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ABSTRACT: The pancreas is a complex glandular organ in the abdominal
cavity of humans. Pancreatic tissues contain different function regions that
participate in different biological processes. Moreover, pancreatic cells can be
clustered into different types according to their location regions. Cells in
different types are involved in different biological functions as either endocrine
or digestive. In this study, we investigated the gene expression of pancreatic
cells in six types, tried to identify differentially expressed genes among different
cell types, and obtained pancreatic cell biomarkers. In detail, the Monte Carlo
feature selection (MCFS) method was performed on the dataset consisting of
the gene expression of 2282 pancreatic cells. The resulting feature list was
further used in the incremental feature selection method, with the help of a
support vector machine to extract important differentially expressed genes. In
addition, on the basis of the 776 informative features yielded by the MCFS
method, we set up 12 classification rules via Johnson Reducer algorithm and
Repeated Incremental Pruning to Produce Error Reduction algorithm, which can assign cells into six types. We did the
enrichment analysis on obtained differentially expressed genes and extensively analyzed the top 10 differentially expressed genes
and rules via literature reviewing, indicating that the results of this study are quite reliable.

1. INTRODUCTION

The pancreas, a complicated glandular organ in the abdominal
cavity of humans, is a multifunctional organ that contributes to
both digestive and endocrine systems.1,2 Physically, the
pancreas is located in the upper belly behind the stomach
and in front of the spine and can be further divided into four
major subregions: (1) head, (2) neck, (3) body, and (4) tail of
pancreas, which have different organization structures, bio-
logical functions, and anatomical positions.2

For the complicated biological functions of the pancreas in
the endocrine and exocrine systems, the two major biological
functions that the pancreas participates in include endocrine
blood glucose regulation and exocrine pancreatic juice
secretion.3−5 Regulated by a negative feedback mechanism,
the general blood glucose levels are accurately regulated by two
hormones (insulin and glucagon) secreted by the pancreatic
islets of the pancreas.6 For its digestive function, the pancreas
secretes pancreatic juice containing multiple enzymes into the
duodenum and contributes to further digestion of intestinal
food.7 To maintain the general function of these two major
biological processes, two independent systems have been built
in the pancreatic tissues that are involved in different cell
subgroups and potential mechanisms.6 Three subgroups of

cells that participate in the regulation of sugar are located in
the pancreas: (1) cells located in pancreatic islets, including
alpha, beta, pancreatic polypeptide (PP), and gamma cells,
which directly secrete functional hormones, such as insulin and
glucagon;8,9 (2) sympathetic cells, including alpha 2 and beta 2
cells, which contribute to the direct regulation of alpha and
beta cells;10 and (3) parasympathetic cells, including M3 cells,
which also regulate the stimulation of alpha and beta cells.11

These cells contribute to the secretion of specific hormones or
their regulators, making them quite different from digestive
system-associated cells. Digestion-associated biological pro-
cesses are regulated by functional cells filled with granules
containing effective enzymes located all over the pancreatic
tissues, except on the endocrine regions.12

As mentioned above, pancreatic tissues contain different
function regions participating in different biological processes.
Cells located in different regions can be clustered into different
subgroups, which are involved in different biological functions
as either endocrinal or digestive, like the alpha cells in the
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pancreatic islets. Therefore, considering the complicated
biological functions of the pancreas, its cellular component
may be complicated and diverse. Including the stroma and
immune cells in the microenvironment of the pancreas, more
than 10 subgroups of cells are present in this multifunctional
organ.13,14 Each cell subgroup has biological functions
mediated by their respective protein distribution and gene
expression patterns, which may quite vary from the others.
Therefore, protein distribution and gene expression patterns
may be good markers for the distinction of different cell
subgroups. However, traditionally, it is quite hard to recognize
the gene expression profile at the single-cell level, making cell
clustering based on gene expression patterns hard. With the
development of single-cell RNA sequencing technologies, the
identification of detailed gene expression profiling at the single-
cell level has been achieved,15−18 making detailed cell
clustering at the single-cell level possible based on its
transcriptomic characteristics.
In this study, on the basis of single-cell RNA sequencing

technologies, we tried to recognize the expression profiling of
different cell types in pancreatic tissues at the single-cell level.
According to the histological and morphological characteristics
of pancreatic cells, we artificially clustered all candidate cells
into six optimal subgroups: (1) acinar, (2) alpha, (3) beta, (4)
delta, (5) ductal, and (6) mesenchymal cells. Acinar cells, also
known as spindle-shaped duct cells in the exocrine pancreas,
have been widely reported to participate in the formation of
the main pancreatic duct and secrete an aqueous bicarbonate
solution under hormone stimulation.19 Pancreatic alpha cells,
as another functional cell subgroup, have been widely reported
to synthesize and secrete the peptide hormone glucagon,
regulating the glucose levels in blood.20 As for beta cells, such
pancreatic cancer subgroup participate in the storage and
release of insulin, making up 65−80% of the pancreatic islets.21

The delta cells in pancreatic tissues have been widely regarded
as somatostatin-producing cells suppressing the release of
multiple pancreatic hormones including insulin.22 As for the
ductal cells in pancreatic ducts, different from spindle-shaped
acinar cells, such subgroup of cells lines the pancreatic duct
and participates in the maintenance of pH in the pancreatic
duct.23 Mesenchymal cells refer to all the stroma cells in the
pancreatic tissues, participating in the regulation of regional
immune response and the maintenance of the pancreatic
microenvironment.24,25

