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Abstract 26 

 27 

Low pathogenic avian influenza viruses (LPAIVs) are genetically highly variable and have 28 

diversified into multiple evolutionary lineages that are primarily associated with wild bird 29 

reservoirs. Antigenic variation has been described for mammalian influenza viruses and for 30 

highly pathogenic avian influenza viruses that circulate in poultry, but much less is known 31 

about antigenic variation of LPAIVs. In this study, we focussed on H13 and H16 LPAIVs that 32 

circulate globally in gulls. We investigated the evolutionary history and intercontinental gene 33 

flow based on the hemagglutinin (HA) gene and used representative viruses from genetically 34 

distinct lineages to determine their antigenic properties by hemagglutination inhibition assays. 35 

For H13 at least three distinct genetic clades were evident, while for H16 at least two distinct 36 

genetic clades were evident. Twenty and ten events of intercontinental gene flow were 37 

identified for H13 and for H16 viruses, respectively. At least two antigenic variants of H13 38 

and at least one antigenic variant of H16 were identified. Amino acid positions in the HA 39 

protein that may be involved in the antigenic variation were inferred, and some of the 40 

positions were located near the receptor binding site of the HA protein, as they are in the HA 41 

protein of mammalian influenza A viruses. These findings suggest independent circulation of 42 

H13 and H16 subtypes in gull populations as antigenic patterns do not overlap and contribute 43 

to the understanding of the genetic and antigenic variation of LPAIV naturally circulating in 44 

wild birds. 45 

 46 

Importance 47 

Wild birds play a major role in the epidemiology of low pathogenic avian influenza viruses 48 

(LPAIVs) from which these viruses are occasionally transmitted—directly or indirectly—to 49 

other species, including domestic animals, wild mammals and humans, where they can cause 50 
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subclinical to fatal disease. Despite a multitude of genetic studies, the antigenic variation of 51 

LPAIVs in wild birds is poorly understood. Here, we investigated the evolutionary history, 52 

intercontinental gene flow, and the antigenic variation among H13 and H16 LPAIVs. The 53 

circulation of the subtypes H13 and H16 seems to be maintained by a narrower host range, in 54 

particular gulls, than for the majority of LPAIV subtypes and may therefore serve as a model 55 

for evolution and epidemiology of H1-H12 LPAIVs in wild birds. The findings suggest that 56 

H13 and H16 LPAIVs circulate independently of each other and emphasize the need to 57 

investigate within clade antigenic variation of LPAIVs in wild birds. 58 

 59 

Keywords: avian viruses, influenza, evolution, epidemiology, ecology, antigenic variation, 60 

seabird  61 
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 4 

Introduction 62 

 63 

Wild birds of the orders Anseriformes (mainly ducks, geese and swans) and Charadriiformes 64 

(mainly gulls, terns and waders) play a major role in the epidemiology of low pathogenic 65 

avian influenza viruses (LPAIVs). LPAIVs are characterized into subtypes based on their 66 

surface proteins hemagglutinin (HA, H1-H16) and neuraminidase (NA, N1-N9), e.g. H13N6. 67 

Ducks play an important role in the epidemiology of most LPAIV subtypes. However, birds 68 

of the order Charadriiformes—in particular gulls— are the major reservoir for subtypes H13 69 

and H16 (Table S1) (1-4). High prevalence of H13 and/or H16 LPAIVs has been observed in 70 

juvenile gulls at breeding colony sites (5-7) and in adults during spring and/or fall migration 71 

(8, 9). H13 and H16 viruses have a global distribution. Since first detection in 1977, H13 72 

viruses have been detected in North America, South America, Europe, Asia, Africa and 73 

Oceania. Since their first detection in 1975, H16 viruses have been detected in North 74 

America, South America, Europe and Asia. The spatial isolation of host populations has 75 

shaped LPAIV evolution and led to the independent circulation of different virus gene pools 76 

between Western and Eastern hemispheres (10). Yet, some pelagic gull populations connect 77 

multiple continents through seasonal migration and overlapping distributions and could 78 

facilitate rapid and long-distance dispersal of LPAIV genomes (2, 9, 11-14). For instance, 79 

great black-backed gulls (Larus marinus) migrate between Europe and the east coast of North 80 

America, and LPAIVs consisting of both North American as well as Eurasian genes have 81 

been isolated from this species (12). Upon intercontinental gene flow, i.e. the movement of 82 

genes between the different continents, some LPAIV genes seem to have become established 83 

in the population, e.g. H6 (15). 84 

Influenza A viruses (IAV) belong to the family Orthomyxoviridae and are negative 85 

sense single-stranded RNA viruses with a segmented genome. The genome consists of eight 86 
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 5 

segments encoding 12 proteins or more, including the surface proteins HA and NA. The HA 87 

protein of IAV is a major determinant for virus binding to cells and subsequent cell entry and 88 

for generation of IAV-specific antibodies, and thus subjected to strong selective pressure (16). 89 

Indeed, in wild birds—in particular mallards (Anas platyrhynchos)—LPAIV infection 90 

dynamics seem to be shaped between LPAIV subtypes partially by pre-existing homo- or 91 

heterologous antibodies (17). Furthermore, within other host systems, evasion of IAV-specific 92 

antibodies by IAVs—so called antigenic variation—has been described for seasonal human 93 

IAVs (18, 19), swine IAVs (20-22), equine IAVs (23) and for highly pathogenic avian 94 

influenza viruses (HPAIVs) that circulate in poultry (24, 25). Despite numerous studies on the 95 

genetic variation of LPAIVs in wild birds, the antigenic variation within LPAIV subtypes that 96 

circulate in wild birds is barely investigated (26, 27). 97 

To better understand LPAIV epidemiology in gulls, we investigated the global 98 

distribution of H13 and H16 LPAIVs and the antigenic variation of a representative subset of 99 

