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Abstract

Seasonal influenza virus infections cause 290,000–650,000 deaths annually and severe

morbidity in 3–5 million people. CD8+ T-cell responses towards virus-derived peptide/

human leukocyte antigen (HLA) complexes provide the broadest cross-reactive immunity

against human influenza viruses. Several universally-conserved CD8+ T-cell specificities

that elicit prominent responses against human influenza A viruses (IAVs) have been identi-

fied. These include HLA-A*02:01-M158-66 (A2/M158), HLA-A*03:01-NP265-273, HLA-

B*08:01-NP225-233, HLA-B*18:01-NP219-226, HLA-B*27:05-NP383-391 and HLA-B*57:01-

NP199-207. The immunodominance hierarchies across these universal CD8+ T-cell epitopes

were however unknown. Here, we probed immunodominance status of influenza-specific

universal CD8+ T-cells in HLA-I heterozygote individuals expressing two or more universal

HLAs for IAV. We found that while CD8+ T-cell responses directed towards A2/M158 were

generally immunodominant, A2/M158
+CD8+ T-cells were markedly diminished (subdomi-

nant) in HLA-A*02:01/B*27:05-expressing donors following ex vivo and in vitro analyses.

A2/M158
+CD8+ T-cells in non-HLA-B*27:05 individuals were immunodominant, contained

optimal public TRBV19/TRAV27 TCRαβ clonotypes and displayed highly polyfunctional and
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proliferative capacity, while A2/M158
+CD8+ T cells in HLA-B*27:05-expressing donors were

subdominant, with largely distinct TCRαβ clonotypes and consequently markedly reduced

avidity, proliferative and polyfunctional efficacy. Our data illustrate altered immunodomi-

nance patterns and immunodomination within human influenza-specific CD8+ T-cells.

Accordingly, our work highlights the importance of understanding immunodominance hierar-

chies within individual donors across a spectrum of prominent virus-specific CD8+ T-cell

specificities prior to designing T cell-directed vaccines and immunotherapies, for influenza

and other infectious diseases.

Author summary

Annual influenza infections cause significant morbidity and morbidity globally. Estab-

lished T-cell immunity directed at conserved viral regions provides some protection

against influenza viruses and promotes rapid recovery, leading to better clinical outcomes.

Killer CD8+ T-cells recognising viral peptides in a context of HLA-I glycoproteins, pro-

vide the broadest ever reported immunity across distinct influenza strains and subtypes.

We asked whether the expression of certain HLA-I alleles affects CD8+ T cells responses.

Our study clearly illustrates altered immunodominance hierarchies and immunodomina-

tion within broadly-cross-reactive influenza-specific CD8+ T-cells in individuals express-

ing two or more universal HLA-I alleles, key for T cell-directed vaccines and

immunotherapies.

Introduction

Seasonal influenza virus infections cause 290,000–650,000 deaths annually and severe morbid-

ity in 3–5 million people [1]. Currently licensed vaccines induce strain-specific antibodies but

fail to induce influenza-specific CD8+ T cell responses [2]. Furthermore, current vaccines pro-

vide little or no protection in the face of a pandemic, caused by the emergence of new influenza

A virus (IAV) subtypes, as observed in the most recent 2009 pandemic-H1N1 outbreak [3].

Therefore, in the absence of cross-protective neutralizing antibodies, an efficient way to coun-

teract a novel influenza strain is by re-calling pre-existing, cross-strain-protective cytotoxic

CD8+ T cells [4–6].

Protection from influenza-specific memory CD8+ T cells is directed towards more con-

served internal viral proteins, such as matrix protein 1 (M1) and nucleoprotein [7–9]. Thus,

memory CD8+ T cell responses generated by seasonal IAV infection can provide broader

cross-protection against subsequent challenges from distinct influenza virus strains and sub-

types, also called heterosubtypic immunity [4, 5, 10, 11]. In humans, CD8+ T cell cross-reactiv-

ity between pandemic H1N1-2009 and H3N2 [12], and between the two pandemics H1N1-

2009 and H1N1-1918 [10], led to a robust re-call of pre-existing CD8+ T cell immunity

towards the newly emerging avian H7N9-2013 strain [5, 13], providing evidence for pre-exist-

ing heterosubtypic immunity [14]. Our recent studies also revealed that influenza-specific

CD8+ T cells can provide unprecedented immunity across all influenza A, B and C viruses

capable of infecting humans [15], and similarly across influenza A [16, 17] and influenza B

viruses [15]. These studies demonstrate that pre-existing CD8+ T cell immunity could reduce

disease severity, decrease viral burden, ameliorate morbidity and mortality, leading to a rapid

recovery of the host. Thus, cross-strain protective CD8+ T cell-based vaccines could provide
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life-saving therapeutic strategies for novel reassorting influenza strains with pandemic

potential.

During viral infection, CD8+ T cells recognize viral peptides, typically 8–10 amino acids

long, that are presented on HLA class I (HLA-I) molecules on the surface of virally-infected

cells [18]. Some peptides are highly antigenic and stimulate high magnitude CD8+ T cell

responses, termed “immunodominant”, while others elicit “subdominant” responses. Thus,

overall CD8+ T cell responses directed against multiple immunogenic peptides give rise to

immunodominance hierarchy patterns. Immunodominance hierarchies can be affected by

several factors, including naïve precursor frequencies, CD8+ T cell receptor (TCR) repertoires

capable of generating primary and memory CD8+ T cells, killing capacity, effector polyfunc-

tionality, and TCR avidity for peptide-HLA complexes [19–21]. These factors are further com-

plicated by HLA polymorphisms observed in the human population [20].

CD8+ T cell immunodominance hierarchies in humans has been previously characterized

in HIV [22] and CMV [23]. However, immunodominance hierarchies in the context of IAV

infection across different HLAs are less clear. In 104 HIV-1-infected patients, CD8+ T cell

responses towards otherwise known immunodominant HIV-I-derived peptides presented on

HLA-A1, -A2, -A3 and -A24, were reduced in the presence of HLA-B27 and HLA-B57 CD8+

T cell responses, indicating immunodomination of HLA-B27/B57 over other HLA types dur-

ing HIV-1 infection [22]. Their protective role in delaying disease progression towards AIDS

during HIV-1 infection has also been documented [24–26]. To understand factors governing

immunodominance patterns in IAV, immunodominance hierarchies need to be defined for

known immunodominant IAV epitopes, followed by investigation of the determinants of

CD8+ T cell immunodominance across different HLAs.

