment status (developed vs. emerging Worldscope nation), the same country legal

origin (English, German, French, Scandinavian), the same geographical region (North

America, Europe, Asia Pacific, Japan, and Latin America), and having the same

Industry Classification (ICB) Level 3 (forty-one sectors) as reported by Datastream.

2. If a group does not contain sufficient number of stocks, we relax the ICB restriction to

Level 2 codes (nineteen supersectors);

3. Next, we drop the legal origin restriction; and

4. Last, we drop the geographical region restriction.

We always keep the assignment to developed or emerging countries until a stock can be

matched to a group containing at least 20 stocks in the same industry. Any cases that can-

not be matched are dropped.

E.2.4 Robust Adjustment

Another concern we address relates to the presence of outliers. Outliers are common among

book-to-market ratios and can potentially affect the ranking across industries based on

Equation (19) because an inflated standard deviation will pull all non-outliers in an industry

toward the median. This already matters when outliers are only present among small

companies because standard deviation is not a robust estimator of scale. The aggregate book-

to-market ratio is more robust to outliers among smaller companies. However, for inter-

national companies, outliers may occur even among large stocks because of lower data qual-

ity for international firms.27 Therefore, we apply robust alternatives for both the standard

27 Of particular concern is the possibility that our data provider has not collected information on all

share classes as multiple classes of common stock occur more frequently among international

stocks compared with US stocks. This would lead to overestimated aggregate book-to-market lev-

els for an industry which would in turn lead to a general underestimation of adjusted book-to-

market ratios for all stocks in the same group.
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deviation and aggregate book-to-market level. Our industry adjustment replaces btm
ðjÞ
t in

Equation (19) with gbtm
ðjÞ
t by trimming stocks that are outliers from the aggregate book-to-

market level and replacing standard deviation with the scale-s estimate of Yohai and Zamar

(1988) while keeping all observations. The industry adjusted book-to-market ratio becomes:

gbtm
ðjÞ
i;t ¼

btm
ðjÞ
i;t �gbtm

ðjÞ
t

sðjÞt

; (E.2)

where

gbtm
ðjÞ
t ¼ ln gBTM

ðjÞ
t

� �
¼ ln

P
kw
ðjÞ
k;tBE

ðjÞ
k;tP

kw
ðjÞ
k;t

0@ 1A� ln

P
kw

jð Þ
k;tME

jð Þ
k;tP

kw
jð Þ

k;t

0@ 1A; (E.3)

with weights

w
ðjÞ
k;t ¼

0 if jbtm
ðjÞ
k;t � l�

ðjÞ
k;tj � cMAD

ðjÞ
k;t

1 otherwise

(
(E.4)

and where MAD is the median absolute deviation from the median l�
ðjÞ
k;t. The trim parameter

c is set to 4.5 which is equal to the trim parameter in the calculation of the s estimate of

scale, for which we follow Maronna and Zamar (2002).28 The advantage of this procedure

is that the aggregate group book-to-market ratio remains unaltered when no outliers are

present while the scale-tau estimator retains high efficiency and consistency for a Gaussian

distribution even in the presence of outliers.

E.2.5 Portfolio Sorts

In order to assign stocks to characteristic-based benchmark portfolios we sort stocks first

on size, then robust industry-adjusted book-to-market ratio, and lastly on momentum.

Importantly, we chose different numbers of splits per region (Table EI). This is especially

important as it guarantees that each portfolio has sufficient securities assigned at any time

and that there are equal amounts of splits according to size, robust industry-adjusted book-

to-market ratios, and momentum within a region. For example, we split North-American

stocks into 125 portfolios (5� 5�5) as in Wermers (2003) but use 27 portfolios (3�3�3)

for the developed Asian-Pacific region, and only 8 portfolios (2�2�3) for EMs Europe be-

cause these regions contain fewer listed companies.

Specifically, we

1. Sort primary securities on size, defined as the market value in June from Datastream in

US dollars. Then, we assign stocks to a number of size portfolios based on their rank

and Worldscope region. For developed markets, we first assign micro-capitalization

stocks below a threshold of 1% of its region’s total aggregate market capitalization to

the lowest size portfolio and assign equal numbers of securities to the remaining size

portfolios based on size rank. For emerging markets, we directly assign securities based

on size rank.

28 We obtain the scale-s estimate from winsorized residuals around a bi-weighted mean as in

Maronna and Zamar (2002, p. 7) and rescale it by a constant factor of approximately 1.04 for con-

sistency with the standard deviation of a normal distribution. Our implementation follows the

normal-consistent estimator in the package “robustbase” for the statistical software R.
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2. Each size portfolio is then subdivided into portfolios based on robust industry-adjusted

book-to-market ratios (Section E.2.2) from the most recent fiscal year-end as of December.