H13 and H16 LPAIVs. Based on the sequencing of HA genes of 84 viruses, and 100 

hemagglutination inhibition assays, we showed that intercontinental H13 and H16 gene flow 101 

occurred frequently, and that H16 genetic lineages did not form antigenic clusters, suggesting 102 

that clade-defining mutations were not in critical epitopes (i.e. part of the antigen that binds to 103 

specific antibodies). In contrast, the H13 genetic clades partially corresponded with the 104 

antigenic variation of H13 LPAIVs, suggesting part of the clade-defining mutations were in 105 

critical epitopes.  106 

 107 

Results 108 

 109 

Phylogeographic structure and intercontinental gene flow 110 

 111 
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 6 

Phylogenetic analyses supported that the H13 HA was structured in three major genetic 112 

lineages (A-C; Figure 1, S1 and S2). The time to the most recent common ancestor (tMRCA) 113 

of the H13 HA gene was dated in 1927 (± 95% HPD (highest posterior density): [1920-114 

1934]). The tMRCA of viruses of clade A (1963 [1958-1966]) was older than the ones of 115 

clade B (1975 [1974-1976]) and C (1977 [1976-1978]). Our analyses support that the 116 

geographic origin of H13 viruses of clade B and C could be North America and Europe, 117 

respectively (posterior probabilities for the geographic origin of the most recent common 118 

ancestor [MRCA]: 1 for clade B and 1 for clade C). For clade A, limited historical data of 119 

viruses from different locations as well as low posterior probability (0.62) precludes a 120 

conclusion on the geographic origin of the MRCA.  121 

 Since the first isolation of an H13 IAV from a gull in 1977, 20 potential events of 122 

intercontinental gene flow were identified (indicated with 1-20 in Figure 1, S3 and Table 2). 123 

Clade A supports the maintenance of H13 in European gulls, with evidence of multiple 124 

introductions to North America and Asia (events #3, #5, #6, #7, and #10), and a reverse 125 

introduction from North America to Asia (event #8). Clade C was also composed mainly of 126 

viruses circulating in Europe, with evidence of multiple introductions to North America 127 

(events #12, #15, #19) and Asia (events #13, #16, #17). The introduction of clade C H13 HA 128 

in North America (event #19) was followed by an introduction to South America (event #20). 129 

Evidence for intercontinental gene flow among North American H13 IAV occurred among 130 

eastern and western North American isolates (event #3, #12, #15 and #19). Clade B was 131 

composed almost exclusively of viruses circulating in North America, although one gene flow 132 

event to South America occurred recently (event #11). 133 

 The H16 HA was structured in at least two major genetic lineages (Figure 2, S4 and 134 

S5). The MCC tree was structured in three main clades (A-C, Figure S5), while the ML tree 135 

provided support for only two main genetic clades (A and B/C merged, Figure S4). The 136 
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tMRCA of the H16 HA gene was dated in 1924 [1914-1932]. Clade A included only viruses 137 

from Europe and was dated in 1977 [1975-1980]; clade B included only viruses from North 138 

America with a time to the tMRCA estimated in 1969 [1967-1971]. Our analyses supported 139 

that the geographic origin of clade A and B was Europe and North America, respectively 140 

(posterior probabilities for the geographic origin of the MRCA: 0.99 for clade A, 1 for clade 141 

B). The tMRCA of clade C was estimated 1965 [1962-1968]. Clade C may have arisen in 142 

Europe (posterior probabilities for the geographic origin of the MRCA: 0.87) and consisted of 143 

viruses of mixed origin, i.e. Europe, Asia and North America.  144 

Since the first isolation of an H16 IAV from a black-legged kittiwake (Rissa 145 

tridactyla) in 1975, ten intercontinental gene flow events were identified for viruses of clade 146 

C (indicated with 1-10 in Figure 2, S6 and Table 3). As for the H13 subtype, strong support 147 

for gene flow between Europe and North America was found, in particular from North-148 

Western European countries: Denmark to North-eastern America (Delaware, New Hampshire, 149 

Quebec), and Iceland to Newfoundland (events #6 and #10). Evidence for intercontinental 150 

gene flow among North American H16 IAV occurred among eastern and western North 151 

American isolates (event #3, #6, #8 and #10). In particular, intercontinental gene flow #8 152 

seems to have been maintained in North America after its initial introduction in 2006 [2005-153 

2006], for at least ten years, and may have replaced clade B of H16 HA (Figure 2). 154 

 High rates of nucleotide substitution obtained for the H13 HA genetic lineages were 155 

consistent with those previously reported for H4, H6 and H7 subtypes circulating in wild 156 

ducks (Table 4). However, the nucleotide substitution rate of clade B—that consists 157 

exclusively of North American IAV—was lower than mean rates and HPD obtained for the 158 

other two H13 clades. The mean dN/dS rate obtained for the three H13 genetic clades were 159 

comparable to those previously reported for other subtypes and suggests that the HA was 160 

under strong purifying selection (Table 4). Nonetheless, a slightly higher dN/dS rate obtained 161 
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for clade B and C as compared to other lineages suggests that they may be subjected to a more 162 

neutral selection. The mean nucleotide substitution and dN/dS rates for the H16 gene were also 163 

consistent with H13 HA as well as with H4, H6 and H7 subtypes from wild ducks. However, 164 

H16 clade C (European mixed)– that consisted of viruses of a geographically more mixed 165 

origin – had slightly lower nucleotide substitution rates and higher dN/dS rates than clade A 166 

(European) and clade B (North American) (Table 4). 167 

 168 

Antigenic diversity between H13 and H16 LPAIV  169 

 170 

As expected from two different HA subtypes, the H13 and H16 viruses formed two separate 171 

antigenic variants. The H13 and H16 viruses were generally well separated, forming groups 172 

on opposite sides of the antigenic map (Figure 3, Table 5). A total of nine amino acid 173 

positions within/near the receptor binding site of the HA were identified that differed 174 

consistently between H13 and H16 viruses (based on alignments of 338 H13 and 192 H16 HA 175 

indicated in Table 6), of those, amino acid position 145 was located in the 130-loop, 200 and 176 