On the basis of the detailed expression profiling data at the
single-cell level provided by Enge et al.,26 we applied several
machine learning algorithms to identify potential quantitative
and qualitative biomarkers/standards, which can be used for
the distinction of six optimal subgroups of cells. Compared
with previous statistical approaches reviewed by Soneson et
al.,27 the methods used here considered the complex
relationships among genes and optimized the gene selection.
In detail, previous statistical approaches only evaluated the
associations between genes and samples, whereas the machine
learning algorithms can further consider the relationships
among genes. It is believed that we can find more compact
signatures, that is, few genes with the same or better
performance, which were more suitable for biomarkers. The
procedures first applied the Monte Carlo feature selection
(MCFS)28 method to analyze expression profiling data,
producing a ranked feature list according to importance.
Then, the incremental feature selection (IFS)29 method,
together with the support vector machine (SVM),30 was

employed to extract optimal features that yielded the best
performance for SVM to the distinction of six optimal
subgroups of cells. The corresponding genes of optimal
features were accessed, which can be potential biomarkers.
We did the enrichment analysis on these optimal genes and
extensively discussed the top 10 genes to prove the reliability
of our results. On the other hand, the MCFS method produced
776 informative features, on which 12 rules were constructed
via Johnson Reducer algorithm31 and Repeated Incremental
Pruning to Produce Error Reduction (RIPPER) algorithm32 to
classify cells. These rules can give a clearer outline of cells in six
groups and were further extensively analyzed. This study not
only can contribute to the identification of potential
biomarkers for each cell subgroup but can also help reveal
cell subgroup-specific biological processes, drawing a panorama
for the complicated tissue components in pancreatic tissues.

2. RESULTS
In this study, we tried to analyze the gene expression profiles of
six subgroups of cells of the human pancreas. To do that,
several advanced computational methods, including MCFS,
IFS, SVM, RIPPER, and Johnson Reducer algorithm, were
employed. The whole procedures are illustrated in Figure 1.

2.1. Results of MCFS Method. According to Figure 1, the
MCFS method was applied on the gene expression profiles of
pancreatic cells in six subgroups. The importance of each
feature (gene) was evaluated by an RI score. Then, a feature
list F was obtained, in which all features were ranked according
to descending RI scores, which are provided in Table S1.

2.2. Results of IFS Method with SVM. In the feature list
F, the rank of each feature can indicate its importance.
However, it is difficult to determine which features can be

Figure 1. Procedures of investigating pancreatic cells in six subgroups
via several machine learning algorithms. First, all pancreatic cells were
represented by the expression levels of 23,459 genes. Second, the
Monte Carlo feature selection (MCFS) method was adopted to
analyze these features (genes), resulting in a feature list. Then, for the
obtained feature list, on the one hand, we employed the incremental
feature selection (IFS) method and support vector machine (SVM) to
extract differentially expressed genes and construct an optimal SVM
classifier; on the other hand, the informative features (some top
features in the list) were picked up to produce classification rules via
Johnson Reducer algorithm and Repeated Incremental Pruning to
Produce Error Reduction (RIPPER) algorithm.
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optimal for a given classification algorithm. To this end, the
IFS method combined with a multiclass SVM was employed,
which would be introduced in Sections 4.2 and 4.3. To save
time, the IFS method was divided into two stages. In the first
stage, the IFS method was used to construct a series of feature
subsets with step 10; that, F10, F20,...,F23450 were constructed,
where Fi contained top i features in F, and i was a multiple of

10. Then, SVM was adopted to test each feature subset; that is,
SVM was executed on all cells that are represented by features
in the feature subset. The predicted results were counted as
accuracies for each type, ACC and MCC, which are available in
Table S2. For easy observation, we plotted a curve in Figure
2A, in which the x axis represents the number of features
participating in the classification and y axis represents the

Figure 2. IFS curves to illustrate the classification performance of SVM classifiers by using different feature subsets. The x axis represents the
number of features participating in the classification, and the y axis represents the MCC value. (A) IFS curve based on the top multiple of 10
features in the list yielded by the MCFS method. High MCC values (no less than 0.966) were gathered in the interval [560, 660]. (B) IFS curve
based on the feature subsets consisting of the top 560−660 features in the feature list yielded by the MCFS method. Using the top 655 features, the
highest MCC of 0.967 was accessed.

Figure 3. Bar chart to illustrate the performance of the optimal SVM/NNA classifier on each cell subgroup. The optimal SVM classifier yielded six
accuracies higher than 0.9, indicating the effectiveness of this classifier. Also, it is a bit superior to the optimal NNA classifier.
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MCC. This curve first follows a sharp increasing trend and
then follows a decreasing trend upon reaching its maximum.
The maximum MCC was 0.966 when the top 610, 660, or 650
features were used to represent cells, which were the only
points to reach 0.966. To further determine the number of
features in the optimal feature set, we yielded a number
interval [560, 660], in which a feature set may yield a better
performance. Thus, in the second stage, we tested all possible
feature subsets in this interval. In detail, we generated a series
of feature subsets with step 1 within the interval [560, 660],
and SVM was performed on all cells represented by the
features in each subset. The predicted results were also
counted as accuracies for six types, ACC and MCC, which are
listed in Table S3. To clearly exhibit the performance of SVM
on these feature subsets, a curve was plotted in Figure 2B,
which was defined as the same as that in Figure 2A. Clearly,
when the top 655 features in F were used, the MCC first
reached a maximum of 0.967. Accordingly, these features were
called optimal features for SVM and comprised the optimal
feature set. The SVM constructed based on them was the
optimal SVM classifier. The performance of the optimal SVM
classifier on each cell type is illustrated in Figure 3. The

accuracies for all types were all higher than 0.9, and the ACC
was 0.976. In addition, we also computed the MCC for each
subgroup, listed in Table 1, from which we can see that each
MCC was higher than 0.940. All of these indicate the good
performance of this classifier. The largest subgroup contained
998 cells, and the smallest one consisted of 53 cells, meaning
that the investigated dataset was imbalanced. Generally, the
predicted results would be apt to subgroups with large sizes.
However, according the accuracies in Figure 3 and MCCs in
Table 1, they were all quite high (larger than 0.9), suggesting
that this fact did not affect the results a lot in this study.