3. Lastly, each of these sub-portfolios is further divided based on the 11-month return

through May of the ranking year.

This ranking procedure is repeated at the end of each June and all the constituents are

reassigned at this point in time. The return of a benchmark portfolio is the value-weighted

return of its constituents (the highest ranked issue of Appendix C1) in local currency.

Appendix F: Details on Recursive Demeaning

The recursive demeaning estimation entails a two-stage estimation procedure. In the first

stage, we regress forward-demeaned fund size, per market, upon its backward-demeaned

version as well as forward-demeaned active industry size. In the second stage, we regress

forward-demeaned trading performance on the fitted values from the first-stage regression

as well as forward-demeaned active industry size.

q
�

f ;t�1 ¼ wm þ qm
1 AIS

m

t�1 þ qm
2 q

f ;t�1
þ tm

ft ; (F.1)

r
�m

ft ¼ bm
1 AIS

m

t�1 þ bm
2 q
��

f ;t�1 þ #m
ft : (F.2)

where �q�f ;t�1 is the fitted value from Equation (F.1). Following Zhu (2018), Equation (F.1)

includes an intercept as a zero intercept restriction imposes the unrealistic assumption that

fund size fluctuates across a constant mean and further decreases goodness of fit. We refer

to this estimator as RD1.

Alternatively, the forward-demeaned fund size variable can be instrumented using lagged

fund size rather than lagged backward-demeaned size (Zhu, 2018). The new estimator,

which we denote by RD2, is based on using fitted values from

q
�

f ;t�1 ¼ wm þ qm
1 AIS

m

t�1 þ qm
2 qf ;t�1 þ tm

ft ; (F.3)

Table EI. Portfolios per region

The table shows the number of portfolios for each sorting step in June used in assigning secur-

ities to portfolios. Portfolio breakdown refers to the number of Size�Book-To-Market �
Momentum splits per region.

Region Portfolio breakdown Total number of portfolios (Avg.)

Developed markets

North America NAM 5�5�5 125 5,075

Europe EUR 5� 5�5 125 4,497

Japan JPN 4� 4�4 64 3,445

Asia-Pacific APA 3� 3�3 27 1,942

Emerging markets

Emerging Asia-Pacific EM_APA 3� 3�3 27 5,034

Emerging Europe EM_EUR 2� 2�2 8 541

Emerging Latin America EM_LAM 2� 2�2 8 521
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The instruments used in RD1 and RD2 are both exogenous because they are uncorrelated

with innovations dated t or later. It is not a priori obvious which of these is the better in-

strument. Therefore, we combine the two in a third estimator, which we denote by RD3,

which is based on the following reduced form:

q
�

f ;t�1 ¼ wm þ qm
1 AIS

m

t�1 þ qm
2 q

f ;t�1
þ qm

3 qf ;t�1 þ tm
ft : (F.4)

As results are consistent across the three estimators, in Table IV we present results using

Equation (F.4) only.

Appendix G: Variance of Optimal Industry Size

Empirically, the optimal industry size in Equation (5) is determined by the estimated coeffi-

cient on decreasing returns to scale and the estimated average gross alpha. Using Equations

(6) and (11), we can express the optimal industry size AIS� as:

AIS� ¼ âg
m

2b̂m

þ 1

2
AISm; (G.1)

where âg
m denotes the average gross alpha per market, AISm is the average size of the active

industry per market, and b̂m is the estimated coefficient measuring decreasing returns to

scale. Conditional upon average industry size, the variance of AIS� is drive by the (co)va-

riances of âg
m and b̂m. Let us denote

varðâg
m; b̂mÞ ¼

vara covab

covab varb

� �
:

Using a Taylor approximation, the variance of Equation (27) is given by

var dAIS
�� �
¼ 1

2b
� ag

2b2

� �
vara covab

covab varb

� � 1

2b
� ag

2b2

0B@
1CA:

This can be written as

var dAIS�
� �

¼ 1

4b2
vara þ

a2
g

4b4
varb �

ag

2b3
covab: (G.2)

Given that bm is estimated using 2SLS after forward-demeaning (producing zero means per

fund/market), it is reasonable to assume it has zero covariance with the level of

average gross alpha. This allows us to estimate the variance of the estimated optimal indus-

try size as

cvar dAIS
�� �
¼ 1

b̂
2

1

4
cvara þ

â2
g

4b̂
2
cvarb

" #
: (G.3)

We use this to determine 95% confidence intervals, where we truncate the lower bound to

zero if a negative value arises. These exceptional cases correspond to regions where an opti-

mal industry size does not make sense and no economically meaningful equilibrium exists,

for example when there are constant returns to scale in combination with a nonzero alpha

on the first dollar.
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