208 in the 190-helix and 231 and 233 in the 220-loop of the receptor binding site of the HA 177 

(HA numbering based on (28, 29). Of those, amino acid position 233 was listed previously as 178 

being involved in differences in receptor-binding site between HAs originating from Laridae 179 

and Anatidae (30). Additionally, the amino acid at position 196 differed between H13 (valine 180 

[V]) and H16 (aspartic acid [D]) viruses; this position may contribute to receptor binding 181 

specificity as identified previously based on crystal structures of H5 and H13 LPAIV (31). 182 

Due to non-specific cross-reactivity, two H13 viruses (i.e. HEGU/AK/458/85 and 183 

HEGU/AK/479/85) had unexpected high titers against H16 antisera (Table 5) and were 184 

therefore positioned in the center of the map and served to pull H13 and H16 together.  185 

 186 
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Antigenic diversity among H13 LPAIV  187 

 188 

The representative H13 viruses formed at least two different antigenic variants (Figure 3, 189 

Table 5). The viruses of H13 clades A and B were genetically distinct (Figure 1) but were 190 

antigenically similar (Figure 3), based on the H13 clade A antisera cross-reacting with H13 191 

clade B viruses and vice versa. In contrast, H13 clade C viruses reacted poorly—if at all—192 

with antisera that were raised against clade A and B viruses, and, conversely, antisera against 193 

clade C viruses rarely reacted with substantial titers with viruses of clade A and B. Thus, H13 194 

clade A/B and H13 clade C viruses formed two different antigenic variants. The antigenic 195 

diversity of H13 clade A/B combined is about the same as the antigenic diversity of the H13 196 

clade C. One H13 clade B virus, i.e. LAGU/DB/1370/86, could not be placed well in the map 197 

due to HI titers of 40 or lower (Table 5). 198 

To gain insight into the molecular basis of the antigenic variation between H13 clade 199 

A/B and C, amino acids that differed consistently among the different clades of H13 viruses 200 

were indicated (based on the alignment of 338 H13, Table 6). A total of four amino acid 201 

positions within/near the receptor binding site of the HA were identified that differed 202 

consistently for clade A, B and/or C. Of those, amino acids at positions 149 and 254 differed 203 

consistently between clade A/B and C. Viruses belonging to clade C—except a single virus 204 

from South America that had a arginine (R) at position 149—had a deletion at position 149 205 

(previously identified using a smaller dataset as position 154 (12)), in contrast to viruses of 206 

clade A or B that had an aspartic acid (D), glutamic acid (E), asparagine (N) or serine (S) at 207 

this position. The correlation between the antigenic distance of H13 representative viruses 208 

from A/gull/MD/704/1977 (H13N6) (clade A)—the first detected H13 virus—and the number 209 

of HA1 amino acid substitutions from A/gull/MD/704/1977 was 0.87 and was statistically 210 

significant (P < 0.0001, Pearson correlation). 211 
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 10 

 212 

Antigenic diversity among H16 LPAIV  213 

 214 

The representative H16 viruses formed at least one antigenic variant (Figure 3 and Table 5). 215 

The genetically distinct H16 clades A, B and C did not form separate antigenic clusters in the 216 

map, which reflects the raw HI data as there are no patterns for any of the four H16 antisera 217 

tested that correspond to the genetic lineages. The antigenic diversity of the H16 viruses is 218 

within eight antigenic units, with BHGU/NL/1/07 being on the edge of this antigenic space 219 

(i.e. low titers to all sera). The antigenic diversity of H16 clade A/B/C is about the same as the 220 

antigenic diversity of the H13 clade A/B combined and similar to the antigenic diversity of 221 

the H13 clade C. 222 

Though clade A, B and C did not form separate antigenic clusters in our analysis, amino acids 223 

that differed consistently among the different clades of H16 viruses were indicated (based on 224 

the alignment of 192 H16 HA, Table 6). A total of three amino acid positions within/near the 225 

receptor binding site of the HA were identified that differed consistently among the three H16 226 

clades and were not associated with antigenic variation. The correlation between the antigenic 227 

distance of the representative viruses from A/Black-headed gull/TM/13/76 (H16N3) (clade 228 

C)—one of the first detected H16 viruses—and the number of HA1 amino acid substitutions 229 

from A/Black-headed gull/TM/13/76 was 0.67 and was statistically significant (P = 0.003, 230 

Pearson correlation).  231 

 232 

Discussion 233 

 234 

We investigated the evolutionary history and intercontinental gene flow based on the 235 

hemagglutinin (HA) gene of H13 and H16 LPAIV and selected representative viruses from 236 
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genetically distinct lineages to determine their antigenic properties by HI assays. H13 formed 237 

at least three distinct genetic clades as suggested previously based on smaller datasets (9, 32-238 

35), while H16 formed at least two distinct genetic clades. Twenty and ten events of 239 

intercontinental gene flow were identified for H13 and for H16 viruses, respectively. At least 240 

two antigenic variants of H13 and at least one antigenic variant of H16 were identified. The 241 

presence of different antigenic variants among viruses of a single LPAIV subtype is in 242 

contrast to previous findings based on antigenic characterization of LPAIV H3 (26), and 243 

implies that antigenic variation within LPAIV subtypes occurs. 244 

The frequency of intercontinental gene flow of the HA gene of H13 and H16 viruses 245 

was similar to the HA gene of H6 viruses, but lower than for internal genes (2, 27, 36, 37). 246 

Previously, intercontinental gene flow has been described extensively for the H6 HA genes, 247 

while no intercontinental gene flow was detected for the H4 and H7 subtypes (15, 38). For the 248 

H6 subtype, gene flow has been described ten times with four established genes during a 249 

period of 31 years (1975-2006; (15)). Also, evidence for intercontinental gene flow among 250 

North American H13 and H16 genes occurred among eastern and western North American 251 