2.3. Comparison of IFS Method with NNA. In this
study, we selected the SVM as the classification algorithm and
constructed an optimal SVM classifier with good performance
(MCC = 0.967). Here, we employed another classification
algorithm, nearest neighbor algorithm (NNA), for comparison.
The same procedures for SVM were applied to NNA. First, for
each of feature sets F10, F20,...,F23450, the NNA was executed on
all pancreatic cells represented by features in each of these sets.
The results were counted as accuracies for each subgroup,
ACC and MCC, which are available in Table S4. Similarly, we
plotted an IFS curve in Figure 4A with the same settings in

Table 1. MCC of Each Subgroup Yielded by the Optimal (Support Machine Vector) SVM Classifier and Nearest Neighbor
Algorithm (NNA) Classifier

classification algorithm acinar cell alpha cell beta cell delta cell ductal cell mesenchymal cell

SVM 0.979 0.956 0.954 0.948 0.986 0.981
NNA 0.976 0.966 0.956 0.974 0.964 0.951

Figure 4. IFS curves to illustrate the classification performance of NNA classifiers by using different feature subsets. The x axis represents the
number of features participating in the classification, and the y axis represents the MCC value. (A) IFS curve based on the top multiple of 10
features in the feature list. The highest MCC is 0.962 when the top 90 features are used. We determine the interval as [1, 200]. (B) IFS curve based
on the feature subsets consisting of the top 1−200 features in the feature list. Using the top seven features, the highest MCC of 0.966 was obtained.
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Figure 2A. It can be observed that the maximum MCC was
0.962 when the top 90 features were used. Thus, we
determined the interval as [1, 200] to perform the second
stage of the IFS method. The predicted results are also
provided in Table S4, and the IFS curve is plotted in Figure
4B. The highest MCC was 0.966 when the top seven features
were used to construct the classifier. Accordingly, for NNA,
these seven features were optimal features based on which
optimal NNA classifier was built. The detailed performance,
including accuracies for six subgroups, of such optimal NNA
classifier is shown in Figure 3, and the MCC for each subgroup
is listed in Table 1.
The optimal NNA classifier yielded the MCC of 0.966,

which was a bit lower than that of the optimal SVM classifier.
For six accuracies of the six subgroups (Figure 3), the optimal
SVM classifier provided higher values on four subgroups, and
the optimal NNA classifier yielded higher accuracies on the
other two subgroups. For the MCCs of six subgroups (Table
1), each optimal classifier defeated the other one on three
subgroups. Considering the fact that the optimal SVM classifier
yielded a higher MCC (in multiclass), we considered that the
optimal SVM classifier was a bit superior to the optimal NNA
classifier.
2.4. Results of Rule Learning. As mentioned above, the

optimal SVM classifier can yield good performance for
classifying pancreatic cells into six subgroups. However, it
was totally a black box. It is quite difficult to uncover its
classification procedures, thereby giving limited insights for
understanding the gene expression differences of pancreatic
cells in different subgroups. Thus, the Johnson Reducer
algorithm and RIPPER algorithm were adopted to extract
classification rules using the 776 informative features yielded
by the MCFS method. Here, we obtained 12 classification
rules, listed in Table 2, via above-mentioned algorithms that
are integrated in the program of the MCFS method used in
this study. We also calculated the support and accuracy of each
rule, which are also listed in Table 2. All rules except rule-11
received the accuracies higher than 0.9, indicating the utility of
these rules. In addition, to evaluate the performance of the
rules yielded by Johnson Reducer algorithm and RIPPER
algorithm on informative features, the 10-fold cross-validation
was executed thrice, yielding an ACC of 0.965. The confusion
map is shown in Figure 5. We also counted the MCC
(multiclass version) of the predicted results, yielding an MCC
of 0.923. Although it is lower than that obtained by the optimal

SVM classifier, it can give a clear procedure of classification
and provide a clearer outline of the differences between cells in
different subgroups.
In addition, to further test the utility of above-mentioned

rules, we employed an independent test dataset that was
retrieved from https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE73727.33,34 In this dataset, mesenchymal cells
were not included. There were 11 acinar cells, 18 alpha cells,
12 beta cells, 2 delta cells, and 8 ductal cells. The whole dataset
is provided in Supplementary Data S1. Because the gene TRY6
was not measured in this dataset and one cell type
(mesenchymal cells) was not included, we discarded rule-1
(for mesenchymal cells) and rule-10 (using TRY6) and used
the remaining 10 rules to predict the cell type of each cell in
such dataset. As a result, 47 cells were correctly predicted,
inducing the ACC of 92.16%. In detail, the accuracies for five
cell types were 63.64, 100, 100, 100, and 100%, respectively.
The MCC was 0.901. All these results indicate that the
constructed rules also provided good performance on such
independent test dataset, implying the good generalization of
these rules.

Table 2. Twelve Classification Rules Yielded by Johnson Reducer Algorithm for Classifying Cells into Different Subgroups

rule tag condition outcome supporta accuracyb

rule-1 SPARCL1 ≥ −0.075 CRISPLD2 ≥ −0.089 mesenchymal cell 0.023 1.000
rule-2 SST ≥ 0.363 delta cell 0.037 0.940
rule-3 SST ≥ 0.126 delta cell 0.038 0.943
rule-4 INS ≥ −0.220 beta cell 0.156 0.946
rule-5 INS ≥ −0.357 CALM1 ≤ −0.601 CADPS ≥ −0.258 beta cell 0.017 0.921
rule-6 CFTR ≥ −0.305 ANXA4 ≥ 0.136 ductal cell 0.145 0.994
rule-7 TFPI2 ≥ −0.216 SPINK1 ≤ −0.349 CHGB ≤ −0.491 ductal cell 0.131 0.930
rule-8 TINAGL1 ≥ 0.617 ductal cell 0.067 0.928
rule-9 PROM1 ≥ −0.174 ALDH1A1 ≤ −0.595 ductal cell 0.026 0.950
rule-10 TRY6 ≥ −0.295 acinar cell 0.189 0.940
rule-11 LGALS3 ≥ −0.204 acinar cell 0.226 0.298
rule-12 other conditions alpha cell 0.433 0.992

aSupport is defined as the proportion of all samples satisfying the condition. bAccuracy is defined as the proportion of the corrected classified
samples among those satisfying the condition.

