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a b s t r a c t 

We introduce the time-dependent capacitated profitable tour problem with time windows and prece- 

dence constraints. This problem concerns determining a tour and its departure time at the depot that 

maximizes the collected profit minus the total travel cost (measured by total travel time). To deal with 

road congestion, travel times are considered to be time-dependent. We develop a tailored labeling al- 

gorithm to find the optimal tour. Furthermore, we introduce dominance criteria to discard unpromising 

labels. Our computational results demonstrate that the algorithm is capable of solving instances with up 

to 150 locations (75 pickup and delivery requests) to optimality. Additionally, we present a restricted 

dynamic programing heuristic to improve the computation time. This heuristic does not guarantee opti- 

mality, but is able to find the optimal solution for 32 instances out of the 34 instances. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

The effective usage of empty vehicles’ space is an important

opportunity to increase the efficiency of urban transportation sys-

tems and to reduce traffic congestion, fuel consumption, and pol-

lution. Companies (e.g., Uber) can generate extra income by rent-

ing out vehicles’s empty space rising in their transportation pro-

cesses. Several mobile applications are developed to improve the

last-mile deliveries by involving the city’s residents. For instance,

Roadie created an on-the-way delivery network which is an on-

line market where people post their required shipments and where

anyone can offer to execute the shipment. DHL launched a plat-

form called MyWays, enabling individuals to deliver packages with

products ordered online directly to other end consumers. For those

individuals with limited transportation resources, it is important to

know which parcels are profitable to collect and deliver. On the

one hand, serving a request may be attractive because it gener-

ates revenue. On the other hand, there is additional cost for serv-

ing the request. Consequently, it might not always be economi-

cally beneficial to serve a request. Moreover, customers are not

always available to receive the ordered goods (i.e., shops are not

open 24/7 or e-commerce customers are not always home). There-

fore, these customers propose specific time windows in which they
∗ Corresponding author. 
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ant to be served. These extra constraints make it a challenge for

he independent courier to be everywhere on time. He has to se-

ect a subset of the requests to be served within the requested

ime windows. Furthermore, due to the limited capacity of the

oad network and increased traffic congestion, the travel speed is

erious affected by these traffic fluctuations. This results in great

ariations in travel times and thereby on the arrival times at cus-

omers. Therefore, the travel time between locations is dependent

n the time the driver departs (e.g., in rush hours traveling takes

ore time). Not considering the time-dependent travel time re-

ults in too late arrivals at the customers (see e.g., Ta ̧s , Dellaert,

an Woensel, & de Kok, 2014 ). All these complex situations illus-

rate the need for the independent couriers to have a tool to help

hem out in making decisions on which request to serve and which

ime to depart. However, scarce literature can be found that focus

n this area. 

This paper aims at building such a tool by modeling and solving

 time-dependent capacitated profitable tour problem with time

indows and precedence constraints. We consider a single vehicle

ith capacity limit and a set of requests which have a pick-up and

 delivery node. Each pickup node and delivery node has its own

ime window in which it should be served. Moreover, a delivery

ode of a request can only be served after its pickup node is vis-

ted. For each served request a profit is collected. To capture travel

peed variation during a day, a time-dependent travel time func-

ion is assigned to each edge linking two nodes. The objective is to

etermine the vehicle’s tour starting and ending at the depot, and

http://dx.doi.org/10.1016/j.ejor.2017.07.004
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Fig. 1. An illustration of the time-dependent capacitated profitable tour problem with time windows and precedence constraints. P i and D i are the pickup node and delivery 

node of request i , respectively. 
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aximizing the difference between the total collected profits and

otal travel cost (see Fig. 1 ). Following the literature in this area,

he tour’s total travel cost is equal to the tour’s duration. 

The described problem is NP-hard because it is an extension of

he traveling salesman problem with pickup and delivery (TSPPD),

hich itself is an extension of the traveling salesman problem

TSP). In contrast to the TSPPD and the TSP, in our problem, it is

ot necessary to visit all the requests. 

The main contributions of this paper are summarized as fol-

ows. First, we introduce a new model which extends the classical

SPPD by having time-dependent travel times and the option to

eject requests. Secondly, we propose an exact solution method for

his problem by developing a tailored labeling algorithm in which

ovel and strong dominance criteria are used. Finally, a restricted

ynamic programing heuristic is proposed with a high solution

uality and lower computation times than the labeling algorithm. 

The remainder of the paper is structured as follows.

ection 2 provides a brief review of related existing work.

ection 3 defines the problem and introduces a mathematical

ormulation of the problem. In Section 4 , we present the tailored

abeling algorithm and in Section 5 the restricted dynamic pro-

raming heuristic is introduced. Finally, computational results are

eported in Section 6 , followed by conclusions in Section 7 . 

. Literature review 

There are three classes of problems closely related to the prob-

em studied in this paper: the traveling salesman problem with

ickup and delivery (TSPPD), the time-dependent vehicle routing

roblem (TDVRP) and the traveling salesman problem with profits

TSP with profits). 

.1. The traveling salesman problem with pickup and delivery 

TSPPD) 

Our problem extends the TSPPD by considering time-dependent

ravel times. The TSPPD is firstly introduced by Ruland and Rodin

1997) and is proven to be of great use in applications like dial-a-

ide systems and courier services. Although the pickup and deliv-

ry problem (PDP), in which the TSPPD can appear as a subprob-

em, is extensively studied in the literature, only limited research

ocuses on the TSPPD. 

Currently, the most popular methodology for solving the

SPPD is branch-and-cut. Ruland (1994) and Ruland and Rodin
1997) considered the undirected case of this problem and de-

eloped four classes of valid inequalities that are embedded in

 branch-and-cut algorithm. The algorithm is tested on instances

ith up to 15 pickup and delivery requests. Recently, Dumitrescu,

opke, and Cordeau (2010) studied the same problem, the authors

nalyzed its polyhedral structure and proposed new valid inequal-

ties that are shown to be facets for the TSPPD polytopes. Their

lgorithm is capable of solving instances with up to 35 pickup and

elivery requests to optimality. 

The TSPPD appears as pricing problem for the PDP and is

n that situation usually named as the elementary shortest path

roblem with time windows, capacity and pickup and delivery

ESPPTWCPD). Sol (1994) , Sigurd and Pisinger (2004) and Ropke,

ordeau, and Laporte (2009) presented labeling algorithms with

everal different dominance rules to solve this problem to optimal-

ty. 

.2. The time-dependent vehicle routing problem with time windows 

TDVRP) 

Another related problem is the TDVRP. Although the TDVRP has

ttracted the attention of many researchers, literature on this sub-

ect remains scarce. The pioneering work is done by Malandraki

nd Daskin (1992) and Malandraki and Dial (1996) . In these papers

ixed integer linear programs and several heuristics to solve the

roblem are proposed. The First-In-First-Out (FIFO) property, which

mplies that for every arc a later departure time results in a later

or equal) arrival time, is an intuitive and desirable property for

ime dependent routing problems. Ichoua, Gendreau, and Potvin

2003) and Dabia, Ropke, van Woensel, and de Kok (2013) consid-

red the TDVRP with travel time variability modeled by “constant

peed” time periods, which ensures the FIFO property. The idea of

onstant speed time periods is adopted in our problem as well. 