LPAIVs in contrast to eastern North American LPAIVs only as reported previously (39). 252 

Given the relatively high number of intercontinental flow of IAV internal genes by shorebirds 253 

and gulls (2, 27, 36, 37), one may have expected a higher gene flow of gull-associated H13 254 

and H16 HA genes, compared to e.g. H6. However, a higher intercontinental gene flow only 255 

was apparent with H13 (i.e. 20 events during a period of 35 years). This may suggest i) 256 

broader host range, host population size and/or host distribution of H13 than H16, and/or ii) 257 

local H13-specific herd-immunity is lower than H16-specific herd immunity and therefore 258 

less limiting establishment opportunities in host populations of H13, and/or iii) higher 259 

environmental survival of H13 than of H16, and/or iv) introduced H13 HA genes may be less 260 

affected by strong subtype-dependant competition with endemic HA genes (e.g. with respect 261 
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to linkage to NS1 and NP as these contain most gull-specific features (33)) than introduced 262 

H16 genes. Interestingly, no H13 or H16 gene flow was described from Asia to Europe, 263 

which is in contrast to e.g. HPAIV H5 viruses that have been introduced from Asia to Europe 264 

several times (40, 41). The relatively low frequency of detection of intercontinental gene flow 265 

of H13 or H16 genes out of North America and in particular Asia, relative to Europe, may be 266 

due to a bias in IAV surveillance and sequencing (i.e. number of available IAV sequences 267 

from gulls isolated in Europe is higher than from North America and in particular Asia).  268 

Antigenic diversity of LPAIV depends partially on the host population size and 269 

structure. In this study, both H13 and H16 LPAIV formed at least three or two distinct genetic 270 

clades respectively that did not or only partially corresponded with antigenic clusters. The 271 

H16 genetic clades did not form antigenic clusters, suggesting that clade-defining mutations 272 

were not in critical epitopes. In contrast, the H13 genetic clades partially corresponded with 273 

the antigenic variation of H13 LPAIV, suggesting that part of the clade-defining mutations 274 

were in critical epitopes. Also, given that the H13 antigenic space is larger than the antigenic 275 

space covered by H16 viruses, the host population of H13 may be larger and more widely 276 

distributed than the host population of H16 LPAIV, facilitating the circulation of more than 277 

one antigenic variant of a single LPAIV subtype. Strong genetic and antigenic divergence 278 

between two co-circulating lineages could be the product of a very large host meta-population 279 

size and relatively rare cross-species transmission rate (42). Globally, viruses of the H13 280 

subtype seem to be more common than viruses of the H16 subtype (2, 4), which is consistent 281 

with the finding that H13 LPAIV consists of multiple antigenic variants. Besides increased 282 

host population size and host distribution, prolonged virus survival may shape LPAIV 283 

epidemiology and evolution. Antigenic diversity within H13 LPAIV may be shaped by amino 284 

acid substitutions near the receptor binding site of the HA protein. In this study, we found 285 

evidence that amino acids or deletions at positions 149 and 254 of the HA protein may be 286 

 on O
ctober 7, 2020 by guest

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


 13 

involved in antigenic diversity among H13 strains. In addition, position 149 could be involved 287 

in H16 LPAIV antigenic diversity as all H16 viruses had a deletion at this position and H16 288 

clade A, B and C were antigenically similar. 289 

Co-circulating and newly introduced H13 or H16 LPAIV can be either antigenically 290 

similar or antigenically different. In the Northern hemisphere, H13 and H16 IAV subtypes 291 

circulate most extensively on breeding colonies in hatch-year birds at the end of summer and 292 

early fall (5-7). In black-headed gulls (which in Europe are one of the main host for H13 and 293 

H16 LPAIV), infection with H13 or H16 result in strong protection against reinfection with 294 

the same virus, however susceptibility to infection with the other subtype or with another 295 

strain of the same subtype is unknown (43, 44). Our findings support the independent long-296 

term maintenance and co-circulation of at least two genetically distinct lineages of H13 and of 297 

H16 in Eurasia. This pattern is similar to the one that has been described for the H3 IAV 298 

subtype in ducks in North America (42). Our analysis showed that these genetically distinct 299 

co-circulating lineages may belong to the same antigenic variant. Here, we found evidence 300 

that genetically distinct co-circulating H13 or H16 LPAIV on a black-headed gull breeding 301 

colony site in the Netherlands may be either antigenically different (e.g. H13 clade A virus 302 

A/BHGU/NL/7/2009 (H13N2) and H13 clade C virus A/BHGU/NL/20/2009 (H13N2) or 303 

antigenically similar (e.g. H16 clade A A/BHGU/NL/10/2009 (H16N3) and 304 

A/BHGU/NL/21/2009 (H16N3) and H16 clade C A/BHGU/NL/26/2009 (H16N3). Similar, 305 

intercontinental gene flow occurred with HA genes that were antigenically similar to local 306 

circulating viruses (i.e. H16 clade C viruses that were genetically closely related to 307 

SB/DB/172/06 and SB/DB/195/06 versus local circulating H16 clade B viruses), and HA 308 

genes that were antigenically different from local circulating viruses (i.e. H13 clade C viruses, 309 

genetically closely related to LAGU/NJ/AI08-0714/08 versus local circulating H13 clade B 310 

viruses. 311 
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Antigenic variation within a LPAIV subtype at the clade level (i.e. H13 clade A/B 312 

combined versus H13 clade C) was described here, yet less is known about antigenic variation 313 

within genetic clades of H13, H16 or other LPAIV subtypes. For H13, genetic diversity 314 

within clades seemed stable—e.g. viruses of clade A, B or C, collected over three decades 315 

were antigenically closely related—suggesting no major genetic differences; this is in contrast 316 

to the few mutations needed for antigenic change in seasonal human IAV. Similarly, a study 317 

on antigenic variation of H3 LPAIV isolated in North America suggested that genetically 318 

diverse viruses were antigenically stable (26). Major antigenic changes in seasonal human 319 