Figure 5. Confusion matrix for 10-fold cross-validation by using the
12 classification rules listed in Table 2 for classifying cells into six
subgroups. The numbers were pooled from running 10-fold cross-
validation thrice. The row represents the actual cell subgroup, and the
column indicates the predicted cell subgroup.

ACS Omega Article

DOI: 10.1021/acsomega.8b02171
ACS Omega 2019, 4, 6421−6435

6425

http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b02171/suppl_file/ao8b02171_si_001.pdf
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73727
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73727
http://dx.doi.org/10.1021/acsomega.8b02171


3. DISCUSSION
In this study, we applied several advanced computational
methods to analyze the gene expression profile of pancreatic
cells in six subgroups. Several optimal features (genes) and an
optimal classifier were obtained. In addition, 12 classification
rules were generated. In this section, some of the obtained
genes and classification rules were extensively analyzed and
discussed.
3.1. Analysis of Optimal Differential Expression

Genes. A total of 655 features were used to construct the
optimal SVM classifier. To test the statistical significance of
these features, we produced 1000 feature sets. Each set
contained 655 features that were randomly selected from all
features. For each set, an SVM classifier was built, and its
performance was evaluated with 10-fold cross-validation.
Accordingly, we accessed 1000 MCCs (multiclass version). A
box plot was drawn in Figure 6 to show these MCCs. The

MCC produced by the optimal SVM classifier was 0.967. It can
be observed from Figure 6 that such value was much higher
than 1000 MCCs on randomly produced sets. In addition, the
mean and standard deviation of 1000 MCCs were 0.797 and
0.030, respectively, indicating that 0.967 was higher than the
mean plus 5.6 standard deviations. It is suggested that 655
optimal features for SVM were statistically significant. It was
helpful to uncover gene expression differences between cells in
six subgroups by analyzing these features.
3.1.1. Enrichment Analysis on Optimal Features. Before

detailed analysis of some optimal features (genes), we first
presented a gene ontology (GO) and KEGG pathway
enrichment analysis on 655 optimal genes (Table S5). These
optimal genes may represent the specific expression pattern of
their respective cell subgroups and probably contribute to the
cell-specific biological processes. Here, we selected typical GO

terms or KEGG pathways for detailed discussion, which
reflected the specific biological functions of one or more cell
subgroups.
A specific GO, describing the molecular function of

glycosaminoglycan binding (GO: 0005539) with a false
discovery rate (FDR) of 9.74 × 10−9, was enriched by optimal
genes. As we all know, according to recent publications,35,36

glycosaminoglycan binding has been reported to participate in
multiple physical biological processes, and the abnormal
regulation of such molecular function may result in malignant
transformation of pancreatic cells.37 Therefore, the regulation
of such molecular function may be quite significant for
pancreatic physical metabolism, and it is quite reasonable to
enrich the optimal genes into such molecular function. Apart
from that, the top six GO terms (GO: 0044421, GO: 0005615,
GO: 0005576, GO: 1903561, GO: 0043230, and GO:
0070062) of the cellular component all turn out to describe
the extracellular matrix and their interactions’ contribution on
the physical function enrichment. According to recent
publications, both the internal secretion and external secretion
of the pancreatic tissues can identify specific extracellular
structures,38,39 making such six extracellular items to enrich
abundant optimal genes. Besides, a specific GO term in the
biological process, tube development (GO: 0035295), was also
enriched by optimal genes. Considering the complicated duct
structure and cellular component of pancreatic tissues,40,41 it is
quite reasonable to enrich multiple duct cell-associated genes
in such GO term, reflecting the specific biological functions of
such cell subgroup.
For KEGG pathways, a specific pathway named pancreatic

secretion (hsa04972) has been identified with an FDR of 3.14
× 10−15. The secretion of pancreatic tissues, either internal or
external, may be quite significant and involve certain subtypes
of cells. Therefore, it is no doubt that the optimal genes may
enrich in such biological pathway.
As mentioned above, the optimal genes enriched several GO

terms and KEGG pathways that may reflect a specific a
biological function for a specific cell subtype, confirming that
these genes were quite essential for depicting the differences
between pancreatic cells in different groups.

3.1.2. Analysis of Most Important Optimal Features. In
this study, we obtained 655 optimal features. However, it is
impossible to analyze the biological importance of each feature.
By carefully checking the predicted results of SVM, we found
that the MCC reached 0.874 when the top 10 features were
used. Thus, we only analyzed the top 10 feature genes, which
are listed in Table 3. The heat map of these 10 genes is shown

Figure 6. Box plot to illustrate the distribution of MCCs yielded by
SVM classifiers on 1000 randomly produced feature sets. Each feature
set contained 655 features. The optimal SVM classifier built on the
top 655 features produced the MCC of 0.967. Clearly, these 655
features are statistically significant because they can generate the
MCC much higher than MCCs shown in the box plot.