HLA-A�02:01 is the most prevalent allele found across multiple ethnicities worldwide,

including Caucasians (25%), Mexican Seri (54%) and Native North Americans (22%) [5, 17,

27]. Considered to be the most immunodominant IAV epitope is the HLA-A�02:01-restricted

M158-66 epitope (hereafter A2/M158), which is universally conserved within influenza viruses

circulating over the last century [17]. We have previously defined 5 other universal IAV epi-

topes presented by common HLA class I types (HLA-A�03:01-NP265-273, -B�27:05-NP383-391,

-B�57:01-NP199-207, -B�18:01-NP219-226 and -B�08:01-NP225-233) [5], of which to date, there

have been no extensive studies examining their CD8+ T cell immunodominance hierarchies.

Here, we investigated immunodominant A2/M158 responses in heterozygote individuals

expressing the other universal HLAs for IAVs. We analyzed T cell polyfunctionality, proliferation

kinetics, peptide/HLA-I avidity and direct ex vivo TCRαβ repertoire to determine how these fac-

tors are impacted by HLA-A�02:01 responses in the presence of different HLA-I molecules.

Results

A2/M158
+CD8+ T cell immunodominance hierarchy is altered by

HLA-B�27:05 expression

To define the immunodominance hierarchy across universal influenza CD8+ T cell epitopes

(HLA-A�02:01-M158-66, HLA-A�03:01-NP265-273, HLA-B�27:05-NP383-391, HLA-B�57:01-

NP199-207, HLA-B�18:01-NP219-226 and HLA-B�08:01-NP225-233) [5] within an individual,

IAV-specific CD8+ T cell responses towards those epitopes were measured in healthy blood

donors following peptide stimulation and IFN-γ/TNF cytokine production (Fig 1A). Robust

IFN-γ+CD8+ T cell responses were readily detected across all 6 conserved epitopes: A2/M158

(mean = 9.4%, range = 0.1–31.6%), A3/NP265 (8.3%, 0.1–24.1%), B8/NP225 (3.0%, 0.1–7.2%),

B18/NP219 (13.1%, 7.0–15.9%), B27/NP383 (16.7%, 4.5–41.1%) and B57/NP199 (9.98%, 7.3%-

14.6%), confirming the immunogenicity of these highly conserved epitopes (Fig 1B).
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The immunodominance patterns in donors co-expressing 2 or more of the universal HLAs

were subsequently assessed in human blood and spleen. When we compared the magnitude of

IFN-γ+CD8+ T cell responses directed at the most studied immunodominant IAV epitope A2/

M158 [5, 17] against other universal epitope responses within the same individual, our analyses

revealed that A2/M158
+CD8+ T cell responses were immunodominant over HLAs A3, B8 and

B18, but this was strikingly not the case in donors that co-expressed B27 or B57 (Fig 1C). As

HLA-B�27:05 mediates protection in HIV and HCV [28], and is associated with viral escape

mutations in HIV [29] and a slow accumulation of variants within IAV-H3N2 [30], we focused

on understanding the immunodominance mechanisms of B27/NP383
+CD8+ T cell responses

over A2/M158
+ responses in HLA-A2+/B27+ co-expressed individuals. Although A2/M158

+

responses were immunodominant in non-HLA-B27 donors, individuals co-expressing

HLA-A2+/B27+ showed significantly higher IFN-γ+CD8+ T cell responses towards B27/NP383

(mean = 9.6%, SD±3.2%) in comparison to subdominant A2/M158 responses (3.5%±1.2%)

across all the blood and spleen donors tested (Fig 1D and 1E, p = 0.03).

To determine whether the B27/NP383>A2/M158 immunodominance hierarchy also

occurred during influenza virus infection, we measured CD8+ T cell responses in blood and

spleen following stimulation with autologous IAV-infected APCs (Fig 1F), rather than pep-

tide-pulsed APCs (Fig 1E), which more closely resembles the natural antigen presentation

pathway [20]. Stimulation of PBMCs with virus-infected APCs, followed by a 6-hr ICS verified

significantly higher B27/NP383
+CD8+ T cell responses (3.8%±1.2%) than A2/M158

+ responses

(0.89%±0.9%) (Fig 1F, p = 0.02). Taken together, our data show, that the expression of specific

HLAs (like HLA-B�27:05) can lead to immunodomination and markedly reduce immunodo-

minance of universal influenza-specific CD8+ T cells.

Reduced ex vivo frequencies within subdominant A2/M158
+CD8+ T cells in

A2+B27+ donors

As the experiments presented in Fig 1 were performed using in vitro assays, we subsequently

determined the frequencies of immunodominant and subdominant influenza-specific CD8+ T

cells directly ex vivo using a dual tetramer-associated magnetic enrichment (TAME) (Fig 2A),

allowing increased detection of epitope-specific T cells by up to 100-fold [31–33]. In accor-

dance with our in vitro experiments, subdominant A2/M158
+CD8+ T cell frequencies in

HLA-A2+/B27+ donors were significantly diminished within both PBMCs (4.9E-05±2.0E-05,

p = 0.019) and spleen (8.9E-06±3.0E-06, p = 0.042), compared to dominant A2/M158
+CD8+ T

cells (PBMCs: 2.8E-04±9.4E-05; spleen: 4.6E-05 ± 4.7E-06) (Fig 2B). The frequencies of immu-

nodominant B27/NP383
+CD8+ T cells were trending higher than the subdominant A2/

M158
+CD8+ T cells in both PBMC and spleen co-expressed donors.

Phenotypic ex vivo analyses of immunodominant and subdominant influenza-specific A2/

M158
+CD8+ T cells involved CCR7 and CD45RA expression to characterize naïve (TN,

CCR7+CD45RA+), central memory (TCM, CCR7+CD45RA-), effector memory (TEM,

Fig 1. Reduced magnitude of A2/M158+CD8+ T cell responses in HLA-A2+/B27+ individuals. (A) Representative FACS plots of cytokine

production following IFN-γ/TNF ICS assay of day 10 peptide-expanded T cell lines from healthy PBMCs for each universal epitope. (B)

Frequency of IFN-γ-producing CD8+ T cells from T cell lines expanded: A2/M158 (n = 20), A3/NP265 (n = 9), B8/NP225 (n = 6), B18/NP219