IAV were due to amino acid substitutions immediately adjacent to the receptor binding site 320 

(18); this could potentially also explain antigenic variation between antigenically different 321 

viruses of H13 clade A/B combined and clade C (i.e. amino acid positions 149 of the HA). 322 

Future work on antigenic variation of LPAIV should include within clade genetic and 323 

antigenic variation. 324 

 325 

Materials and Methods 326 

 327 

Viruses. The HA sequences of H13 (n=64) and H16 (n=20) viruses isolated from wild birds 328 

in North America (n=39 and n=5, respectively) and Europe (n=25 and n=15, respectively) 329 

between 1976 and 2010 were determined at the University of Minnesota (Saint Paul, 330 

Minnesota, USA) and at the Department of Viroscience of the Erasmus Medical Center 331 

(Rotterdam, the Netherlands). Details on virus isolates including GenBank accession numbers 332 

are summarized in Table S2 and S3; details related to the Sanger sequencing methodology are 333 

available upon request. The HA sequences were supplemented with full-length nucleotide 334 

sequences of the HA gene of H13 and H16 viruses isolated from wild birds between 1975 and 335 

2017 and downloaded from GenBank (https://www.ncbi.nlm.nih.gov). The full dataset 336 
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included sequences of H13 (n=519) and H16 (n=276) HA genes and was biased towards virus 337 

strains collected since 2000 due to increased surveillance and sequencing since 2000. 338 

Of this full dataset, viruses representing the genetically distinct clades were selected (n=44; 339 

H13 clade A, B, C and H16 clade A, B, C; see the Results section for clade definition) to 340 

investigate the antigenic diversity of H13 and H16 viruses. Of those viruses, viruses that were 341 

genetically most divergent were selected (n=10) to generate ferret antisera (Table 1). The 342 

antigenic properties of all representative viruses (n=44) were analysed in hemagglutination 343 

inhibition (HI) assays using the panel of ten ferret antisera. 344 

 345 

Genetic analyses. The nucleotide sequences of the coding region of H13 and H16 HA were 346 

aligned with the program CLC 8.0 (CLC bio, Aarhus, Denmark). Neighbor-Joining trees were 347 

then generated, with 1000 bootstraps, in order to assess the overall genetic structure of the 348 

H13 (n=519) and H16 (n=276) HA sequences. To lower the bias in species and geography 349 

(e.g. black-headed gulls (Chroicocephalus ridibundus) from the Netherlands and glaucous-350 

winged gulls (Larus glaucescens) from Alaska), duplicate sequences (i.e. identical sequences 351 

of the same host species, location and date) were identified with Mothur 1.39.5 (45) and 352 

removed, resulting in final alignments of H13 (n=338) and H16 (n=192) HA. To identify the 353 

genetic structure of H13 and H16 virus subtypes Maximum-likelihood trees with 1000 354 

bootstraps were generated with the software PhyML 3.1 (46). The general time reversible 355 

(GTR) evolutionary model, an estimation of the proportion of invariable sites (I) and of the 356 

nucleotide heterogeneity of substitution rate (α) was used as selected by Model Generator 357 

0.85 (47). To investigate the evolutionary history of H13 and H16 virus subtypes Bayesian 358 

Markov Chain Monte Carlo coalescent analyses were performed. The temporal structure of 359 

the dataset was assessed with the program TempEst 1.5.3 (48). Both datasets showed a 360 

positive correlation between genetic divergence and sampling time and appear to be suitable 361 
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for phylogenetic molecular clock analyses. Time to the most recent common ancestors 362 

(MRCA) as well as geographic ancestral states (i.e. continent), and their associated posterior 363 

probabilities were obtained based on the method described by Lemey et al. with the program 364 

BEAST 1.10.1 (49, 50). A strict molecular clock model was selected as relaxed clock models 365 

(uncorrelated exponential and uncorrelated lognormal) resulted in low effective sample sizes 366 

(ESS < 200) in spite of high chain length (>200 million states). In all simulations a Bayesian 367 

skyline coalescent tree prior (51) was selected. The Shapiro-Rambaut-Drummond-2006 368 

nucleotide substitution model was selected (52), and has been used in population dynamic 369 

studies of other IAV subtypes (15, 38, 42, 53). Overall, a similar methodology was used as in 370 

previous studies on IAV evolutionary dynamics of subtypes H4, H6 and H7 (15, 38, 54). 371 

Analyses were performed with two independent chain lengths of 100 million generations 372 

sampled every 1000 iterations; the first 10% of trees were discarded as burn-in. Substitutions 373 

rates based on independent analyses of the major H13 and H16 clades were obtained using the 374 

program BEAST 1.10.1. Nonsynonymous substitutions (dN) and synonymous substitutions 375 

(dS) rates were obtained using the single likelihood ancestor counting method implemented in 376 

HyPhy (55). Computations were performed with the Datamonkey webserver (56, 57).  377 

 378 

Antisera. Post-infection antisera were prepared upon nasal inoculation of ferrets (> 1 year of 379 

age, male, two ferrets per virus) with virus (cultured on embryonated chicken eggs, per ferret 380 

10
6
 - 10

7
 median egg infectious dose (EID50)/100 µl) and blood collection by exsanguination 381 

14 days later. An overview of antisera used in this study is provided in Table 1. Antisera were 382 

pre-treated overnight at 37ºC with receptor-destroying enzyme (Vibrio cholerae 383 

neuraminidase), followed by inactivation for 1 hr at 56ºC before use in HI assays. 384 

 385 

Antigenic analyses. HI assays were performed according to standard procedures (58). The HI 386 
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titer is expressed as the reciprocal value of the highest serum dilution that completely 387 

inhibited hemagglutination. To investigate antigenic variation among and within H13 and 388 