Table 3. Top Genes in the Feature List Yielded by MCFS
Method

rank gene symbol RI

1 SST 7.20 × 10−1

2 INS 7.04 × 10−1

3 PCSK1N 6.77 × 10−1

4 CPA2 6.63 × 10−1

5 REG1A 6.27 × 10−1

6 GCG 6.21 × 10−1

7 DCN 6.06 × 10−1

8 TTR 6.03 × 10−1

9 SCG5 5.82 × 10−1

10 TRY6 5.71 × 10−1
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in Figure 7, from which we can see that PCSK1N, GCG, TTR,
and SCG5 were expressed in alpha cells, TRY6, CPA2, and

REG1A were expressed in acinar cells, INS was expressed in
beta cells, SST was expressed in delta cells, and DCN was
expressed in mesenchymal cells.
The top gene that may have a differential expression pattern

in six cell subgroups was SST. Produced by encoding
somatostatin, a functional inhibitory hormone, SST is a
significant regulator interacting with multiple hormones of
the gastrointestinal tract, including insulin42 and glucagon.43

For its differential expression patterns in six cell subgroups, it is
highly expressed in the brain, gut, and delta cells in the
pancreas,42 implying its potential as a biomarker to distinguish
pancreatic delta cells from the other candidate cells.
The next gene was INS, which is produced by encoding

insulin. Insulin has recently been confirmed to be secreted by
beta cells in the pancreas.44−46 Therefore, as a transcriptomic

marker, it may have a higher expression level in beta cells
compared with the other five cell types.
The third gene, PCSK1N, encodes an inhibitor of

prohormone convertase 1 and participates in the regulation
of the proteolytic cleavage of neuroendocrine peptide
precursors as the downstream of functional gene PAX6.47

Considering that PAX6 is the core regulator that contributes to
the differentiation of pancreatic alpha, beta, and delta cells,
PAX6 may have a specific expression pattern in such three
subgroups of cells.48 Therefore, PCSK1N, as the downstream
of PAX6, may also have its specific expression level under the
control of PAX6 in pancreatic alpha, beta, and delta cells,
distinguishing such three subgroups of cells from cells in the
other subgroups.47

Pancreatic specific carboxypeptidase A2 is encoded by the
fourth gene, CPA2, which is a potential biomarker for cell
clustering and recognition. As a member of the pancreatic
carboxypeptidase family, such gene has a higher expression
pattern in the exocrine regulatory cells (acinar and ductal cells)
and mast cells,49−51 distinguishing such cells from the other
endocrine regulatory cells.
The fifth gene was REG1A, a type I subclass member of the

Reg gene family, encoding an exocrine pancreas-secreting
protein.52 For its differential expression pattern in the six cell
subgroups, considering that genes from the REG family
contribute to the regeneration of pancreatic islet cells,53−55

such gene may have a differential expression pattern in cells
from endocrine regions (alpha, beta, and delta cells) compared
with the other pancreatic cells.
The sixth gene, GCG, encodes glucagon, the antagonist of

insulin.56 Such hormone is also only secreted by a specific type
of cells, alpha cells in the pancreas.20,57−59 Therefore, similar to

Figure 7. Heat map of the top 10 genes in six subgroups.

Figure 8. Rule networks for 12 classification rules generated by Ciruvis.70
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when INS encodes insulin, such gene encoding glucagon can
also tell the differences between the six cell subgroups at the
transcriptomic level.
The seventh gene is DCN, encoding a small leucine-rich

proteoglycan protein named decorin.60,61 As for its cell
subgroup-restricted expression patterns, the protein it encodes
is a extracellular matrix regulator secreted by mesenchymal
cells in the microenvironment of physical or pathological
pancreas, implying that such gene may have differential
expression pattern in mesenchymal cells.60−62

The eighth gene, named TTR, has also been confirmed to
contribute to the regulation of glucose metabolism, a quite
essential biological function of pancreatic endocrine re-
gions.63,64 This gene may directly be involved in an insulin-
mediated glucose regulatory approach64,65 and has quite a
specific expression pattern in pancreatic alpha cells compared
with the other cell subgroups.66

The ninth gene, SCG5, encodes a specific chaperone protein
that prevents the aggregation of other secreted proteins.67 For
its differential expression pattern in the six cell subgroups, it
contributes to prohormone processing and insulin exocytosis
in the pancreas.68 Therefore, it has a quite higher expression
level in beta cells compared with other cell subgroups.
The last gene in the top 10 optimal genes, TRY6, also

participates in the cleavage of functional peptides, similar to
PCSK1N, and may directly regulate cell migration in the
pancreas.69 Furthermore, it contributes to the regulation of
glucose metabolism by interfering with the biological function
of beta cells in the pancreas,69 indicating its specific expression
pattern in this cell subgroup.
According to the above analysis, all top 10 genes in the

optimal feature set have a differential expression pattern in the
six cell subgroups. These genes may not only be potential
biomarkers for pancreatic cell subtyping but may also
contribute to the disclosure of the potential functional
characteristics and distributions of pancreatic cellular compo-
nents. Studies on the rest of the genes were left to the readers.
3.2. Analysis of Classification Rules. Aside from

extracting important genes for distinguishing cells in the six
subgroups, we also obtained 12 classification rules (listed in
Table 2) for accurate recognition and clustering of pancreatic
cells according to their specific expression patterns at the
single-cell level. A rule network of these rules was plotted by
Ciruvis,70 as shown in Figure 8, from which it is easy to
observe the internal interactions among the components of
some rules and potential crosstalk between different rules.
Genes INS, CADPS, and CALM1 have a relative expression
pattern and may interact with each other in physical
conditions.71,72 According to recent publications,71,72 such
speculation can be confirmed, forming a functional relatively
“loop”. Apart from that, similar “loops” constructed by some
genes may also hide under the complicated quantitative
interaction-based rules. Therefore, it can be implied that these
quantitative rules may not only provide a novel way for
accurate identification of complicated cell subtypes in the
pancreas but also reflect the inner interaction relationship
between some essential genes.35−41 In addition, 16 genes were
involved in the constructed rules. We plotted a heat map of
them, as shown in Figure 9. It can be seen that the cell types
with large sample sizes including acinar, alpha, beta, delta, and
ductal cells were well clustered. Mesenchymal cells formed a
small cluster and mixed with other scattered cells.