Due to the complexity of the time-dependent problem, most of

he existing algorithms are based on heuristics. In van Woensel,

erbache, Peremans, and Vandaele (2008) a tabu search heuris-

ic is used to solve the capacitated vehicle routing problem with

ime dependent travel times. An approximation based on queue-

ng theory and the number of vehicles on a link is used to de-

ermine travel speeds. Donati, Montemanni, Casagrande, Rizzolo,

nd Gambardella (2008) developed a multi-ant colony system

or the TDVRP and Ibaraki et al. (2008) proposed an iterated lo-

al search heuristic for the time-dependent vehicle routing prob-

em with time windows (TDVRPTW). Recently, Dabia et al. (2013)
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Table 1 

Parameters. 

Notation Definition 

R = { 1 , . . . , n } Set of requests 

N Set of nodes 

A Set of arcs 

N P Set of pickup nodes 

N D Set of delivery nodes 

(i, n + i ) A transportation request R i 
r i Profit of request R i 
q i Demand of request R i 
Q Carrying capacity of the vehicle 

[ e i , l i ] Time window of node i 

s i Service time at node i 

t i Departure time from node i 

τ ij ( t i ) Travel time from node i to node j with departure time t i at node i 
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developed a branch-and-price algorithm for the TDVRPTW, where

a tailored labeling algorithm is presented to solve the time-

dependent shortest path problem with resource constraint (TDSP-

PRC), which is the pricing problem in the algorithm. 

2.3. The traveling salesman problem with profits (TSP with profits) 

The proposed problem extends the traveling salesman problem

with profits (TSP with profits), in which profits are associated with

each request and the overall goal is to find the shortest tour with

the maximum collected profits. This means that in contrast to the

original TSP, not all nodes have to be visited. In comparison with

our study, it does not include time dependency and requests with

pickup and delivery nodes. 

According to Feillet, Dejax, and Gendreau (2005) , TSPs with

profits can be categorized into three generic problems depending

on the way the terms profits and travel time are addressed in the

objective function and constraints. They can be classified in the

following categories: the profitable tour problem (PTP), the prize-

collecting traveling salesman problem (PCTSP), and the orienteer-

ing problem (OP). Dell’ Amico, Maffioli, and Varbrand (1995) stud-

ied the profitable tour problem (PTP) where both the profits and

the travel time are combined in the objective function. Our study

builds upon the PTP by having the profits and the travel time in

the objective as well. In the prize-collecting TSP (PCTSP) the ob-

jective is similar to PTP but a constraint is added to ensure that

a minimum amount of profits is collected within the tour. In the

original definition of the PCTSP by Balas (1989) there were also

penalty values for unvisited nodes within the objective function.

An abundant number of publications is devoted to the orienteering

problem (OP), which aims to maximize the collected profits subject

to a constraint on the maximum allowed tour length. This problem

is also known as the selective traveling salesman problem ( Laporte

& Martello, 1990 ). 

A variant of the OP is the time-dependent orienteering prob-

lem (TDOP) which includes time-dependent travel times. Fomin

and Lingas (2002) provided a (2 + ε) -approximation algorithm for

the TDOP which runs in polynomial time if the ratio between

the minimum and maximum travel time between any two sites

is constant. Li (2011) designed a novel dynamic labeling algo-

rithm for the TDOP in which time is measured in discrete units.

Therefore, the FIFO property may not be satisfied in their model.

Verbeeck, Aghezzaf, and Vansteenwegen (2014) provided a fast so-

lution method for the TDOP based on an ant colony optimiza-

tion algorithm. Recently, Verbeeck, Vansteenwegen, and Aghez-

zaf (2016) presented an ant colony optimization based algorithm

for the stochastic variant of the TDOP, which is addressed as the

stochastic time-dependent orienteering problem with time win-

dows. For more details about the OP and its variants, readers are
eferred to Vansteenwegen, Souffriau, and Oudheusden (2011) and

unawan, Lau, and Vansteenwegen (2016) . 

To the best of our knowledge, no literature is found that han-

les a combination of precedence in pickup and delivery, profit-

aximizing selection and time-dependent travel time routing cost

inimization at the same time. Thus, in this study, we introduce

he time-dependent capacitated profitable tour problem with time

indows and precedence constraints, which takes care of these

hree challenges simultaneously. Moreover, both exact and heuris-

ic methods are proposed to solve this problem. 

. Problem description and mathematical formulation 

In this section, we first define the problem and introduce the

otation used throughout the paper. Afterwards, we present a

athematical formulation for the problem. 

.1. Problem definition 

The time-dependent capacitated profitable tour problem with

ime windows and precedence constraints is defined as follows.

e consider a set of n requests R 1 , . . . , R n , where R i (i = 1 , . . . , n )

s associated with the pickup node i and the corresponding de-

ivery node n + i . Let G = (N, A ) be a directed graph, where N =
 0 , 1 , . . . , 2 n + 1 } is the set of all nodes, and 0 and 2 n + 1 repre-

ent the origin and destination depot of the vehicle. We define the

ubsets N P = { 1 , . . . , n } and N D = { n + 1 , . . . , 2 n } as the pickup and

elivery nodes, respectively. With each pickup node i ∈ N P a profit

 i and a load q i are associated, and with each delivery node a load

 n + i is associated. For the requests, it must hold that q i = −q n + i .
here is no inventory at the depots and therefore q 0 = q 2 n +1 = 0 .

o serve the requests we have one vehicle available with limited

apacity Q . 

A hard time window [ e j , l j ] is associated with each node

 ∈ N P ∪ N D , where e j and l j represent the earliest and latest time,

espectively, at which the service at node j may start. The service

ime is denoted by s j . A vehicle needs to wait until time e j , if it is

rriving at node j before time e j ; and arriving later than l j is not

llowed. We denote [ e 0 , l 0 ], [ e 2 n +1 , l 2 n +1 ] as the time windows of

he origin and the destination depot, respectively. Without loss of

enerality, we assume that e 0 = 0 and s 0 = s 2 n +1 = 0 . 

Let τ ij ( t i ) denote the travel time from node i to node j , which

epends on the departure time t i at node i . Then, we can define

he set of feasible arcs as A = { (i, j) ∈ N × N : i � = j and e i + s i +
i j (e i + s i ) ≤ l j } . This means that an arc from node i to node j is

nly included if it is possible to go from node i to j while respect-

ng the time windows of both nodes. 

The notation is summarized in Table 1 . 

The planning horizon is divided into several time periods. Each

rc ( i , j ) ∈ A has a speed profile associated with it, which consists of
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Fig. 2. Speed and travel time functions. 
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 constant speed within each time period. By using those stepwise

peed functions, the FIFO property holds for every arc in the graph

 (i.e., a later departure always leads to a later arrival and there-

ore overtaking will not occur). The speed profiles can be different

or each arc. 

Fig. 2 depicts a speed profile and the corresponding travel time

unction for some arc ( i , j ). Using the idea described in Ichoua et al.

2003) , we denote the points a , b , c , d , and e where the speed

hanges as speed breakpoints . There are also tra v el time breakpoints

n the travel time function. These are the departure times which

nsure an arrival at node j exactly at the time of a speed break-

oint (e.g., a 
′ 

is the departure time at node i to arrive at node j at

ime a ). 

The travel time function is piecewise linear and can be rep-

esented by the breakpoints values. Note that in case of time-

ependent travel times, the triangle inequality does not necessar-

ly hold. Intuitively, when the direct link between node h and l is

eavily congested, we may reach destination node l earlier by tak-

ng a diverted routed (i.e., via one or several other nodes) than by

he direct link from node h . 