(n = 4), B27/NP383 (n = 7) and B57/NP199 (n = 3). Bars represent mean±SEM. (C) Heatmap of relative contribution of IFN-γ+CD8+ T cell

responses across different epitopes restricted by different HLAs in individuals with more than 1 universal HLA allele (n = 20). NA represents the

individual who is either homozygote or has a non-universal HLA at that locus. (D) Representative FACS plots comparing A2/M158
+CD8+ T cell

responses in HLA-A2+/non-B27 individuals versus A2/M158 and B27/NP383 responses in HLA-A2+/B27+ individuals. Day 10 A2/M158 and B27/

NP383 responses in HLA-A2+/B27+ individuals after T cell lines were generated in parallel with (E) single peptide-pulsed or (F) live PR8 virus-

pulsed cells before performing ICS with relevant peptide. Data (mean±SEM) are pooled from blood (open circle) and spleen (open square)

donors over 2–3 independent experiments (n = 5–8). Exact p-values are shown (Mann-Whitney t test).

https://doi.org/10.1371/journal.ppat.1008714.g001
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Fig 2. Ex vivo frequencies and T cell phenotype of A2/M158+ and B27/NP383+ CD8+ T cells. (A) Representative FACS

plots of TAME-enriched A2/M158
+ and B27/NP383

+ CD8+ T cells isolated from PBMC and spleen of HLA-A2+/B27+

individuals. Minimal cells were observed in the flow through fractions. Cells were gated on live CD14-CD19-CD3+CD8+ T

cells. (B) Precursor frequencies of A2/M158
+ and B27/NP383

+ CD8+ T cells from HLA-A2+/B27+ (PBMC n = 13; spleen n = 6)

versus A2/M158
+CD8+ T cells from HLA-A2+/non-B27 donors (PBMC n = 10; spleen n = 5). (C) CCR7 and CD45RA

expression profiles of TAME-enriched tetramer+ cells overlaid on top of total CD8+ T cells from each group with at least 10

tetramer+ events. (D) Frequencies of naïve (TN, CCR7+CD45RA+), central memory (TCM, CCR7+CD45RA-), effector memory

(TEM, CCR7-CD45RA-) and effector (TEFF, CCR7-CD45RA+) T cell populations for immunodominant A2/M158
+ (black,

n = 4), subdominant A2/M158
+ (maroon, n = 11) and immunodominant B27/NP383

+ (green, n = 12) specificities. Data are

pooled from blood and spleen donors over 4–5 independent experiments. (B and D) Bars show mean±SEM and statistically

significant exact p-values are shown (p<0.05, Kruskal-Wallis test, one-way ANOVA).

https://doi.org/10.1371/journal.ppat.1008714.g002
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CCR7-CD45RA-) and effector (TEFF, CCR7-CD45RA+) T cells (Fig 2C). The memory popula-

tions were relatively similar between immunodominant and subdominant A2/M158
+CD8+ T

cells. However, immunodominant B27/NP383
+CD8+ T cells were significantly enriched for

effector cells and with diminished central memory phenotype in comparison to both immuno-

dominant and subdominant A2/M158
+CD8+ T cells, which were predominantly of central

memory rather than effector phenotype (Fig 2D), suggesting different transitioning between

B27/NP383
+CD8+ and A2/M158

+CD8+ T cell memory subsets.

Distinct A2/M158
+CD8+ TCRαβ repertoires in the presence of

HLA-B�27:05

Altered ex vivo frequencies and phenotypes of A2/M158
+CD8+ T cells in A2/B27-expressing

donors suggested possible underlying differences in TCRαβ repertoire composition and diver-

sity between immunodominant and subdominant A2/M158
+CD8+ T cells. To dissect TCRαβ

repertoires, we single-cell isolated TAME-enriched subdominant A2/M158
+CD8+ T cells

directly ex vivo from three HLA-A2+/B27+ donors for TCR analyses and compared them to

our previously defined immunodominant A2/M158
+ TCRαβ repertoires from HLA-A2+/non-

HLA-B27 donors [17], which predominantly consisted of the TRBV19 and TRAV27 gene seg-

ments and the prominent public TRBV19/TRAV27 TCRαβ clonotype: CDR3α-GGSQGNL

and CDR3β-SSIRSYEQ [17].

Notably, dissection of TRBV and TRAV gene usage revealed that subdominant A2/

M158
+CD8+ T cells did not predominantly consist of the public TRBV19 and TRAV27 gene

segments but encompassed a diverse array of TRBV and TRAV genes, with one donor (SD1)

displaying neither TRBV19 nor TRAV27 (Fig 3A, Table 1). In fact, the public A2/M158
+

TRBV19/TRAV27 clonotype was only present in two HLA-A2+/B27+ donors at low frequen-

cies (SD2 20% and SD3 10.2%) (Fig 3B and 3C), compared to high public TCRαβ clonotype

frequencies observed in all HLA-A2+/non-HLA-B27 donors (average 48%, range 15–67%), as

previously described [17]. Moreover, TRBV19 and, more significantly TRAV27 gene usage,

were lower in the subdominant A2/M158
+ TCRαβ repertoires compared to the known immu-

nodominant repertoires (TRAV27: p = 0.02) (Fig 3B).

Further analysis of a CDR3 length usage (Fig 3D) demonstrated a minor difference in the

preferred CDR3β-chain length (8 aa) between immunodominant (87%±9%) [17] and subdom-

inant A2/M158
+CD8+ T cells (51%±20.6%, SD2 preferred 9 aa length). Strikingly, subdominant

A2/M158
+CD8+ T cells had a preference for a longer CDR3α length of 9 aa (41.6%±13.2%), as

compared to a shorter 7 aa length preference in immunodominant donors (48.8%±34.7%)

[17].

Structural studies have defined the CDR3β motif “RS” as an essential feature for the “peg-

notch” recognition by the public TRBV19/TRAV27 TCR of the “plain vanilla” A2/M158 epi-

tope [34]. Subdominant A2/M158
+CD8+ T cells had a considerable reduction in the CDR3β

“RS” motif (Table 1, 56.5%±2.19%, 18/43 unique TCRs across 2 donors, 1 donor had no “RS”

motif) in comparison to immunodominant A2/M158
+CD8+ T cells (82.3%±15.9%, 20/33

unique TCRs across 3 donors) [17]. Furthermore, the Simpson’s Diversity Index (values 0 to 1,

with 1 being the most diverse) for subdominant A2/M158
+CD8+ TCRs (0.9±0.1) was on aver-

age ~25% more diverse that immunodominant A2/M158
+CD8+ TCRs (0.7±0.3).