In the following text, we would analyze rules one by one.
According to recent publications, either all rules can be
precisely obeyed or the tendency can be predicted, validating
the reliability of our results.
Only one rule (rule-1) contributes to the identification of

mesenchymal cells, which used two functional genes:
SPARCL1 and CRISPLD2. On the basis of this rule, if both
genes are expressed in the objective cell, then the candidate cell
is a mesenchymal cell. SPARCL1 participates in the
maintenance of mesenchymal status.73 Considering that only
mesenchymal cells have a mesenchymal status among the six
cell subgroups, it is quite reasonable to build such SPARCL1-
related rule for cell subtyping. Apart from SPARCL1,
CRISPLD2 is a secondary parameter for the recognition of
mesenchymal cells. This gene encodes a specific mesenchymal
secretory protein,74 indicating that among the six cell
subgroups, only mesenchymal cells can have an optimal higher
expression level on such gene, corresponding with this rule.
Thus, the combined application of such two mesenchymal cell-
specific markers may be quite effective and accurate for the
identification of mesenchymal cells in the pancreas.
The second and third rules (rule-2 and rule-3) both

contribute to the identification of pancreatic delta cells. It is
worth noting that these two rules were all based on SST. As
analyzed in Section 3.1, SST is highly expressed in delta cells of
the pancreas.42 As for the detailed threshold, according to a
recent RNA sequencing publication involving the expression
profiling of pancreatic cells provided by the GEO database,75

the expression levels of SST in multiple cells, except in delta
cells, are lower than 0.1 FPKM, partly validating the
reasonability of these two rules.
The fourth and fifth rules (rule-4 and rule-5) contribute to

the recognition of pancreatic beta cells. Both rules involve INS
as the common gene. It encodes insulin, which is a quite
significant marker for pancreatic beta cells, corresponding with
both the threshold and alternative tendency.44−46 Apart from
INS, the lower expression level of CALM1 and the higher
expression level of CADPS contribute to the identification of
pancreatic beta cells. CALM1 is lowly expressed in the pancreas
and only upregulated during the initiation and progression of
pancreatic cancer.71 Therefore, its low expression level
(≤−0.601) may correspond with the exact expression profiling
of pancreatic beta cells. As for CADPS in rule-5, it is highly
expressed in pancreatic beta cells, mediating the calcium-
dependent secretion of insulin.76,77 Considering the calcium-
dependent insulin secretion mechanisms and core contribution
of CADPS on calcium-dependent secretion, it is quite

Figure 9. Heat map of 16 genes that were used to construct
classification rules in six subgroups.
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reasonable to summarize that it may have a quite proper
expression level in pancreatic beta cells.
The next four rules (rule-6, rule-7, rule-8, and rule-9)

contribute to the identification of pancreatic ductal cells. Eight
genes were used to construct these rules for quantitatively
identifying pancreatic ductal cells at the single-cell level. In
rule-6, the high expression levels of CFTR and ANXA4 are
deemed enough for cell subtype clustering. According to a
recent publication,78 the high expression level of CFTR
contributes to the regulation of the ductal electrolyte and
fluid transporters in the pancreas, indicating its specific
expression pattern in ductal cells. Apart from CFTR, ANXA4
encodes a calcium-dependent phospholipid binding protein,
which is highly expressed in pancreatic ductal cells,
corresponding with this rule.23 In rule-7, three genes were
involved. TFPI2 encodes a specific inhibitor of the Kunitz-type
serine proteinase and contributes to the malignant proliferation
of only pancreatic ductal cells rather than the other pancreatic
cells.79 Different with TFPI2, in pancreatic ductal cancer, the
expression levels of SPINK1 and CHGB are both quite
low,80−82 corresponding with this rule. Therefore, the high
expression level of TFPI2 and low expression levels of SPINK1
and CHGB may contribute to the identification of pancreatic
ductal cells. The next rule (rule-8) was constructed using
TINAGL1, which encodes a specific protein similar to
tubulointerstitial nephritis antigen. This gene has been
identified in the pancreas, especially in the pancreatic ductal
tissue, where the pancreatic ductal adenocarcinoma is
derived.83 Therefore, its high expression level (≥0.617) may
also be a quantitative marker for pancreatic cell subtyping. For
the last rule (rule-9) for pancreatic ductal cell identification,
the high expression level of PROM1 and low expression level of
ALDH1A1 have both been confirmed in normal pancreatic
ductal cells according to recent studies84−86 on gene expression
profiling of pancreatic ductal cells under physical or
pathological conditions, validating its reasonability.
Two rules (rule-10 and rule-11) were built for the

identification of acinar cells. The high expression levels of
TRY6 and LGALS3 contribute to the identification of acinar
cells. As analyzed in Section 3.1, TRY6 has a differential
expression pattern in different cell subgroups.69 Its high
expression level indicates that our objectives may be
functionally associated with exocrine regulatory cells (sugar
metabolism regulation) but not with endocrine regulatory
cells.69 Therefore, such expression pattern may distinguish the
remaining two subgroups of cells: acinar and alpha cells
(endocrine regulatory cells). Similarly, the remaining rule
restricted by LGALS3 contributes to acinar cell identification.
Galectin-3, which is encoded by LGALS3, directly contributes
to the regulation and maintenance of normal cell biological
processes in pancreatic exocrine acinar cells.87,88 Finally, cells
that do not fit with all aforementioned rules can be clustered
into pancreatic alpha cells.
As analyzed above, the reasonability of all classification rules

can be confirmed by recent publications. Combining the
important genes analyzed in Section 3.1, the identified
markers, either quantitative or qualitative, may not only
contribute to the accurate recognition of complicated cell
components in the pancreas at the single-cell transcriptome
level but also provide a new tool for the disclosure of detailed
biological functions of each cell subgroup and the molecular
mechanisms in the pancreas under either physical or
pathological conditions.