Because of the FIFO property of the travel time functions, a later

eparture at the depot 0 always results in a later arrival time at

ode i . Therefore, if a path is infeasible for a certain departure time

 0 at the origin depot (i.e., a time window of a node in the path is

iolated), it will also be infeasible for any departure time t 
′ ≥ t 0 at

he origin depot. Given a path p = (v 0 , v 1 , . . . , v k ) with v 0 = 0 and

 i being the node at position i in the path p , we define δp 
v i (t) as the

eady time function at node v i in path p given a departure time t

t node 0. This ready time function is nondecreasing in t and can

e calculated recursively for each node in the path as follows: 

p 
v i (t) = 

{ 

t if i = 0 , 

max { e v i + s v i , δ
p 
v i −1 

(t) 

+ τv i −1 , v i (δ
p 
v i −1 

(t)) + s v i } otherwise . 
(1) 

The ready time function is piecewise linear and this means that

e can represent the ready time function by using the ready time

unction breakpoints . These are the breakpoints of the ready time

unction of the predecessor node, breakpoints of the travel time

unction, and the boundary values of the time window of node v i . 
The duration of the path given a departure time t at node 0

an be calculated as δp 
v (t) − t, which is again a piecewise linear
k 
unction. In this problem we minimize the total duration of the se-

ected tour instead of the sum of the arc cost. As the duration is a

iecewise linear function of the departure time, it is clear that the

inimum duration of a tour can be computed by only considering

he breakpoints of the ready time function. 

.2. Mathematical formulation 

For every arc ( i , j ) ∈ A , we denote T ij as the set of time peri-

ds of the corresponding travel time function τ ij ( t i ). A time pe-

iod T m 

∈ T ij , is defined by two consecutive travel time breakpoints,

 m 

= [ w m 

, w m +1 ] . As τ ij ( t i ) is linear in each time period, using w m 

,

 m +1 , τi j (w m 

) and τi j (w m +1 ) , we can easily calculate the corre-

ponding slope θm 

and its intersection ηm 

with the y -axis. There-

ore 

i j (t i ) = θm 

t i + ηm 

. ∀ t i ∈ T m 

(2) 

Furthermore, let x m 

i j 
be a binary variable that takes value 1 if

nd only if the vehicle traverses the arc ( i , j ) ∈ A with a depar-

ure time in time period m . A variable t m 

i j 
is introduced to denote

his departure time of traveling from i to j in time period T m 

. This

eans that t m 

i j 
is such that 

 

m 

i j = 

{
t i if x m 

i j 
= 1 , 

0 otherwise . 
(3) 

Consequently, when traveling from i to j , we have that: 

 i = 

∑ 

j∈ N\{ 0 } 

| T i j | ∑ 

m =0 

t m 

i j . (4) 

It means that the travel time function τ ij ( t i ) of arc ( i , j ) at node

 can be written as: 

i j (t i ) = 

| T i j | ∑ 

m =0 

(θm 

t m 

i j + ηm 

x m 

i j ) . (5) 

Let y i be a binary variable that equals 1 if and only if node

 ∈ N P ∪ N D is visited. Furthermore, let Q i , i ∈ N be a nonnegative in-

eger variable that is the load of the vehicle upon departure from

ode i . Then the mixed integer programing formulation is given as

ollows: 

ax 
∑ 

j∈ N P 
r j y j − (t 2 n +1 − t 0 ) (6) 

ubject to 

∑ 

j∈ N P 

| T 0 j | ∑ 

m =0 

x m 

0 j = 1 (7) 

∑ 

 ∈ N D 

| T i, 2 n +1 | ∑ 

m =0 

x m 

i, 2 n +1 = 1 (8) 

∑ 

 ∈ N\{ 2 n +1 } 

| T i j | ∑ 

m =0 

x m 

i j = y j ∀ j ∈ N \ { 0 } (9) 

∑ 

 ∈ N\{ 2 n +1 } 

| T ik | ∑ 

m =0 

x m 

ik −
∑ 

j∈ N\{ 0 } 

| T k j | ∑ 

m =0 

x m 

k j = 0 ∀ k ∈ N \ { 0 , 2 n + 1 } (10) 

∑ 

j∈ N\{ 0 } 

| T i j | ∑ 

m =0 

x m 

i j −
∑ 

j∈ N\{ 0 } 

| T n + i, j | ∑ 

m =0 

x m 

n + i, j = 0 ∀ i ∈ N P (11) 
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 j ≥ (1 + θm 

) t m 

i j + ηm 

x m 

i j + s j x 
m 

i j ∀ i ∈ N \ { 2 n + 1 } , j ∈ N \ { 0 }
(12)

Q i + q j ≤ Q j + M(1 − x m 

i j ) ∀ i, j ∈ N, ∀ m, m + 1 ∈| T i j | 
(13)

 n + i ≥ t i ∀ i ∈ N P (14)

 i = 

∑ 

j∈ N\{ 0 } 

| T i j | ∑ 

m =0 

t m 

i j ∀ i ∈ N \ { 2 n + 1 } (15)

w m 

x m 

i j ≤ t m 

i j ≤ w m +1 x 
m 

i j ∀ i, j ∈ N, ∀ m, m + 1 ∈| T i j | 
(16)

e i y i ≤ t i ≤ l i y i ∀ i ∈ N P ∪ N D (17)

max { 0 , q i } ≤ Q i ≤ min { Q, Q + q i } ∀ i ∈ N (18)

x m 

i j , y i ∈ { 0 , 1 } ∀ i, j ∈ N, ∀ m ∈| T i j | (19)

The objective function (6) aims to find a tour that maximizes

the collected profits minus the total traveling duration. Constraints

(7) –(8) guarantee that the path starts at the origin depot 0 and

ends at the destination depot 2 n + 1 . Constraints (9) guarantee that

every node, except the nodes representing the start and end de-

pots, is visited at most once. Constraints (10) keep the flow con-

servation. Constraints (11) ensure that it is not possible to visit

only the pickup node or only the delivery node of a certain re-

quest. Constraints (12) guarantee that the departure time at a node

in the route is larger or equal than the sum of the departure time

from the previous node, the travel time between these two nodes

and the required service time. Constraints (13) determine the con-

sistency of the load variables. Precedence constraints (14) ensure

that for each request i , the pickup node is visited before the de-

livery node. Constraints (15) are formulated as mentioned before

in (4) . Constraints (16) and (17) force the departure time of each

request to be in the given time period and the given time window.

Finally, Constraints (18) ensure that the load in the vehicle is never

larger than the capacity of the vehicle. 

Due to the computational inefficiency of solving large-scale in-

stances with a commercial ILP solver, we develop a tailored label-

ing algorithm to solve this problem. 

4. A tailored labeling algorithm 

In order to solve our problem, we introduce a new exact dy-

namic programing algorithm, that is named as the tailored la-

beling algorithm. Ropke et al. (2009) developed a labeling algo-

rithm to solve the pickup and delivery problems with time win-

dows (PDPTW). However, this time-independent algorithm is only

efficient if the triangle inequality holds. More recently, Dabia

et al. (2013) proposed another labeling algorithm for the time-

dependent vehicle routing problem with time windows. Their algo-

rithm has great potential for the time-dependent routing problem

without precedence constraints. 