Overall, the influenza-specific A2/M158
+CD8+ TCRαβ repertoire revealed striking differ-

ences in TCRαβ clonal composition and diversity between subdominant (in HLA-B�27:05-ex-

pressing donors) and immunodominant (in non-HLA-B�27:05 individuals) A2/M158
+CD8+ T

cells, including reduced TRAV27 and TRBV19 “RS” motif usage, lower occurrence of the pub-

lic TRBV19/TRAV27 clonotype, increased diversity and increased prevalence of private
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clonotypes. These differences in TCRαβ repertoires between A2/B27- and A2/non-

B27-expressing donors can, at least in part, explain differential immunodominance patterns of

influenza-responding CD8+ T cells directed at the A2/M158 epitope.

Diminished polyfunctional capacity of subdominant A2/M158
+ CD8+ T cells

Having found altered immunodominance hierarchy of A2/M158
+CD8+ T cells in the presence of

HLA-B�27:05 expression, associated with strikingly different TCRαβ repertoires, we subsequently

assessed the consequence of such changes on the quality and functionality of A2/M158
+CD8+ T

cell responses in both HLA-A2+/non-B27 and HLA-A2+/B27+ individuals. We defined their abil-

ity to simultaneously produce multiple cytokines, defined as polyfunctionality [35], such as IFN-γ,

TNF and the degranulation/cytotoxicity marker CD107a (Fig 4A). A2/M158
+CD8+ T cells dis-

played significantly reduced functional profiles (~45%>1 functional response) when compared

to B27/NP383
+CD8+ T cells (~78%) in HLA-A2+/B27+ individuals (Fig 4B, p = 0.0002), which also

had strikingly higher frequencies of triple cytokine producers. (Fig 4C, p = 0.003). Similarly, these

subdominant A2/M158
+CD8+ T cells had significantly reduced polyfunctionality compared to the

those in HLA-A2+/non-B27 donors (~64%) (Fig 4B, p = 0.007), and a trend towards a reduction

in triple cytokine producers (Fig 4C). Interestingly, the total CD107a+A2/M158
+ response

remained unchanged between the groups (Fig 4B, magenta arc), suggesting that A2/M158
+CD8+

T cells maintain degranulation capacity independent of HLA-B27 co-expression. Expression of

effector molecules, granzyme B and perforin, were also measured, both ~80% expressed.

Subdominant A2/M158
+ CD8+ T cells have lower functional T cell avidity

Antigen sensitivity is a major readout for CD8+ T cell functional avidity [36]. To assess the func-

tional avidity between immunodominant and subdominant influenza-specific CD8+ T cells, the

level of antigen sensitivity was determined by re-stimulating T cell lines with 10-fold dilutions

of peptide and measuring the EC50 of the total IFN-γ response (Fig 5A). Our data showed that

immunodominant B27/NP383
+ and A2/M158

+ CD8+ T cells (mean EC50: 10−10 M and 10−10 M,

respectively) were 10 times more sensitive to the peptide antigen stimulation compared to sub-

dominant A2/M158
+ CD8+ T cells (mean EC50: 10−9 M) (Fig 5B). However, the functional avid-

ity EC50 values of subdominant A2/M158
+CD8+ T cells are just above the optimal nanomolar

to picomolar physiological ranges [37], suggesting that they could still mount an immune

response, albeit at lower magnitudes. The differences in antigen sensitivity between immunodo-

minant and subdominant CD8+ T cells of the same specificity can be explained, at least partially,

by different TCRαβ clonotypes within these immunodominant and subdominant A2/

M158
+CD8+ T cells, highlighting the basis for distinct patterns of immunodominance hierarchy.

Reduced proliferative capacity within subdominant A2/M158
+ versus

dominant B27/NP383
+ CD8+ T cells

To determine the effect of altered TCRαβ repertoires and pHLA-I avidity on the proliferative

capacity of immunodominant B27/NP383
+ and subdominant A2/M158

+CD8+ T cells, both A2/

Fig 3. Subdominant A2/M158+ TCRαβ repertoire display reduction in A2/M158-specific “public motif”. (A) Pie charts of TRAV

and TRBV usage within subdominant A2/M158
+CD8+ T cells in three HLA-A2+/B27+ blood donors. Public TRBV19 and TRAV27

motifs are represented by blue and green shades respectively. (B) Frequencies of the dominant A2/M158-specific gene usage are

shown for paired TRBV19/TRAV27 or TRBV19 and TRAV27 groups for our three subdominant HLA-A2+/B27+ donors (SD1-3,

open circles) versus previously reported immunodominant HLA-A2+/non-B27 donors (closed circles) [17]. Mean±SEM are shown.

(C) Circos plots made in RStudio v.1.2.1335 of paired TCRαβ clonotypes from SD1-3 donors. (D) Frequencies of CDR3β and

CDR3α aa lengths are shown for 3 our subdominant donors SD1-3.

https://doi.org/10.1371/journal.ppat.1008714.g003
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Table 1. TCRαβ repertoire within subdominant A2/M158+CD8+ T cells.