H16 viruses, antigenic cartography methods were used as described previously (19). Briefly, 389 

antigenic cartography is a method to analyse and visualize HI assay data. The titers in an HI 390 

table can be thought of as specifying target distances between antigens and antisera. In an 391 

antigenic map, the distance between antigen point A and antiserum point S corresponds to the 392 

difference between the log2 value of the maximum observed titer to antiserum S from any 393 

antigen and the titer of antigen A to antiserum S. Modified multidimensional scaling methods 394 

are used to arrange the antiserum and antigen points in an antigenic map to best satisfy the 395 

target distances specified by the HI data (18). Because antigens are tested against multiple 396 

antisera, and antisera are tested against multiple antigens, many measurements can be used to 397 

determine the position of the antigens and antisera in an antigenic map, thus improving the 398 

resolution of the HI data. 399 

 400 

Ethics statement. This study was approved by the independent animal experimentation 401 

ethical review committee Stichting DEC consult (Erasmus MC permit 122-98-01, 122-08-04 402 

and 15-340-03) and was performed under animal biosafety level 2 (ABSL-2) conditions. 403 

Animal welfare was monitored daily, and all animal handling was performed under light 404 

anesthesia (ketamine) to minimize animal discomfort. 405 

 406 

Data availability. Sequences are available in GenBank under accession numbers KF612922 407 

to KF612965, KR087564, KR087572, KR087577 to KR087595, KR087597 to KR087601, 408 

KR087604 to KR087615, and MK027211 and MK027212. 409 

 410 

 411 
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 611 

Figure legends 612 

Figure 1. Maximum clade credibility (MCC) trees for influenza A virus H13 hemagglutinin 613 

subtype (n= 338). Branches were colored according to most probable geographic origin (red: 614 

North America; orange: South America; dark blue: Europe; light blue: Asia; green: Oceania; 615 

gray: not identified). Black node bars represent the 95% highest posterior densities for times 616 

of the common ancestors. Numbers highlight intercontinental gene flow events as detailed in 617 

Table 2 and Figure S3. Virus strain names and posterior probabilities are detailed in Figure 618 
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S2. 619 

 620 

Figure 2. Maximum clade credibility (MCC) trees for influenza A virus H16 hemagglutinin 621 

subtype (n=192). Branches were colored according to most probable geographic origin (red: 622 

North America; orange: South America; dark blue: Europe; light blue: Asia; green: Oceania; 623 

gray: not identified). Black node bars represent the 95% highest posterior densities for times 624 

of the common ancestors. Numbers highlight intercontinental gene flow events as detailed in 625 

Table 3 and Figure S6. Virus strain names and posterior probabilities are presented in Figure 626 

S5. 627 

 628 

Figure 3. Antigenic map of H13 and H16 influenza A viruses (n=44). Different subtypes and 629 

genetic clades are indicated with colors (yellow: H13 clade A; orange: H13 clade B; red: H13 630 

clade C; blue: H16 clade A; purple: H16 clade B; green: H16 clade C). White circles indicate 631 

the antisera. Respective virus strains are abbreviated; the full name can be found in Table 5. 632 

Asterices indicates antigens BHGU/NL/20/09, BHGU/SE/1/06, BHGU/SE/1/03, 633 

GBBG/AK/1421/79, BHGU/NL/1/07, HEGU/NY/AI00-532/00 and LAGU/NJ/AI08-0714/08 634 

that had only two numerical HI titers to the tested sera and hence their placement in the map 635 

is not robust. In this map the distance between the points represents antigenic distance as 636 

measured by the hemagglutination inhibition (HI) assay in which the distances between 637 

antigens and antisera are inversely related to the log2 HI titer. Each square in the grid of the 638 

antigenic map equals a two-fold difference in the HI assay. 639 

 640 

Tables 641 

Table 1. Representative viruses selected to generate ferret antisera used to map the antigenic 642 

diversity of H13 and H16 influenza A viruses 643 
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Subtype Clade Virus strain name 

H13 A A/Gull/Maryland/704/1977 (H13N6) 

 A A/Black-headed gull/Netherlands/2/2007 (H13N6) 

 B A/Ring-billed gull/Georgia/AI00-2658/2000 (H13N6) 

 B A/Gull/Minnesota/1352/1981 (H13N6) 

 C A/Laughing gull/ New Jersey/AI08-0714/ 2008 (H13N9) 

 C A/Great black-headed gull/Astrakhan/1420/1979 (H13N2) 

H16 A A/Black-headed gull/Sweden/2/1999 (H16N3) 

 B A/Herring gull/New York/AI00-532/2000 (H16N3) 

 C A/Black-headed gull/Turkmenistan/13/1976 (H16N3) 

 C A/Black-headed gull/Sweden/5/1999 (H16N3) 

 644 

Table 2. Intercontinental gene flow events for influenza A virus H13 hemagglutinin. MRCA: 645 

Most Recent Common Ancestor. HPD: Higher Posterior Density. Event # corresponds to the 646 

numbers indicated in Figure 1 and S3 647 

 648 

H13 

Clade 

Event 

# 

Time of the 

MRCA ± 95% 

HPD 

Geographic origin of the 

MRCA (posterior) 

Location of 

introduction 

A 1 1963 [1958-

1966] 

North America (0.62) Oceania 
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 2 1974 [1972-

1975] 

North America (0.73) Europe 

 3 1988 [1987-

1989] 

Europe (1) North America 

 4 1990 [1988-

1991] 

Europe (0.82) South America 

 5 1996 [1995-

1997] 

Europe (0.75) Asia 

 6 2003 [2003-

2004] 

Europe (1) Asia 

 7 2005 [2004-

2005] 

Asia (0.48) North America 

 8 2009 (2009-

2010] 

North America (0.9) Asia 

 9 2006 [2006-

2007] 

Europe (0.96) Asia 

 10 2011 [2010-

2011] 

Europe (1) Asia 

B 11 2013 [2012-

2014] 

North America (0.96) South America 

C 12 1987 [1985-

1988] 