In our situation the triangle inequality does not necessarily hold

due to the time dependent travel times and furthermore prece-

dence constraints are present. Therefore, we need to develop a new

algorithm. Note that the proposed algorithm can be generalized

to solve other time-dependent routing problems with precedence

constraints. 
The algorithm starts generating labels from the depot 0. It pro-

ressively extends all feasible labels until they reach the end depot

 n + 1 . Moreover, to speed up our tailored labeling algorithm, in-

tead of starting the label extension only from the origin depot 0

n a forward direction, we simultaneously generate labels in back-

ard direction from the destination depot to its predecessors as

ell. Where both forward labels and backward labels are extended

o some time t m 

(e.g., the middle of the planning horizon) but not

urther. At the end, complete paths are generated by merging the

artial paths of forward and backward labels. All complete paths

re evaluated and the path with the best objective function value

s the optimal path. This bidirectional approach has shown great

otential for improving the running time of related resource con-

trained shortest path problems (see, e.g., Righini and Salani, 2006 ;

abia et al., 2013 ). 

The forward labeling algorithm is introduced in Section 4.1 , fol-

owed by the backward labeling algorithm in Section 4.2 . If labels

re dominated by the criterion introduced in Sections 4.1.3 and

.2.3 , they are removed from the list. Note that if in the proce-

ure none of the labels are dominated, this algorithm is equal

o the complete enumeration of all feasible paths. Therefore the

ominance criterion is very important. Finally, we discuss the way

o merge the partial paths of forward and backward labels in

ection 4.3 . 

.1. The forward labeling algorithm 

In the forward labeling algorithm we start generating labels

rom the start depot. The definition of a forward label is discussed

n Section 4.1.1 . The labels are extended if the extension is feasible

s discussed in Section 4.1.2 . The dominance criterion for forward

abels is discussed in Section 4.1.3 . 

.1.1. Forward label 

For each forward label L f , we use the following notation: 

p ( L f ) The partial path of label L f . 

v (L f ) 
∗ The last node visited on the partial path p ( L f ). 

L −1 (L f ) 
∗ The parent label from which L f originates by extending

it with v (L f ) . 

O ( L f ) 
∗ The set of incomplete requests in p ( L f ), i.e., the pickup

node is visited but not the delivery node. 

U ( L f ) 
∗ The set of requests for which the pickup nodes are al-

ready visited along the partial path p ( L f ). It contains

both the complete and the incomplete requests. There-

fore, O ( L f ) ⊆U ( L f ). 

P ( L f ) The set of pickup nodes not visited in p ( L f ), i.e., j ∈ N P 

and R j �∈ U ( L f ). 

D ( L f ) The set of delivery nodes of incomplete requests in

p ( L f ), i.e., j ∈ N D and R j−n ∈ O (L f ) . 

q ( L f ) 
∗ The load of the vehicle after visiting node v (L f ) . 

δL f 
(t) ∗ The piecewise linear function that represents the ready

time at v (L f ) if the vehicle departed at the origin depot

at t and reached v (L f ) through partial path p ( L f ). More-

over, δL f 
(0) is the earliest ready time at v (L f ) since the

earliest departure time at the origin depot is 0. 

r ( L f ) 
∗ The overall profits collected by serving the requests vis-

ited on the partial path p ( L f ). 

Only the items marked with a ∗ are stored in the label. The set

 ( L f ) and P ( L f ) can be deduced from the sets O ( L f ) and U ( L f ). Fur-

hermore, the partial path can be deduced from iteratively check-

ng the last node visited in the parent label of which the this label

as an extension. 
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Fig. 3. Illustration of φ(L 1 
f 
, L 2 

f 
). 
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.1.2. Label extension 

We extend a label L 
′ 
f 

along an arc (v (L 
′ 
f 
) , j) , only when the

xtension is feasible in terms of time windows and capacity. First,

he following two conditions should be met: 

L 
′ 
f 

(0) + τv (L 
′ 
f 
) , j 

(δ
L 
′ 
f 

(0)) + s j ≤ min { t m 

, l j + s j } ∧ j ∈ N \ { 0 } 
(20) 

 (L f ) + q j ≤ Q ∧ j ∈ N \ { 0 } (21) 

Condition (20) ensures that an extension to node j can only be

erformed if node j can be reached within its time window and

uarantees that the extension is stopped before t m 

is exceeded.

ondition (21) ensures that an extension to node j is only possi-

le if there is enough capacity to deal with the load of node j . 

Secondly, L 
′ 
f 

and j must also satisfy one of the following three

onditions: 

j / ∈ U(L 
′ 
f ) ∧ j ∈ N P (22) 

j − n ∈ O (L 
′ 
f ) ∧ j ∈ N D (23) 

 (L 
′ 
f ) = ∅ ∧ j = 2 n + 1 (24) 

Condition (22) states that j should not have been visited be-

ore, if it is a pickup node. Condition (23) indicates that if j is a

elivery node, the corresponding pickup node should have been

isited already. The last condition, Condition (24) , states that if j

s the end depot then all visited requests should have been com-

leted. In the presence of those conditions, only elementary paths

hat satisfy precedence constraint (11) are generated. 

At last, we need to check that all delivery nodes of requests

or which the pickup node is already visited in p(L 
′ 
f 
) can still be

eached. In case the triangle inequality holds, a node is unreach-

ble if traversing the direct arc from j to this node is not pos-

ible by capacity, time window or precedence constraints. How-

ver, time-dependent travel times cannot guarantee the triangle

nequality. Therefore, a node that is unreachable via the direct arc

rom node j by the time window constraints might still be reach-

ble indirectly via a diverted route. First, we need to know the ear-

iest ready time at node j after following partial path p(L 
′ 
f 
) before

isiting node j , which will be denoted by t r (L 
′ 
f 
, j) . It holds that
 r (L 
′ 
f 
, j) = max { e j + s j , δL 

′ 
f 

(0) + τ
L 
′ 
f 
, j 
(δ

L 
′ 
f 

(0)) + s j } . Then, we need

or any unvisited node k the earliest arrival time given that the

ehicle visits node j and k consecutively after partial path p(L 
′ 
f 
) ,

hich can be computed by t r (L 
′ 
f 
, j) + τ jk (t r (L 

′ 
f 
, j)) . Finally, the ear-

iest possible time the vehicle could reach a node after node j

s given by t e (L 
′ 
f 
, j) = min 

k ∈ P(L 
′ 
f 
) ∪ D (L 

′ 
f 
) 
{ t r ( L ′ f , j) + τ jk ( t r ( L 

′ 
f 
, j)) } . This

eans that any node k with the latest allowed arrival time l k ear-

ier than this time (i.e., l k < t e (L 
′ 
f 
, j) ) is unreachable from j , also in

n indirect way as no node could be reached before t e (L 
′ 
f 
, j) . If a

elivery node k is unreachable after j and its corresponding pickup

ode is already visited (i.e., k − n ∈ O (L ′ 
f 
) ), the extension to j is not

easible as the picked up item cannot be delivered anymore. There-

ore, as stated in condition (25) , all delivery nodes of requests of

hich the pickup node is already visited in p(L 
′ 
f 
) should still be

eachable to make sure that extending label L 
′ 
f 

to j is feasible. Note

hat this test can be done quickly, but we might fail to find all un-

eachable delivery nodes. 

 k ≥ t e (L 
′ 
f , j) ∀ k ∈ D (L 

′ 
f ) : k � = j (25) 

f the extension along the arc (v (L 
′ 
f 
) , j) is feasible according to all

escribed conditions, then a new label L f is created. The informa-

ion in label L f is updated as follows: 

 

−1 (L f ) = L 
′ 
f (26) 

 (L f ) = j (27) 

L f (t) = max { e j + s j , δL 
′ 
f 

(t) + τ
L 
′ 
f 
, j 
(δ

L 
′ 
f 

(t)) + s j } (28) 

 (L f ) = q (L 
′ 
f ) + q j (29) 

(L f ) = 

{
r(L 

′ 
f 
) + r j if j ∈ N P , 

r(L 
′ 
f 
) otherwise . 