3.3. Comparison of Our Identified Pancreatic Markers
at Single-Cell Level with Previous Studies. With the
development of single-cell RNA sequencing technologies and
related computational approaches,27 various studies33,89−92

have contributed to the identification of cell type-specific
expression markers at single-cell resolution. In these studies,
some biomarkers have already not only been identified but also
been confirmed by the following experiments. Comparing the
pancreatic cell biomarkers identified by such previous studies
with those identified via our computational approach, several
biomarkers identified in this study were also reported in these
previous studies, partly validating the efficacy and accuracy of
our approach.
Early in 2015, specific biomarkers such as INS, REG1A, and

SST have already been identified as specific biomarkers for a
certain subgroup of normal pancreatic cells, corresponding
with our prediction.33 However, such study only revealed some
expression patterns of certain cell subtypes and did not try to
distinguish such cell subgroups with quantitative rules.
Following such study, another similar study89 revealed the
detailed cell components of pancreatic tissues and their
subtype-specific biomarker genes. In this study, with the
application of SORT-Seq (SOrting and Robot-assisted Tran-
scriptome SEQuencing), researchers identified various cell
type-specific biomarkers at the single-cell transcriptomic level.
Genes such as INS and SST have been directly confirmed to be
expressed in beta and delta cells, respectively, which also
corresponds with our results. However, for each cell subtype,
such study identified more than 20 biomarkers, which no
doubt indicate huge redundancy. The third study90 provided
by Baron et al. also contributed to the identification of the
pancreatic population structure at the level of single-cell
transcriptome. For the first time, they not only focused on the
pancreatic tissue cells such as alpha and beta cells but also paid
attention to related immune cells and functional myeloid cells
in the microenvironment. Compared with our results, in such
study, they only used one biomarker for the clustering of each
cell subtype, such as INS in beta cells. Such identified
biomarkers, such as INS, SST, and CPA1, have all been
predicted and screened out in our study.90 Using more
biomarkers for one cell subtype may further improve the
efficacy and accuracy. Further in 2016, the study91 presented
by Segerstolpe et al. compared the single-cell expression
profiling in physical and pathogenic conditions. In such study,
specific biomarkers for alpha, beta, and acinar cells have also
been identified. Comparing such results with our results,
various biomarkers have also been shared, such as GCG, INS,
and SST. Similar with Segerstolpe et al.’s study, in 2017,
Lawlor et al.92 further compared the specific biomarkers for
pancreatic cell subgroups at the single-cell level under either
physical or pathological (type 2 diabetes) conditions, sharing
similar biomarkers for pancreatic alpha, beta, and gamma cells
with our results.
As mentioned above, compared with previous studies,

several biomarkers reported in our study were consistent
with those in previous experiment-based studies. However, for
the first time, we presented a quantitative analytic approach for
pancreatic cell subtyping, filling the gap for previous qualitative
analysis.

4. MATERIALS AND METHODS
4.1. Datasets. We downloaded the single-cell RNA-seq

data of the human pancreas from the Gene Expression
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Omnibus (GEO) database under accession number
GSE81547.26 There were 2282 cells from six known cell
subgroups: (1) acinar, (2) alpha, (3) beta, (4) delta, (5)
ductal, and (6) mesenchymal cells. The number of cells in each
subgroup is listed in Table 4. For each cell, the expression

levels of 23,459 genes were measured with RNA sequencing.
The purpose of this study was to identify the genes that were
differentially expressed among different cell types and obtain
the pancreatic cell biomarkers.
4.2. Feature Selection Method. As mentioned in Section

4.1, each cell was represented by the expression profiling data.
To analyze these data, we applied a two-step feature selection
procedure to identify discriminate genes associated with the six
subgroups of cells.
First, the MCFS method was applied to analyze the

expression profiling data.28 As mentioned in Section 4.1,
there were 2282 cells, and each cell was represented by 23,459
features, meaning that we had to deal with a dataset with high
dimensionality and small sample size. As elaborated by
Draminski et al.28 and confirmed in some studies,93−95 the
MCFS method is good at analyzing this type of dataset and
capturing essential information. Thus, it is quite proper to deal
with expression profiling data. To date, it has been applied to
tackle several biological problems.93−101 MCFS is a supervised
feature selection method, which grows multiple decision trees
from bootstrap samples and feature subsets with m features
that are randomly selected from N original features (m ≪ N).
Its brief description is as follows, and the detailed introduction
can be seen in Draminski et al.’s study.28

1. t feature subsets with m features are randomly generated
from original N features.

2. For each feature subset, p decision trees are grown from
p bootstrap training sets, whose samples are represented
using the features in this feature subset.

3. Step 2 is repeated for the remaining t − 1 feature
subsets.

4. In total, we obtain p × t decision trees.

To yield the importance of each input feature, relative
importance (RI) is defined according to how a feature is
involved in each constructed decision tree classifier. The more
frequent the feature is involved, the higher the RI score of this
feature is.
On the basis of the derived RI scores for all features, a

feature list with decreasing RI scores can be obtained, which is
formulated as

= [ ]F f f f, , ..., N1 2 (1)

where N is the number of features used in this study. Here, the
program of the MCFS method was retrieved from http://
www.ipipan.eu/staff/m.draminski/mcfs.html (dmLab, version

2.1.1). For convenience, we used its default parameters. In
detail, two regular factors, u and v, were all set to 1.0.
Second, the IFS29 method was further used to select

discriminate features with the help of a supervised classifier.
The original IFS method always tests all possible feature
subsets, thereby extracting the most important features.
However, 23,459 features were considered in this study, and
the possible feature sets are too many, causing us to require a
large amount of time to complete the test tasks due to our
limited computational power. Here, we applied a two-stage IFS
method. In the first stage, a series of feature subsets with step
10 were picked up, and a classifier was employed to test them
one by one, inducing a possible number range where the most
important feature set may be located. In the second stage, all
feature subsets with step 1 in this range were further tested by
the selected classifier, and the feature subset that can yield the
best performance can be obtained. The obtained feature subset
was called the optimal feature set, and features in this set were
termed optimal features. In addition, the classifier based on the
optimal features was named the optimal classifier.