TRBV TRBJ CDR3β CDR3α TRAV TRAJ SD1 SD2 SD3

% % %

TRBV19 TRBJ2-1 SSILAGAYNEQ ND TRAV19 TRAJ22 5

TRBV19 TRBJ2-7 SSIRSAYEQ GAHGSSNTGKL TRAV27 TRAJ37 5

TRBV19 TRBJ2-3 SSIRSSDTQ GAGGGSQGNL TRAV27 TRAJ42 5

TRBV19 TRBJ2-7 SSIRSSYEQ GGGSGGSQGNL TRAV27 TRAJ42 5

TRBV19 TRBJ2-7 SSIRSSYEQ GGGSQGNL TRAV27 TRAJ42 10

TRBV19 TRBJ2-1 SSLAGPYNEQ FMTATFTSGTYKY TRAV38-1 TRAJ40 5

TRBV19 TRBJ1-1 SSPQGGAEA GQIXXRAGXXL TRAV35 TRAJ5 5

TRBV19 TRBJ2-1 SSPRSALEQ VNWGGGSQGNL TRAV12-2 TRAJ42 15

TRBV9 TRBJ1-5 SSPWDRGQPQ VEXXXXKI TRAV1-2 TRAJ30 5

TRBV19 TRBJ1-4 SSVRSDEKL GNYGGSQGNL TRAV25 TRAJ42 15

TRBV24-1 TRBJ1-6 TSIAPI APPNSGNTPL TRAV29/DV5 TRAJ29 10

TRBV15 TRBJ2-7 TSKSGGPYEQ PKGYSTL TRAV21 TRAJ11 5

TRBV15 TRBJ1-1 TSRDLGVWTEA VKGPYGGGSQGNL TRAV8-1 TRAJ42 5

TRBV30 TRBJ2-3 ND GIPSTGANSKL TRAV35 TRAJ56 5

TRBV28 TRBJ2-7 SSVFGTSYEQ LPSCSGNTPL TRAV16 TRAJ29 45

TRBV28 TRBJ2-7 SSVFGTSYEQ LPSCSGNTPL TRAV16 TRAJ15 7

TRBV28 TRBJ2-7 SSVFGTSYEQ VSNQAGTAL TRAV3 TRAJ15 17

TRBV28 TRBJ2-7 SSVFGTSYEQ C##NQAGTAL TRAV3 TRAJ15 3

TRBV27 TRBJ1-1 SSYGQGLEA APNDYKL TRAV8-2/TRAV8-4 TRAJ37 14

TRBV27 TRBJ1-1 SSYGQGLEA AXAT#GKL TRAV13-2 TRAJ37 3

TRBV27 TRBJ1-1 SSYGQGLEA AXATXAX# TRAV13-2 TRAJ37 11

TRBV19 TRBJ2-7 SIRSSYEQ GSGGSQGNL TRAV27 TRAJ42 3.4

TRBV19 TRBJ2-3 GTGSIDTQ RDGTGANNL TRAV3 TRAJ36 3.4

TRBV19 TRBJ1-2 SFGSYGY RATSGGSNYKL TRAV16 TRAJ53 3.4

TRBV19 TRBJ2-7 SIRSSYEQ ND TRAV8-3 TRAJ44 3.4

TRBV19 TRBJ2-2 SARSTGEL EPKG#TGANNL TRAV36/DV7 TRAJ36 3.4

TRBV9 TRBJ1-5 SVEGNQPQ REYMGSSYKL TRAV14/DV4 TRAJ12 3.4

TRBV19 TRBJ2-2 SARSTGEL NYGGSQGNL TRAV25 TRAJ42 6.9

TRBV30 TRBJ2-3 SVAGGPGDTQ VPMEYGNKL TRAV21 TRAJ47 3.4

TRBV19 TRBJ2-2 SARSTGEL ND TRAV36/DV7 TRAJ42 3.4

TRBV19 TRBJ1-5 SLFSQQPQ VYGGSQGNL TRAV27 TRAJ42 3.4

TRBV19 TRBJ2-2 SVRSTGEL GSGGSQGNL TRAV27 TRAJ42 3.4

TRBV19 TRBJ1-1 SIRSSYEA NYGGSQGNL TRAV27 TRAJ42 3.4

TRBV19 TRBJ2-1 STRSGDEQ WNQGGKL TRAV8-6 TRAJ23 3.4

TRBV23-1 TRBJ2-2 NA RDGTGANNL TRAV3 TRAJ36 3.4

TRBV19 TRBJ2-2 SARSTGEL ND TRAV36/DV7 TRAJ42 3.4

TRBV19 TRBJ2-7 SIRSSYEQ GGSQGNL TRAV27 TRAJ42 3.4

TRBV9 TRBJ2-2 ND NYGGSQGNL TRAV25 TRAJ42 3.4

TRBV19 TRBJ2-2 STRSTGEL NYGGSQGNL TRAV25 TRAJ42 3.4

TRBV19 TRBJ2-4 DEGSGIQ ND TRAV27 TRAJ31 3.4

TRBV19 TRBJ2-3 SSIRSTDTQ CNYGGSQGNL TRAV25 TRAJ42 6.9

TRBV19 TRBJ1-2 SSTGSYGY AFMINAGGTSYGKLT TRAV38-1 TRAJ52 13.8

TRBV19 TRBJ2-7 SSVRSAYEQ GAIGSSNTGKL TRAV27 TRAJ37 10.3

No. of sequences 30 20 29

Bold = public TCR, underlined = public “RS” CDR3β motif, ND = not determined, X = undefined aa sequence, # = out-of-frame sequence resulting in unproductive

pair. SD = donor code.

https://doi.org/10.1371/journal.ppat.1008714.t001
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M158
+CD8+ T cells and B27/NP383

+CD8+ T cells were stimulated with their cognate peptides,

and their functional and proliferative kinetics were assessed via IFN-γ production and pep-

tide/MHC-tetramer staining, respectively (Fig 6A). In all 5 donors tested, the magnitude of

proliferating B27/NP383
+CD8+ T cells was greater than A2/M158

+CD8+ T cells, with higher fre-

quencies of IFN-γ producers from day 6 onwards, which was significantly higher on days 9

and 12 (Fig 6B, both p = 0.007). To verify the cytokine readout data, enumeration of A2/M158
+

and B27/NP383
+ tetramer+CD8+ T cells showed more rapid expansion in the number of B27/

NP383-tetramer+CD8+ T cells compared to A2/M158-tetramer+CD8+ T cells from day 9 up to

day 12 (average 2.6-fold increase) (Fig 6C). Thus, B27/NP383
+ CD8+ T cells immunodomi-

nance over A2/M158
+ CD8+ T cells was associated with higher proliferative capacity of B27/

NP383
+ CD8+ T cells in HLA-A�02:01/HLA-B�27:05-expressing individuals.

Taken together, our data demonstrate that the immunodominant or subdominant status of

A2/M158
+CD8+ T cells and the underlying differences in TCRαβ repertoires can significantly

affect influenza-specific CD8+ T cell polyfunctionality, quality, pMHC avidity and proliferative

capacity of A2/M158
+ CD8+ T cells. While in HLA-A2+/non-B27 individuals, immunodomi-

nant A2/M158
+CD8+ T cells are highly abundant, polyfunctional and display high avidity and

public TCRαβ repertoires, subdominant A2/M158
+CD8+ T cells in HLA-A2+/B27+ co-express-

ing individuals are of lower frequency, display lower polyfunctional, are less proliferative

(compared to B27/NP383
+ CD8+ T cells), with low avidity TCRαβ repertoires.