(30) 

 (L f ) = 

{
O (L 

′ 
f 
) ∪ { j} if j ∈ N P , 

O (L 
′ 
f 
) \ { j − n } if j ∈ N D . 

(31) 
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(L f ) = 

{
U(L 

′ 
f 
) ∪ { j} if j ∈ N P , 

U(L 
′ 
f 
) otherwise . 

(32)

Eqs. (26) –(30) set the last visited node, the ready time function,

the load, and the collected profits of the new label, respectively. Eq.

(31) updates the set of incomplete requests O ( L f ) and Eq. (32) up-

dates the set of visited pickup nodes U ( L f ). 

4.1.3. Label dominance 

Let dom ( L f ) and img ( L f ) be the domain and image of the ready

time function δL f 
(t) , respectively. If the partial path is feasible,

a departure at time 0 from the origin depot is always feasible.

Therefore, dom ( L f ) is always of the form [0, t ] for some t ≥ 0.

When v (L f ) = 2 n + 1 , the objective function value of the path cor-

responding to L f is: 

ob j(L f ) = r(L f ) − min 

t∈ dom (L f ) 
{ δL f (t) − t} (33)

In the labeling algorithm, all possible extensions are processed and

stored for each label. However, the number of labels that can be

processed is typically very large and computationally expensive.

Therefore, a dominance test is established between pairs of labels

that have the same last visited node. The number of labels is re-

duced by only storing the non-dominated labels. Before the domi-

nance criterion is introduced some definitions need to be provided.

First, similar to the idea of Feillet, Dejax, and Gendreau (2004) ,

we introduce for every label L f the set ˜ U (L f ) which extends U ( L f )

by adding requests of which the pickup node is unreachable from

v (L f ) . Similar to the discussion in Section 4.1.2 it can be derived

that the earliest possible time the vehicle could reach a pickup

node after v (L f ) is given by t e (L f ) = min j∈ P(L f ) ∪ D (L f ) 
{ δL f 

( 0) +
τv (L f ) j 

(δL f 
(0)) } . This means that any pickup node j with the lat-

est allowed arrival time l j earlier than this time (i.e., l j < t e ( L f )) is

unreachable from v (L f ) . Therefore, the corresponding request can-

not be served anymore and can be added to the set ˜ U (L f ) . Note

that the check l j < t e ( L f ) does not guarantee to find all unreachable

pick up nodes. 

Secondly, we define the interval 

I ⊆ (−∞ , max (dom (L 1 f )) − max (dom (L 2 f ))) . (34)

Based on I , we also define a real number φ(L 1 
f 
, L 2 

f 
) , 

φ(L 1 f , L 
2 
f ) = max { x ∈ I : δL 1 

f 
( max { 0 , t + x } ) ≤ δL 2 

f 
(t) , 

∀ t ∈ dom (L 2 f ) } . (35)

When φ(L 1 
f 
, L 2 

f 
) is positive, it indicates that the vehicle can de-

part at maximum φ(L 1 
f 
, L 2 

f 
) time units later when traversing partial

path p(L 1 
f 
) instead of traversing p(L 2 

f 
) , to still reach node v (L 1 

f 
) ear-

lier via path p(L 1 
f 
) then via partial path p(L 2 

f 
) . When it is negative,

it indicates that the vehicle should depart at least φ(L 1 
f 
, L 2 

f 
) time

units earlier when traversing partial path p(L 1 
f 
) instead of travers-

ing p(L 2 
f 
) , to be able to reach node v (L 1 

f 
) earlier via path p(L 1 

f 
)

then via partial path p(L 2 
f 
) . 

In Fig. 3 , we depict several simple examples: if there is

no intersection between labels L 1 
f 

and L 2 
f 
, φ(L 1 

f 
, L 2 

f 
) is positive

when max ( dom (L 1 
f 
)) > max (dom (L 2 

f 
)) (see Fig. 3 (a)), or negative

when max ( dom (L 1 
f 
)) < max (dom (L 2 

f 
)) (see Fig. 3 (b)). Otherwise,

φ(L 1 
f 
, L 2 

f 
) can only be negative (see Fig. 3 (c)). 

Finally, the dominance test is stated in Proposition 4.1 as fol-

lows: 
roposition 4.1. Label L 2 
f 

is dominated by label L 1 
f 

if 

1. v (L 1 
f 
) = v (L 2 

f 
) 

2. U(L 1 
f 
) ⊆ ˜ U (L 2 

f 
) 

3. O (L 1 
f 
) = O (L 2 

f 
) 

4. δ
L 1 

f 
(0) ≤ δ

L 2 
f 
(0) 

5. r(L 1 
f 
) ≥ r(L 2 

f 
) − φ(L 1 

f 
, L 2 

f 
) 

6. q (L 1 
f 
) ≤ q (L 2 

f 
) 

roof of Proposition 4.1. Consider two labels L 1 
f 

and L 2 
f 

that sat-

sfy the six conditions in Proposition 4.1 . We need to show that (i)

ny feasible extension L that extends p(L 2 
f 
) to 2 n + 1 is also a feasi-

le extension for p(L 1 
f 
) to 2 n + 1 and (ii) that for all these feasible

xtensions L it holds that ob j(L 1 
f 

⊕ 

L ) ≥ ob j(L 2 
f 

⊕ 

L ) , where L f 
⊕ 

L

s the label resulting from extending L f with L . 

With regards to point (i) , first, capacity will not be violated

long the path p(L 1 
f 

⊕ 

L ) as it was not violated on path p(L 2 
f 

⊕ 

L )

nd by condition 6 it holds that q (L 1 
f 
) ≤ q (L 2 

f 
) . Secondly, the path

p(L 1 
f 

⊕ 

L ) is elementary. By conditions 2 and 3, all nodes visited in

p(L 1 
f 
) are either nodes visited in p(L 2 

f 
) or nodes which could not be

eached by any extension of label L 2 
f 

(i.e., the nodes of requests in-

luded in 

˜ U (L 2 
f 
) \ U(L 2 

f 
)). A feasible extension of L 2 

f 
cannot contain

ny node visited along path p(L 2 
f 
) or node which is unreachable

rom label L 2 
f 
. Therefore, all nodes visited along path p(L 1 

f 
) are not

isited in L , so path p(L 1 
f 

⊕ 

L ) is elementary as well. Third, there

xists a departure time for path p(L 1 
f 

⊕ 

L ) which does not violate

ime windows. As L is a feasible extension of L 2 
f 

it means that there

s a departure time at v (L 1 
f 
) after δ

L 2 
f 
(0) making sure that all nodes

n L are visited within their time windows. If condition 4 is met,

he vehicle is via path p(L 1 
f 
) always able to reach v (L 1 

f 
) before this

ime. For example by departing at 0, the vehicle arrives at v (L 1 
f 
)

t time δ
L 1 

f 
(0) which is by condition 4 smaller than or equal to

L 2 
f 
(0) . Therefore, a departure at 0 over path p(L 1 

f 

⊕ 

L ) does not

iolate any time windows. In conclusion, any extension L of p(L 2 
f 
)

o 2 n + 1 will be a feasible extension of p(L 1 
f 
) to 2 n + 1 as it re-

ults in an elementary path with does not violate time windows

nd capacity constraints. 