Europe (0.99) North America 

 on O
ctober 7, 2020 by guest

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


 30 

 13 2002 [2002-

2003] 

Europe (1) Asia 

 14 2005 [2004-

2005] 

Asia (0.55) North America 

 15 2010 [2009-

2010] 

Europe (1) North America 

 16 2004 [2003-

2005] 

Europe (0.97) Asia 

 17 2013 [2013-

2014] 

Europe (0.99) Asia 

 18 2014 [2013-

2014] 

North America (0.39) Asia 

 19 2011 [2010-

2011] 

Europe (0.99) North America 

 20 2012 [2011-

2012) 

North America (0.94) South America 

 649 

 650 

Table 3. Intercontinental gene flow events for influenza A virus H16 hemagglutinin. MRCA: 651 

Most Recent Common Ancestor. HPD: Higher Posterior Density. Event # corresponds to the 652 

numbers indicated in Figure 2 and S6 653 

H16 Event Time of the Geographic origin Location of introduction 
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Clade # MRCA ± 95% 

HPD 

of the MRCA 

(posterior) 

C 1 1971 [1968-

1972] 

Europe (0.97) Asia 

 2 1976 [1976-

1976] 

Asia (0.71) Europe 

 3 1976 [1972-

1980] 

Europe (0.86) North America 

 4 1999 [1999-

1999] 

Europe (1) Asia 

 5 2003 [2002-

2004] 

Europe (1) Asia 

 6 1999 [1998-

2000] 

Europe (0.99) North America 

 7 2008 [2007-

2009] 

Europe (0.99) Asia 

 8 2006 [2005-

2006] 

Europe (0.97) North America 

 9 2006 [2006-

2007] 

North America 

(0.55) 

South America 

 10 2008 [2007-

2009] 

Europe (0.63) North America 

 654 
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Table 4. Molecular evolution of the HA gene of influenza A virus subtypes H13 and H16 655 

Genetic 

lineage 
N

1 
Time period

2 
Substitution rate

3 
dN/dS 

   Mean 95% HPD Mean 

H13 338 40 3.8 3.6-4.1 0.13 

H13 - A 54 39 3.8 2.3-4.9 0.09 

H13 - B 76 39 0.8 0.6-1.0 0.18 

H13 - C 208 37 5.5 5.0-6.0 0.16 

H16 192 41 3.1 2.8-3.4 0.09 

H16 - A 56 33 4.5 3.9-5.2 0.10 

H16 - B 19 35 4.6 3.9-5.2 0.06 

H16 - C 117 40 1.5 1.2-1.8 0.11 

1 number of nucleotide sequences included in the analysis; 2 in years; 3 per 10-3 substitution / site / 656 

year; HPD: highest posterior density. 657 

 658 

Table 5. Hemagglutinin inhibition data of H13 and H16 influenza A viruses (n=44) 659 

Suptype    H13 H16 

Clade    A A B B C C A B C C 

 Virus name Subtype Virus abbreviation 

B
H

G
U

/N
L

/2
/0

7
  

G
U

L
L

/M
L

/7
0
4
/7

7
  

G
U

L
L

/M
N

/1
3

5
2

/8
1

 

R
B

G
U

/G
E

/A
I0

0
-2

6
5
8

/0
0
 

G
B

B
G

/A
K

/1
4
2

0
/7

9
 

L
A

G
U

/N
J/

A
I0

8
-7

1
4

/0
8
 

B
H

G
U

/S
E

/2
/9

9
 

H
E

G
U

/N
Y

/A
I0

-5
3

2
/0

0
 

B
H

G
U

/S
E

/5
/9

9
 

B
H

G
U

/T
M

/1
3
/7

6
 

H13 / A A/Black-headed gull/Netherlands/2/07 H13N6 BHGU/NL/2/07 320 280 80 <10 20 <10 <10 <10 <10 25 

 A/Black-headed gull/Netherlands/4/07 H13N6 BHGU/NL/4/07 1280 400 320 <10 35 <10 <10 <10 10 40 

 A/Black-headed gull/Netherlands/7/09 H13N2 BHGU/NL/7/09 10 160 <10 <10 <10 <10 10 <10 <10 15 

 A/Black-headed gull/Sweden/10/05 H13N6 BHGU/SE/10/05 240 320 40 <10 10 <10 <10 <10 <10 15 

 A/Great-black headed gull/Sweden/1/03 H13N6 GBBG/SE/1/03 80 240 20 <10 <10 <10 <10 <10 <10 <10 

 A/gull/ML/704/77 H13N6 GULL/ML/704/77 40 240 20 <10 <20 <10 <10 <10 <10 <10 

H13 / B A/gull/MN/1352/81 H13N6 GULL/MN/1352/81 120 160 320 <10 20 <10 <10 <10 <10 <10 

 A/gull/NJ/34/92 H13N6 GULL/NJ/34/92 80 240 80 <10 240 <10 <10 <10 <10 <10 

 A/Herring gull/DB/13/90 H13N2 HEGU/DB/13/90 40 140 140 10 25 <10 <10 <10 <10 <10 

 A/Laughing gull/DB/1370/86 H13N2 LAGU/DB/1370/86 10 40 <10 10 40 <10 <10 <10 <10 <10 

 A/ring-billed gull/GE/AI00-2658/00 H13N6 RBGU/GE/AI00-

2658/00 

10 60 40 640 15 <10 <10 <10 <10 <10 

 A/ring-billed gull/MN/AI10-1708/10 H13N6 RBGU/MN/AI10-

1708/10 

80 200 120 10 10 <10 <10 <10 <10 <10 

H13 / C A/Black-headed gull/Netherlands/1/00 H13N8 BHGU/NL/1/00 35 <10 <10 <10 1280 120 <10 30 <10 30 

 A/Black-headed gull/Netherlands/20/09 H13N2 BHGU/NL/20/09 <10 <10 <10 <10 280 <10 <10 <10 <10 35 