4.3. Support Vector Machine. SVM is a widely used
supervised classifier based on the statistical learning theory; it
finds a hyperplane with a maximum margin between samples in
two different classes. SVMs are applied in many biological
problems for both binary and multiclass classification.93,102−107

For nonlinear data, the kernel trick is used to map the data in a
nonlinear, low-dimensional space to a linear, high-dimensional
space. For multiclass classification, the “One Versus the Rest”
strategy is adopted that trains C binary SVM classifiers for C
classes, where each classifier is trained using the samples of that
class as positives and samples from other classes as negatives.
To quickly implement the SVM, we adopted a tool “SMO”

in Weka,108 a suite of software collecting a large number of
widely used machine learning algorithms and data process
tools. This tool implements the SVM optimized by sequential
minimum optimization (SMO).109 For convenience, it was
executed using its default parameters. In detail, the kernel was
set to be a polynomial function, and tolerance parameter was
set to 0.001.

4.4. Rule Learning. As mentioned in Section 4.2, the
MCFS method can evaluate the importance of each feature
using the RI score. Furthermore, it can select some features
with highest RI scores, that is, some top features in list F, as
informative features. The critical value for picking up
informative features is determined by a permutation test on
class labels and a following one-sided Student’s t-test.110

Features with RI scores larger than such critical value are
deemed informative features, which are considered to be
essential for the classification problem.
On the basis of obtained informative features, some

classification rules can be extracted, which can give a clear
picture for classifying a given pancreatic cell into six subtypes,
thereby improving the comprehension on differences of cells in
different subtypes. To do that, the Johnson Reducer
algorithm31 was first applied on informative features to
produce a reduced feature set that contained most important
informative features and can produce similar classification
ability compared with using all informative features. Then, a
rule learning algorithm, RIPPER,32 was adopted to generate
classification rules using features in the reduced set. Rules
yielded by the RIPPER algorithm always contain two parts: (1)
conditions and (2) outcome. For instance, IF Gene1 ≤ 0.125
AND Gene2 ≥ 3.102 THEN Acinar cell. The “Gene1 ≤ 0.125

Table 4. Number of Cells in the Six Subgroups

cell type number of cells

acinar cell 411
alpha cell 998
beta cell 348
delta cell 83
ductal cell 389
mesenchymal cell 53
total 2282
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AND Gene2 ≥ 3.102” was the condition, and “Acinar cell” was
the outcome. Fortunately, the program of the MCFS method
also integrated the above procedures; that is, it can further
produce the classification rules besides evaluating the
importance of features. The obtained classification rules
would be directly used in this study to uncover the gene
expression differences on pancreatic cells in the six subtypes.
4.5. Performance Measurement. In this study, the 10-

fold cross-validation strategy93,96,98,104,105,111−116 was used to
evaluate the performance of trained multiclass classifiers. In
this strategy, all samples are randomly and equally divided into
10 sets. The procedures contain 10 rounds. In each round,
samples in one set are deemed test samples, and the others are
used to train the classifier. After 10 rounds, each sample is
tested exactly once. By collecting and counting the predicted
class of each sample, several measurements are obtained to
quantify the performance of the classifier. This evaluation
strategy is more popular than the jackknife test117,118 because it
can save a large amount of time and yield similar results.
As mentioned in Section 4.1, six subgroups of cells were

considered. For the predicted results yielded by a classifier, we
can compute the prediction accuracy for each subgroup, which
is defined as the proportion of correctly predicted cells and all
cells in one subgroup. In addition, the overall accuracy (ACC)
can be calculated by

=
∑

∑
=

=

C

N
ACC i i

i i

1
6

1
6

(2)

where Ci represents the number of correctly predicted cells,
and Ni denotes the total number of cells in the ith subgroup.
In addition, on the basis of the subgroup sizes listed in Table

1, the dataset was imbalanced. The largest group had 998 cells,
whereas the smallest group had 53 cells. In this case, the ACC
cannot indicate the performance of a classifier on the whole.
Thus, we employed the Matthew’s correlation coefficient
(MCC),119 which is deemed a balanced measurement.
However, the original MCC applies for binary classification
problems. Thus, for each subgroup, we can compute its MCC
as follows

=
× − ×

+ + + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)
(3)

where TP represents the number of corrected predicted cells in
this subgroup, FN is the number of incorrectly predicted cells
in this subgroup, FP is the number of cells that are in other
subgroups and predicted to be in such subgroup, and TN is the
number of cells that are in other subgroups and not predicted
to be in such subgroup.
However, the above-mentioned MCCs cannot evaluate the

overall performance of a classifier. Thus, we further employed
the multiclass version of MCC, which was proposed by
Gorodkin.120 The following text gives its brief description.
Suppose we have N samples, denoted as s1, s2,...,sN, and C

classes, represented by 1,2,...,C. Let X = (xij)N × C be a matrix
representing the predicted classes of all samples, where xij is a
binary value (xij is 1 if si is accurately predicted as class j;
otherwise, xij is 0). Similarly, the matrix Y = (yij)n × C is a binary
matrix defining the true classes of samples. Then, the MCC in
multiclass can be calculated using the following formula
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where x̅jand y̅jare the mean values of xj and yj, respectively.
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(61) Köninger, J.; Giese, N. A.; Bartel, M.; di Mola, F. F.; Berberat,
P. O.; di Sebastiano, P.; Giese, T.; Büchler, M. W.; Friess, H. The
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