Then for (ii) , it still has to be proven that for all feasible

xtensions of L of p(L 2 
f 
) to 2 n + 1 it holds that ob j(L 1 

f 

⊕ 

L ) ≥
b j(L 2 

f 

⊕ 

L ) . Let L 1 ∗
f 

= L 1 
f 

⊕ 

L and L 2 ∗
f 

= L 2 
f 

⊕ 

L . We also denote t 2 
0 

=
rgmin 

t∈ dom (L 2 ∗
f 

) { δL 2 ∗
f 
(t) − t} as the optimal departure time from the

epot for path p(L 2 ∗
f 

) and r ( L ) as the sum of the profits associated

ith the nodes visited along path p ( L ). The objective value of the

ath is: 

b j(L 2 ∗f ) = r(L 2 ∗f ) − (δL 2 ∗
f 
(t 2 0 ) − t 2 0 ) 

= r(L 2 f ) + r(L ) − (δL 2 ∗
f 
(t 2 0 ) − t 2 0 ) (36)

Now consider the path p(L 1 ∗
f 

) resulting from extending L 1 
f 

by

 . Moreover, consider a departure time at the depot of this path

f t 1 
0 

= max { 0 , t 2 
0 

+ φ(L 1 
f 
, L 2 

f 
) } . The time t 1 

0 
is a feasible departure

ime for label L 1 ∗
f 

because a departure time of 0 is always possible

as the extension of L 1 
f 

by L is feasible) and by the definition of

(L 1 
f 
, L 2 

f 
) in Eq. (35) t 2 

0 
+ φ(L 1 

f 
, L 2 

f 
) belongs to dom (L 1 

f 
) if it is non-

egative. This departure time t 1 0 ensures that we reach node v (L 1 
f 
)

t time δ
L 2 

f 
(t 2 

0 
) or earlier, meaning: 

L 1 
f 
(t 1 0 ) ≤ δL 2 

f 
(t 2 0 ) . (37)
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Moreover, as t 1 
0 

is a feasible departure time it can be used to

ompute a lower bound on ob j(L 1 ∗
f 

) : 

ob j(L 1 ∗f ) ≥ r(L 1 ∗f ) − (δL 1 ∗
f 
(t 1 0 ) − t 1 0 ) 

= r(L 1 f ) + r(L ) − (δL 1 ∗
f 
(t 1 0 ) − max { 0 , t 2 0 + φ(L 1 f , L 

2 
f ) } ) (38) 

≥ r(L 1 f ) + r(L ) − (δL 2 ∗
f 
(t 2 0 ) − max { 0 , t 2 0 + φ(L 1 f , L 

2 
f ) } ) (39) 

≥ r(L 1 f ) + r(L ) − (δL 2 ∗
f 
(t 2 0 ) − t 2 0 − φ(L 1 f , L 

2 
f )) (40) 

≥ r(L 2 f ) − φ(L 1 f , L 
2 
f ) + r(L ) − (δL 2 ∗

f 
(t 2 0 ) − t 2 0 − φ(L 1 f , L 

2 
f )) (41) 

≥ r(L 2 ∗f ) + r(L ) − (δL 2 ∗
f 
(t 2 0 ) − t 2 0 ) = ob j(L 2 ∗f ) (42) 

Note that in inequality (39) we use the property derived at

37) . Inequality (40) is derived by the simple fact that ∀ x ∈
 : − max { 0 , x } ≤ −x, and inequality (41) uses condition 5 of

roposition 4.1 . �

.2. The backward labeling algorithm 

In the backward labeling algorithm we start in the opposite di-

ection and start generating labels from the end depot. The defini-

ion of a backward label is discussed in Section 4.2.1 . The labels are

xtended as discussed in Section 4.2.2 . The dominance criterion for

ackward labels is discussed in Section 4.2.3 . 

.2.1. Backward label 

In the backward labeling algorithm, labels are extended from

he end depot 2 n + 1 to its predecessors. For a label L b , we asso-

iate the following components: 

p ( L f ) The partial path of label L b . 

v (L b ) 
∗ The first node visited on the partial path p ( L b ). 

L −1 (L b ) 
∗ The parent label from which L b originates by extending

it with v (L b ) . 

O ( L b ) 
∗ The set of incomplete requests, i.e., the delivery is vis-

ited but not the pickup node. 

U ( L b ) 
∗ The set of requests for which the delivery nodes are

already visited along the partial path p ( L b ). It contains

both the complete and incomplete requests. Therefore,

O ( L b ) ⊆U ( L b ). 

P ( L b ) The set of pickup nodes of incomplete request in p ( L b ),

i.e., j ∈ N P and R j+ n ∈ O (L b ) . 

D ( L b ) The set of delivery nodes not visited in p ( L b ), .i.e., j ∈ N D 

and R j−n / ∈ U(L b ) . 

q ( L b ) 
∗ The load of the tour after visiting node v (L b ) . 

δL b 
(t) ∗ The arrival time at the end node 2 n + 1 through the

partial path represented by L b when leaving node v (L b )

at time t . 

r ( L b ) 
∗ The overall profits collected with the requests com-

pleted on the partial path p ( L b ). 

Again, only the items marked with a ∗ are stored in the label

nd the sets D ( L b ) and P ( L b ) can be deduced from the sets O ( L b )

nd U ( L b ). Furthermore, the partial path can be deduced from iter-

tively checking the first node visited in the parent label of which

he this label was an extension. 

.2.2. Label extension 

Let dom ( L b ) be the domain of the function δL b 
(t) and let

 ( L ) denote the latest possible ready time at v (L ) : t (L ) =
l b b l b 
ax (dom ( L b )). We extend a label L 
′ 
b 

along an arc ( j, v (L 
′ 
b 
)) to cre-

te a new label L b . To be a feasible extensions at least the following

wo conditions should be met: 

 l (L b ) ≥ max { t m 

, e j + s j } ∧ j ∈ N \ { 2 n + 1 } (43) 

 (L b ) + q j ≤ Q ∧ j ∈ N \ { 2 n + 1 } (44) 

ondition (43) ensures that node j can be reached within its time

indow and that the extension will be stopped before t m 

is ex-

eeded, while condition (44) ensures capacity feasibility. Further-

ore, L 
′ 
b 

and j must satisfy one of the following three conditions: 

j + n ∈ O (L 
′ 
b ) ∧ j ∈ N P (45) 

j / ∈ U(L 
′ 
b ) ∧ j ∈ N D (46) 

 (L 
′ 
f ) = ∅ ∧ j = 0 (47) 

ondition (45) indicates that if j is a pickup node, the correspond-

ng delivery node should have been visited already. Furthermore,

ondition (46) states that if j is a delivery node, it should not have

een visited before. Finally, condition (47) , states that if j is the be-

in depot then all visited requests should have been completed. In

he presence of those conditions, only elementary paths that sat-

sfy precedence constraint (11) are generated. 