Fig 4. Diminished polyfunctionality of A2/M158+CD8+ T cells in HLA-A2+/B27+ individuals. (A) Representative FACS

plots of CD107a, IFN-γ and TNF responses of day 10 peptide-expanded CD8+ T cell lines from HLA-A2+/non-B27 and

HLA-A2+/B27+ donors. (B) Pie charts representing the average fractions of expanded CD8+ T cells expressing different

combinations of CD107a, IFN-γ and TNF were generated using Pestle v1.8 and SPICE v5.35 software. Arcs represent average

frequency of individual cytokines. Exact p-values are calculated using Spice permutation test (10,000) replicates. (C)

Frequencies of the CD8+ T cell functional response producing different combinations of CD107a, IFN-γ and TNF. Data (mean

±SEM) are pooled from blood and spleen donors over 2–3 independent experiments (n = 7–8). For each cytokine

combination, statistically significant exact p-values are shown for each response (p<0.05, Kruskal-Wallis test, one-way

ANOVA).

https://doi.org/10.1371/journal.ppat.1008714.g004

Fig 5. Reduced antigen sensitivity in subdominant A2/M158+CD8+ T cells. (A) Peptide titration curve and (B) EC50 values for each T cell specificity after 12

days of peptide expansion. Mean and SEM are shown (n = 3 for each group).

https://doi.org/10.1371/journal.ppat.1008714.g005
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Discussion

Our study reports, that immunodominance can occur within human prominent influenza-

specific CD8+ T cells with co-expression of another specific HLA class I molecule. While

broadly cross-reactive universal A2/M158
+CD8+ T cells are immunodominant, contain the

optimal public TRBV19/TRAV27 TCRαβ repertoire and display highly polyfunctional and

proliferative capacity in non-HLA-B�27:05 individuals, A2/M158
+CD8+ T cells in

HLA-B�27:05-expressing donors are subdominant, with largely distinct TCRαβ clonotypes

and markedly reduced proliferative and polyfunctional capacity. Differences in TCRαβ reper-

toires between immunodominant and subdominant A2/M158
+CD8+ T cell populations might

explain differential quantitative and qualitative characteristics of these influenza-responding

CD8+ T cells directed at the same A2/M158
+ epitope. Our data highlight the need to under-

stand immunodominance hierarchies within individual donors across a spectrum of promi-

nent virus-specific CD8+ T cell specificities prior to designing T cell-directed vaccines and

immunotherapies.

T cell-based vaccination strategies inducing cross-reactive CD8+ T cell immunity have the

potential to provide broad and long-lasting protection against distinct influenza A virus strains

[7, 16, 17, 38], and even across all human influenza A, B and C viruses [15], including unpre-

dictable, newly emerging strains with a pandemic potential. Ideally, the vaccine should encom-

pass highly immunogenic epitopes for a diverse population with different HLAs. A number of

prominent and “universal” (directed at viral peptides conserved over the last century) CD8+ T

cell specificities restricted by a range of HLA alleles have been identified [5, 14, 39–41], with

A2/M158 being the most immunodominant, widely studied and highly prevalent in the global

population. However, it is largely unknown how virus-specific CD8+ T cell responses are elic-

ited towards a vaccine cocktail of multiple universal influenza epitopes restricted by different

HLAs, and whether one epitope induces immunodomination over others. Our study thus

focused on understanding the immunodominance hierarchy for universal influenza-specific

CD8+ T cell responses to provide insights towards a rational design of broadly-protective uni-

versal influenza vaccines.

Immunodominance hierarchy patterns were dissected across universal HLAs

(HLA-A�02:01, -A�03:01, -B�08:01, -B�18:01, -B�27:05 and -B�57:01), which provide broad

population coverage worldwide [5]. Several studies have focused on HLA-A�02:01-driven

immune responses towards influenza virus infection [17, 32, 42, 43] directed towards the

immunodominant A2/M158 epitope [41]. In context of other universal HLAs, A2/M158
+CD8+

T cell responses remained the most immunodominant over A3/B8/B18 epitopes but were

greatly reduced in individuals co-expressing HLA-B�27:05 or HLA-B�57:01. One study by

Boon et al. showed that IFN-γ+B27/NP383
+ CD8+ T cell responses were significantly higher

than A2/M158
+ responses, although in vitro virus-expanded A2/M158

+ CD8+ T cell responses

were of the same magnitudes when compared to HLA-A2+/non-B27 donors [44]. In our

study, we found significant differences not only between B27/NP383
+ CD8+ and A2/M158

+

CD8+ T cells in A2/B27 donors but also for A2/M158
+ CD8+ T cells between A2/B27 and A2/

non-B27 donors ex vivo and in vitro.

HLA-B�27:05 has been associated with superior immune control during HIV [45, 46] and

HCV-1 [47] infections. HLA-B�27:05-restricted immune control was attributed to higher

Fig 6. Higher proliferative capacity of B27/NP383+CD8+ T cells over A2/M158+CD8+ T cells in HLA-A2+/B27+

individuals. (A) Representative kinetics of IFN-γ+ and tetramer+ responses of peptide-stimulated T cell lines on days 3, 6, 9

and 12 of culture. (B) Parallel IFN-γ+ A2/M158
+ and B27/NP383

+ responses and (C) absolute numbers of tetramer+CD8+ T

cells over time for each individual and as a group (mean±SEM). Blood donors: SD1-3; spleen donors: SD4-5. Statistically

significant exact p-values are shown (Mann Whitney t test).

https://doi.org/10.1371/journal.ppat.1008714.g006
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levels of polyfunctionality, functional avidity and proliferation within HIV-specific

B27-KK10+CD8+ T cells [48]. CD8+ T cells displaying higher polyfunctionality improved vac-

cine efficacy towards vaccinia virus and Leishmania major [49–51]. High proliferative capacity

of epitope-specific CD8+ T cells was linked to better protection against HIV-1 infection [52].

CD8+ T cells of high antigen sensitivity, thus increased functional avidity, could mediate effec-

tive viral clearance at low antigen concentrations [53–55]. Collectively, these studies provided

key interdependent mechanisms for superior immune CD8+ T cell responses. Our study dem-

onstrated that immunodominant B27/NP383
+CD8+ T cells, in the context of influenza virus

infection, were more superior to subdominant A2/M158
+CD8+ T cells by exhibiting higher

polyfunctionality, increased proliferative capacity and higher antigen sensitivity within

HLA-A2+/HLA-B27+ co-expressed individuals. In contrast, A2/M158
+CD8+ T cells in the

absence of HLA-B27 were highly immunodominant displaying higher qualitative features that

resemble the immunodominant B27/NP383
+CD8+ T cell response.

Given the qualitative and quantitative differences observed between immunodominant and

subdominant A2/M158
+CD8+ T cells, our ex vivo phenotypic analysis showed no differences in

their T cell differentiation phenotype, which were mainly CCR7+CD45RA- “central memory” T

cells. Conversely, the immunodominant B27/NP383
+CD8+ T cell population had significantly

higher proportions of CCR7-CD45RA+ “effector” cells compared to both A2/M158
+CD8+ T

cell populations, a phenotype that warrants further investigation as “effector” T cells were

originally believed to be terminally differentiated and exhausted, but new evidence shows that

effector T cells contribute to a pool of long-lived memory T cells [56, 57]. However, while

HLA-A�02:01+M158
+ and HLA-B�27:05+NP383

+ CD8+ T cells are of different phenotypes, they do

not differ in terms of CD107a expression, a marker of T cell degranulation and thus cytotoxicity.