 A/Black-headed gull/Netherlands/4/08 H13N8 BHGU/NL/4/08 <10 <10 <10 <10 140 80 <10 <10 <10 25 

 A/Black-headed gull/Sweden/1/03 H13N8 BHGU/SE/1/03 <10 <10 <10 <10 560 40 <10 <10 <10 <10 
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 A/Black-headed gull/Sweden/1/06 H13N8 BHGU/SE/1/06 <10 <10 <10 <10 120 <10 <10 <10 <10 <10 

 A/Black-headed gull/Sweden/1/99 H13N6 BHGU/SE/1/99 10 <10 10 30 160 <10 <10 <10 <10 10 

 A/Black-headed gull/Sweden/2/03 H13N8 BHGU/SE/2/03 <10 <10 <10 <10 200 50 <10 <10 <10 10 

 A/Great-black headed gull/AK/1420/79 H13N2 GBBG/AK/1420/79 10 35 10 <10 2720 160 10 <10 35 25 

 A/Great-black headed gull/AK/1421/79 H13N2 GBBG/AK/1421/79 <10 <10 <10 <10 140 80 <10 <10 <10 <10 

 A/Great-black headed gull/AK/591/82 H13N2 GBBG/AK/591/82 <10 40 <10 <10 480 100 <10 <10 40 80 

 A/Great-black headed gull/GJ/76/83 H13N2 GBBG/GJ/76/83 <10 <10 <10 <10 320 80 <10 <10 <10 30 

 A/Herring gull/AK/458/85 H13N6 HEGU/AK/458/85 30 20 <10 <10 1920 480 70 <10 80 80 

 A/Herring gull/AK/479/85 H13N6 HEGU/AK/479/85 140 35 10 <10 1920 640 280 120 280 120 

 A/Laughing gull/NJ/AI08-714/08 H13N9 LAGU/NJ/AI08-

714/08 

<10 <10 <10 <10 320 560 <10 <10 <10 <10 

H16 / A A/Black-headed gull/Netherlands/5/07 H16N3 BHGU/NL/5/07 35 25 <10 <10 140 <10 960 160 320 640 

 A/Black-headed gull/Netherlands/1/07 H16N3 BHGU/NL/1/07 <10 <10 <10 <10 <10 <10 80 <10 <10 40 

 A/Black-headed gull/Netherlands/10/09 H16N3 BHGU/NL/10/09 20 80 <10 <10 280 15 1280 160 640 640 

 A/Black-headed gull/Netherlands/21/09 H16N3 BHGU/NL/21/09 70 200 20 <10 240 <10 480 <10 240 280 

 A/Black-headed gull/Netherlands/3/07 H16N3 BHGU/NL/3/07 100 90 20 <10 100 <10 120 140 60 120 

 A/Black-headed gull/Sweden/2/99 H16N3 BHGU/SE/2/99 10 <10 <10 <10 10 <10 960 80 35 380 

 A/Black-headed gull/Sweden/8/05 H16N3 BHGU/SE/8/05 <10 <10 <10 <10 10 <10 1280 <10 30 140 

H16 / B A/Herring gull/DB/2617/87 H16N3 HEGU/DB/2617/87 <10 <10 <10 <10 <10 <10 <10 120 20 1600 

 A/Herring gull/NY/AI0-532/00 H16N3 HEGU/NY/AI0-

532/00 

<10 <10 <10 <10 <10 <10 <10 320 <10 320 

 A/Laughing gull/DB/2839/87 H16N3 LAGU/DB/2839/87 <10 <10 <10 <10 <10 <10 160 80 20 1920 

H16 / C A/Black-headed gull/Netherlands/26/09 H16N3 BHGU/NL/26/09 10 25 <10 <10 20 <10 30 80 20 1280 

 A/Black-headed gull/Sweden/5/99 H16N3 BHGU/SE/5/99 10 <10 <10 <10 70 <10 560 30 1600 400 

 A/Black-headed gull/TM/13/76 H16N3 BHGU/TM/13/76 25 30 <10 <10 27,5 <10 50 320 100 4800 

 A/environment/Sweden/2/05 H16N3 ENV/SE/2/05 20 30 10 <10 140 30 960 320 1280 640 

 A/Little tern/Sweden/1/05 H16N3 LITE/SE/1/05 <10 15 <10 <10 15 <10 10 30 20 1280 

 A/shorebird/DB/172/05 H16N3 SB/DB/172/05 <10 <10 <10 <10 30 <10 240 60 200 1280 

 A/shorebird/DB/195/06 H16N3 SB/DB/195/06 <10 <10 <10 <10 <10 <10 <10 30 20 560 

 A/Slender-billed gull/AK/28/76 H16N3 SBGU/AK/28/76 20 140 10 <10 50 <10 80 160 100 1280 

 660 

Table 6. Amino acid differences within/near the receptor binding site of the HA protein 661 

among H13 and H16 subtypes and clades, based on the HA gene of H13 (n=338) and H16 662 

(n=192) LPAIVs, including the 130-loop (position 136-147 according to Burke & Smith 663 

2014), 190-helix (200-208) and 220-loop (230-240). DEL, deletion of amino acid. 664 

Amino acid 

position 
139 142 145 149 166 176 177 196 198 200 208 217 218 224 231 233 

Clade                 

H13 A D A,T,S A D,E,N,S K,Q K T V,L V E S,G K S,L K P Y 

H13 B D A,T,S A D,N,S K,R G,R T V,I T,A E S,G S,R,N,H S,L K,N P,L Y,

Q 

H13 C D V,A A DEL,R K,R,S G,R T,A,V V,I T,A,E E D,N,S S,R,G S,T N,T,K P Y 

H16 A E T S DEL L G E D E T K K E E I D 

H16 B D V S DEL DEL G D D E,? T,V K K,E E E I D,E

,N 

H16 C D V,A S DEL K,DEL G E,D D E T K K E E I,V D,

N 

 665 
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