At last, it needs to be checked that all pickup nodes of incom-

lete requests for which the delivery node is included in p(L 
′ 
b 
) can

e visited before node j . To do so, first the latest possible arrival

ime at node j which ensures a ready time of t l ( L b ) at v (L b ) should

e determined. Let this be denoted by t r ( j, L 
′ 
b 
) , then it holds

hat t r ( j, L 
′ 
b 
) = min { l j , max { t : t + s j + τ

jv (L 
′ 
b 
) 
(t) + s v (L 

′ 
b 
) 
≤ t l (L 

′ 
b 
) } . As

hown t r ( j, L 
′ 
b 
) is determined by the latest possible arrival time at

 (i.e., l j ) or by the latest possibility departure time to reach v (L 
′ 
b 
)

n time. 

Then, all nodes from which the vehicle cannot depart before

ime t r ( j, L 
′ 
b 
) due to time window constraints, cannot be visited

efore node j and are defined as unreachable. This can be made

tronger by considering the travel time to node j as well. How-

ver, again due to the absence of the triangle inequality and the

ime dependent travel times we cannot simply consider the travel

ime of the direct connection. Therefore, we need for any unvis-

ted node k the latest possible departure time to arrive at j at time

 r ( j, L 
′ 
b 
) , which can be computed by max { t : t + τk j (t) ≤ t r ( j, L 

′ 
b 
)) } .

inally, the latest possible time the vehicle could depart from any

ode before node j is given by t d ( j, L 
′ 
f 
) = max 

k ∈ P(L 
′ 
f 
) ∪ D (L 

′ 
f 
) 
{ max { t :

 + τk j (t) ≤ t r ( j, L 
′ 
b 
) }} . 

This means that any node k with the earliest allowed arrival

ime e k later than this time (i.e., l k > t d ( j, L 
′ 
f 
) ) cannot be a prede-

essor of node j , also not in an indirect way as no node could be

eft after t d ( j, L 
′ 
f 
) and still reaching node j on time. 

If a pickup node k cannot be a predecessor of node j and its

orresponding delivery node is already visited (i.e., k + n ∈ O (L ′ 
f 
) ),

he extension to j is not feasible as the item which should be de-

ivered cannot be picked up anymore. Therefore, as stated in con-

ition (48) , all pickup nodes of requests of which the delivery node

s already visited in p(L 
′ 
b 
) should be a possible predecessor of j to

ake sure that extending label L 
′ 
b 

to j is feasible. 

 k ≤ t d ( j, L 
′ 
b ) ∀ k ∈ P (L 

′ 
b ) : k � = j (48) 
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Fig. 4. Illustration of φ(L 1 
f 
, L 2 

f 
). 
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If the extension along the arc ( j, L 
′ 
b 
) is feasible according to the

provided conditions, the information in label L b is set as follows: 

L −1 (L b ) = L 
′ 
b (49)

v (L b ) = j (50)

δL b (t) = δ
L 
′ 
b 

( max { e v (L 
′ 
b 
) 
, t + τ

jv (L 
′ 
b 
) 
(t) } + s v (L 

′ 
b 
) 
) (51)

q (L b ) = q (L 
′ 
b ) + q j (52)

r(L b ) = 

{
r(L 

′ 
b 
) + r j if j ∈ N P , 

r(L 
′ 
b 
) otherwise . 

(53)

O (L b ) = 

{
O (L 

′ 
b 
) \ { j} if j ∈ N P , 

O (L 
′ 
b 
) ∪ { j − n } if j ∈ N D . 

(54)

(L b ) = 

{
U(L 

′ 
b 
) ∪ { j − n } if j ∈ N D , 

U(L 
′ 
b 
) otherwise . 

(55)

4.2.3. Label dominance 

Dominance of the backward algorithm can be constructed in

the same way as in the case of the forward algorithm, because

the arrival time functions are non-decreasing and stepwise linear

as before. 

Similar to the forward algorithm, in Proposition 4.2 , we extend

the set U ( L b ) to ˜ U (L b ) by including request of which the pickup

or delivery node cannot be a predecessor of v (L b ) . Via the same

reasoning as in Section 4.2.2 it can be derived that the latest pos-

sible time a vehicle could depart from a node to reach v (L b )

on time is t d (L b ) = max j∈ P(L b ) ∪ D (L b ) 
{ max { t : t + τ jv (L b ) 

( t) ≤ t l ( L b ) −
s v (L b ) 

}} . This means that any node j with the earliest possible de-

parture time e j + s j later than this time (i.e., e j + s j > t d (L b ) ) can-

not be a predecessor of v (L b ) . Therefore, the corresponding request

cannot be served anymore and can be added to the set ˜ U (L b ) . 

Furthermore, we define φ(L 1 
b 
, L 2 

b 
) (see Fig. 4 ) as: 

φ(L 1 b , L 
2 
b ) = max { x ∈ R : δL 1 

b 
(t) + x ≤ δL 2 

b 
(t) , ∀ t ∈ dom (L 2 b ) } (56)

Then the dominance criterion will become: 

Proposition 4.2. Label L 2 
b 

is dominated by label L 1 
b 

if 

1. v (L 1 
b 
) = v (L 2 

b 
) 

2. U(L 1 
b 
) ⊆ ˜ U (L 2 

b 
) 
3. O (L 1 
b 
) = O (L 2 

b 
) 

4. t(L 1 
b 
) ≥ t(L 2 

b 
) 

5. r(L 1 
b 
) ≥ r(L 2 

b 
) − φ(L 1 

b 
, L 2 

b 
) 

6. q (L 1 
b 
) ≤ q (L 2 

b 
) 

For the proof of Proposition 4.2 the same reasoning as the proof

f Proposition 4.1 could be followed. 

.3. Merging forward and backward labels 

When all forward and backward labels are generated, they are

erged to construct feasible profitable tours. A forward label L f 
nd a backward label L b can be merged if the following conditions

re satisfied: 

1. v (L f ) = v (L b ) 

2. O (L f ) ∩ O (L b ) = { v (L f ) } 
3. (U(L f ) \ O (L f )) ∩ (U(L b ) \ O (L b )) = ∅ 
4. q (L f ) + q (L b ) = q v (L f ) 

5. Img ( L f ) ∩ dom ( L b ) � = ∅ 

The resulting path p(L ) = (p(L f ) 
⊕ 

p(L b )) has the following at-

ributes: 

1. v (L ) = 2 n + 1 

2. r(L ) = r(L f ) + r(L b ) − r v (L f ) 

3. O (L ) = ∅ 
4. U(L ) = U(L f ) ∪ U(L b ) 

5. q (L ) = 0 

6. δL (t) = δL b 
(δL f 

(t)) , ∀ t ∈ dom (L f ) such that δL f 
(t) ∈ dom (L b ) 

However, this bidirectional labeling algorithm can generate du-

licate solutions. Consider a feasible solution p ∗ including nodes i ,

 and k in this order. Each node x ∈ p ∗ is associated with a forward

abel L f ( x ) and a backward label L b ( x ) (i.e., v (L f (x )) = v (L b (x )) = x ).