We showed that the superior features of immunodominant A2/M158
+CD8+ T cells com-

pared to the subdominant CD8+ T cell responses, in terms of response magnitude, polyfunc-

tionality, avidity, proliferative capacity and precursor frequency, could be linked to the

differences in their TCRαβ repertoires in both gene signatures and TCR diversity. Immunodo-

minant A2/M158
+CD8+ T cells predominantly consisted of the public TRAV27/TRBV19 TCR

signature [17], which was absent or reduced in subdominant A2/M158
+CD8+ T cells that dis-

played more diverse private repertoires and lower precursor frequencies. Similar features of

subdominant A2/M158
+CD8+ T cells from this study were recently described by our group in

our aging elderly cohort showing a loss in prominent public TCRs but expansion of private

suboptimal TCR clonotypes, which was associated with lower precursor frequencies [32, 58].

Similarly, we have found that immunodominant A68/NP145
+ CD8+ T cell responses were

linked to highly expanded TCRαβ clonotypes, whereas subdominant responses in other indi-

viduals had more diverse non-expanded TCRαβ clonotypes [38]. Our findings are reminiscent

of the HLA-B�08:01/B�44:02 trans-allele EBV model that impacted on the public LC13-TCR

response against the HLA-B�08:01-restricted FLRGRAYGL epitope, which was found in most

HLA-B�08:01 donors, but was explicitly replaced with a subdominant CF34-TCR response in

HLA-B�08:01+/B�44:02+ donors [59, 60].

Our findings have implications for current and future T cell-based vaccine candidates and

how the vaccine responses are assessed to further advance into clinical stages. Particularly in

HLA-A2+/B27+ individuals, total CD8+ T cell responses could be underestimated when mea-

suring A2/M158
+CD8+ T cell responses alone. This can be exemplified by a challenge study

with the Modified Vaccinia virus Ankara (MVA) vaccine antigen consisting of complete NP

and M1 from A/Panama/2007/99 joined by a 7 aa linker sequence (MVA+NP+M1) [61],

where only A2/M158-tetramer CD8+ T cell responses were measured [62]. Similarly, only

M1-specific CD8+ T cell responses, but not NP-specific responses, were assessed in tonsil

MNCs following in vitro stimulation with the MVA-NP+M1 vaccine [63]. Furthermore, a T
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cell-based vaccine candidate called Flu-v consists of 4 synthetic polypeptides, which includes

the A2/M158 epitope but not the B27/NP383 epitope [64]. Our study highlights the importance

of considering the whole spectrum of immunodominant epitopes, other than A2/M158, in the

design and assessment of vaccine-induced CD8+ T cell responses.

Overall, in the presence of HLA-B27, we demonstrate a strong immunodominance hierar-

chy pattern of B27/NP383
+CD8+ T cell responses being far more superior than the A2/

M158
+CD8+ T cell response. Functional, quantitative and phenotypic characteristics within

immunodominant and subdominant A2/M158
+CD8+ T cells were underpinned by differential

TCRαβ repertoires. These findings have implications in understanding and modulating antivi-

ral and anticancer CD8+ T cell responses generated by therapeutic immunizations or

vaccinations.

Methods

Ethics statement

All experiments were conducted in accordance to the Australian National Health and Medical

Research Council Code of Practice. Buffy coats (n = 30) were obtained from the Australian Red

Cross Lifeblood. Peripheral bloods were obtained from healthy adults (n = 3) recruited at the

University of Melbourne and Deepdene Medical Clinic, which were approved by the Human

Research Ethics Committee (HREC) of the University of Melbourne (#1443389.4). All partici-

pants provided written informed consent prior to inclusion in the study. Human spleens from

deceased organ donors (n = 10) were obtained following next-of-kin consent via DonateLife

Victoria and approved by the Australian Red Cross Lifeblood Blood Service Ethics Committee

(#2015#08). Cryopreserved PBMCs (n = 10) were obtained from Erasmus Medical Centre,

Netherlands (approved by the Sanquin Bloodbank after informed consent was obtained).

HLA typing and cell isolation

HLA-typing was performed by VTIS at Australian Red Cross Lifeblood (West Melbourne,

VIC). PBMCs were freshly isolated by Ficoll-Paque density-gradient centrifugation and cryo-

preserved. Mononuclear cells (MNCs) were isolated from spleens as previously described [58].

The patient information is detailed in Table 2.

Peptides, tetramers and APCs

Universal influenza peptides were purchased from GenScript (Hong Kong) Limited (Central,

Hong Kong): A2/M158-66 (GILGFVFTL), A3/NP265-273 (ILRGSVAHK), B8/NP225-233

(ILKGKFQTA), B18/NP219-226 (YERMCNIL), B27/NP383-391 (SRYWAIRTR) and B57/NP199-

207 (RGINDRNFW). Peptide/MHC class I monomers A2/M158 and B27/NP383 were generated

in-house [59, 65] and conjugated at a 8:1 molar ratio with PE-streptavidin (SA) or APC-SA

(BD Biosciences, San Jose, CA, USA) to form tetramers. Class I-reduced (C1R) cell lines were

kindly provided by Prof. Weisan Chen (La Trobe University, VIC, Australia) (C1R-A�02:01,

C1R-B�08:01), Prof. James McCluskey (University of Melbourne, VIC, Australia) (C1R-

B�57:01), Prof. Anthony Purcell (Monash University, Australia) (C1R-B�27:05) and Dr. Nicole

Mifsud (Monash University, VIC, Australia) (C1R-A�03:01, C1R-B�18:01).

In vitro assays

Epitope-specific and virus-specific CD8+ T cell lines were generated for 10–12 days in RF-10

media (+10 U/ml IL-2) using autologous peptide-pulsed or A/Puerto Rico/8/1934 virus-

infected PBMCs as responder cells, as previously described [15]. T cell lines were restimulated
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Table 2. List of donors used in the study.

Donor code Age HLA-A HLA-B Source

D1 59 01:01 02:01 08:01 44:02 Buffy Pack

D2 ND 01:01 02:01 08:01 35:01 Buffy Pack

D3 53 01:01 02:01 08:01 27:05 Buffy Pack

D4 ND 01:01 02:01 08:01 35:01 Buffy Pack

D5 47 01:01 02:01 08:01 27:05 Buffy Pack

D6 30 02:01 03:01 40:01 (60) 56:01 Buffy Pack

D7 25 02:01 03:01 07:02 40:01 Buffy Pack

D8 54 02:01 03:01 35:01 57:01 Buffy Pack

D9 50 02:01 68:01 27:05 15:18 Buffy Pack

D11 64 02:01 03:01 27:05 13:02 Buffy Pack

D12/SD1 50 02:01 26:01 07:02 27:05 Buffy Pack

D13 37 02:01 03:01 07:02 40:01 Buffy Pack

D14 42 02:01 03:02 18:01 35:08 Whole Blood

D15/SD3 25 02:01 24:02 27:05 35:01 Buffy Pack

D18 56 02:01 07:02 57:01 Buffy Pack

D19 58 02:01 24:02 27:05 35:01 Spleen

D20 68 01:01 02:01 08:01 35:01 Buffy Pack

D21/SD2 58 2 3 14 27 Whole Blood

D22 49 03:01 07:02 27:05 Spleen

D23 ND 01:01 02:01 08:01 27:05 Buffy Pack

D24 47 02:01 11:01 44:02 51:01 Buffy Pack

D25 51 01:01 02:01 07:02 44:02 Buffy Pack

D26 33 02:01 33:03 07:02 27:02 Whole Blood

D27 ND 01:01 02:01 08:01 35:01 Buffy Pack

D28 ND 01:01 02:01 08:01 35:01 Buffy Pack

D29 45 02:01 07:02 44:02 Buffy Pack

D30 ND 01:01 02:01 08:01 27:05 Buffy Pack

D31 ND 01:01 02:01 08:01 27:05 Buffy Pack

D32 47 02:01 29:02 15:01 35:01 Buffy Pack

D33 62 02:01 07:02 44:02 Buffy Pack

D34 67 01:01 02:01 13:02 44:32 Buffy Pack

D35 22 02:01 11:01 15:02 54:01 Buffy Pack

D36 69 02:01 15:01 57:01 Spleen

D37 57 02:01 11:01 15:01 35:01 Spleen

D38 38 02:01 33:01 15:16 57:01 Spleen

D39 33 02:01 03:01 35:01 51:01 Spleen

D40 48 02:01 24:02 07:02 15:01 Spleen

D41 65 02:01 29:02 27:05 44:03 Spleen

D42 55 02:01 24:02 27:05 35:01 Spleen

Lymph nodes

D43 65 02:01 24:02 27:05 35:01 Spleen

Lymph nodes

D44 69 02:01 24:02 39:06 40:02 Buffy Pack

D45 55 03:01 32:01 44:02 Buffy Pack

D46 22 02:01 68:01 44:02 51:01 Buffy Pack

D47 29 01:01 24:02 08:01 14:02 Buffy Pack

D48 31 02:01 03:01 14:02 58:01 Buffy Pack

(Continued)
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with peptide-pulsed HLA-matched C1R cell lines during a 5–6 hour ICS assay, in the presence

of GolgiPlug (BD Biosciences) [38]. For the degranulation assay, anti-CD107a AF488

(eBioscience #53-1079-42) and GolgiStop (BD Biosciences) were also added. Lymphocytes

were then surfaced stained with anti-CD3-BV510 (Biolegend #317332) or anti-CD3 PE-CF594

(BD Biosciences #562280, anti-CD4 BV650 (BD Horizon #563875), anti-CD14 APC-H7 (BD

Biosciences #560180), anti-CD19 APC-H7 (BD Biosciences #560177), anti-CD8 PerCPCy5.5

(BD Biosciences #565310) and Live/Dead Near-IR (Invitrogen), fixed, then intracellularly

stained with anti-IFN-γ v450 (BD Horizon #560371) and anti-TNF APC (BD Biosciences

#340534) using the Fixation/Permeabilization Solution Kit (BD Cytofix/Cytoperm, BD Biosci-

ences). Samples were acquired on a BD Fortessa (BD Biosciences) and analyzed using Flowjo

software version 10 (Treestar, OR, USA). Proliferation kinetics were measured on days d3, d6,

d9 and d12 by ICS or tetramer staining to calculate the absolute numbers of epitope-specific

cells. For all ICS staining, background staining was subtracted from the no peptide controls.

Ex vivo assays

PBMCs and spleen MNCs from HLA-A�02:01+/B�27:05+ and HLA-A�02:01+/B�27:05- indi-

viduals were tetramer-stained for 1 hour at room temperature before undergoing dual tetra-

mer-associated magnetic enrichment (TAME), as described [32], using the MACS PE- and

APC-MicroBeads and LS columns (Milteny Biotec, Bergisch Galdbach Germany). Lympho-

cytes were surfaced stained with the above surface antibodies plus anti-CCR7 PECy7 (BD

Pharmingen #557648) and anti-CD45RA FITC (BD Pharmingen #555488). Samples were

acquired on a BD Fortessa or BD FACS Aria III for single-cell sorting and subsequent multi-

plex-nested RT-PCR for TCR analyses of paired CDR3α and CDR3β regions [32].

Statistical analysis

Statistics were performed using GraphPad Prism software (San Diego, CA, USA) to compare

between two (Mann-Whitney) or multiple groups (Kruskal-Wallis test, one-way ANOVA), as

indicated in the figure legends where p<0.05 was considered statistically significant. PBMCs

and spleen MNCs were grouped together for statistical power (except Fig 2B).

Supporting information

S1 Data. Data source file for Figs 1–6. Experimental raw data for Figs 1–6 are provided in S1

Data.

(XLSX)

Table 2. (Continued)

Donor code Age HLA-A HLA-B Source

D49 30 03:01 24:02 35:03 44:02 Buffy Pack

D50 41 03:01 11:01 3501 44:02 Buffy Pack

D51 56 03:01 11:01 07:02 44:03 Buffy Pack

D52 26 01:01 24:02 08:01 57:01 Buffy Pack

D53 59 02:01 31:01 15:01 (62) 44:02 Buffy Pack

D54 35 01:01 03:01 35:01 57:01 Buffy Pack

D55 69 02:01 32:01 07:02 44:03 Buffy Pack

D56 ND 03:01 07:02 15:01 Buffy Pack

ND, not determined. HLA subtypes in brackets cannot be ruled out.

https://doi.org/10.1371/journal.ppat.1008714.t002
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