herefore, the path p ∗ can be obtained by merging L f ( i ) with L b ( i )

s well as merging by L f ( j ) with L b ( j ). To overcome this drawback,

e devised an additional test: we accept a solution only when a

urther extension of the forward label is impossible. In our exam-

le (see Fig. 5 ) the extension from L f ( i ) to node j is feasible and the

xtension from L f ( j ) to node k is infeasible by the predefined fixed

ime t m 

. We generate solution p ∗ by merging L f ( j ) and L b ( j ) instead

f L f ( i ) and L b ( i ). The test is performed for each candidate pair of

abels and guarantees that each path is generated only once. 
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Fig. 5. An illustration of preventing duplicate solutions. 
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Algorithm 1: The restricted dynamic programing heuristic. 

input : Request size n with two parameters B and E 

output : The best route Rt ∗

1 for (each stage k = 0 , 1 , . . . , 2 n + 1 ) do 

2 Label set Z k = ∅ 
3 L 0 ← { v (L 0 ) , δL 0 

(t) , O (L 0 ) , U(L 0 ) , q (L 0 ) , r(L 0 ) } 
4 Z 0 ← Z 0 ∪ { L 0 } 
5 for (each stage k = 0 , 1 , . . . , 2 n ) do 

6 if ( Size of Z k ≥ B ) then 

7 Keep the B best labels in Z k 

8 for (each Label L k ∈ Z k ) do 

9 Do E of its f easible extensions . P ut the non -dominated 

l abel s into Z k +1 

10 F ind the best route Rt ∗ in set Z 2 n +1 

Table 2 

Characteristics of the TDPPDPTW and its vari- 

ants instances. 

Group Q W 

AA 15 60 

BB 20 60 

CC 15 120 

DD 20 120 

f  

E  

t  

Z

 

a

6

 

T  

o  

c  

a  

n  

P  

o  

f  

p  

r  

c  

i  
. Restricted dynamic programing heuristic algorithm 

Although the tailored labeling algorithm returns the opti-

al solution of our proposed problem, it is not fast enough to

olve problems of realistic size within reasonable computation

ime. 

In order to avoid enormous computation times and to save

emory usage, Malandraki and Dial (1996) proposed a restricted

ynamic programing heuristic algorithm for the TSP. The main con-

ept is to limit in each stage the number of partial paths for fur-

her extension by a given parameter B . Furthermore, in each stage

ll partial paths should have the same number of visited nodes.

alandraki and Dial (1996) show that increasing the value of B re-

ults in better solutions, but also in substantial higher computation

imes. Note that B = 1 results in a nearest neighborhood heuristic

nd B = ∞ results it an exact dynamic programing algorithm. 

Gromicho, van Hoorn, Kok, and Schutten (2012) propose a re-

tricted dynamic programing algorithm for solving realistic VRPs

nd restrict the state space even further, by using a form of beam

earch ( Bisiani, 1987 ), which means that each partial path is only

xpanded to E of its nearest feasible nodes. 

The same principle of restricting the number of extension of

 partial path can be applied to our labeling algorithm as well

ith some minor changes. Because of the precedence constraints,

xpanding a partial path to a pickup node may improve or de-

eriorate the objective function value depending on the profit of

hat node and the additional travel time to visit that node. How-

ver, expanding to a delivery node can only decrease the objec-

ive function value as additional travel time is necessary to visit

hat node while no profit is assigned the node. Moreover, because

f the time-dependent travel time, the objective function value of

 partial path is determined by its optimal departure time at the

rigin depot, which might change after a certain extension. 

Therefore, it is not sufficient to select the partial paths with the

ighest objective function value, and we introduce a new selec-

ion method for each stage taking global information into account.

or every extension of a partial path the E /2 best expanded par-

ial paths ending with a pickup node and the E /2 best expanded

artial paths ending with a delivery node are selected. Further-

ore, in each stage we select the best B /2 partial paths that ex-

and to a pickup node and the best B /2 partial paths that expand

o a delivery node for further expansion. Moreover, instead of just

sing the objective function value for the selection, we use the ear-

iest arrival time to order the expanded partial paths. If two ex-

anded partial paths have the same earliest arrival time, the ob-

ective function value will be used to order them. 

The restricted dynamic programing heuristic is described in

lgorithm 1 . Herein, an empty labels set Z k is created for each

tage k for further extension (Step 2). Then the first label which

epresents the start from the depot is generated and put into the

et Z 0 (Steps 3 and 4). If the number of the labels stored in each

tage k is larger than B , only the B best labels are selected for

d  
urther extension (Step 7). Moreover, for each label in stage k , only

 of its feasible extensions are made and put in Z k +1 (Step 9). In

he end, the best route Rt ∗ will be found by checking the labels in

 2 n +1 (Step 10). 

Note that there is no optimality guarantee anymore with such

 restricted dynamic programing heuristic algorithm. 

. Computational results 

In this section the computational experiments are discussed.

he algorithms are coded in JAVA and all computations are carried

ut on a single thread of a server with four CPU’s (2.4 gigahertz/6

ores) and 64 gigabytes RAM. Each run has a time limit of 2 weeks

nd a maximum memory allowance of 16 gigabytes RAM. For our

umerical study we use an adapted version of the instances for the

DPTW in Ropke et al. (2009) . In these instances, the coordinates

f each pickup and delivery location are both randomly and uni-

ormly distributed over a [0, 50] × [0, 50] square and a single de-

ot is located in this square. The load q i for each request R i is also

andomly selected from the interval [5, Q ], where Q is the vehicle

apacity. Table 2 summarizes the characteristic of these instances

ncluding the vehicle capacity Q and the width of the time win-

ows W . For each group, there are 10 instances with the number
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Fig. 6. An illustration of a instance with different speed profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Speed profiles. 

Congestion Morning Normal Evening Normal 

description peak peak 

Time periods 7 a.m.–9 a.m. 9 a.m.–5 p.m. 5 p.m.–7 p.m. 7 p.m.–9 p.m. 

1. SS 0.5 0.81 0.5 0.81 

2. NSMP 0.67 1.33 0.88 1.33 

3. NSEP 0.88 1.33 0.67 1.33 

4. FSTP 0.85 1.5 0.85 1.5 

5. HS 1.0 2.0 1.0 2.0 

c  

F

 

 

 

 

 

 

 

 

 

p  

s  

u  
of requests ranging from 30 to 75. For more details, we refer to

Ropke et al. (2009) . 

In addition to the instances proposed by Ropke et al. (2009) , we

created for each class four new small instances with the amount of

requests ranging from 10 to 25. They are generated by only keeping

the first α requests of the instance with 30 requests of each class,

where α = 10, 15, 20 and 25. For example, the instance AA10 is

created by considering the first ten requests of AA30. 

In our instances, the coordinates, time windows and loads of

the depot, pickup nodes and delivery nodes are the same as in the

instances of Ropke et al. (2009) . Furthermore, the vehicle capacity

Q is also the same. In the instances of Ropke et al. (2009) the travel

time is fixed and no profits were assigned to the requests. 

To make the travel time time-dependent, road congestion is

handled by a so-called speed model which consists of different

speed profiles. It is used to determine the travel time between two

nodes on a specific departure time. This speed model is based on

the speed model of Verbeeck et al. (2014) for the TDOP and Dabia

et al. (2013) for the TDVRPTW. Without loss of generality, we as-

sume that breakpoints are the same for all speed profiles as con-

gestion tends to happen around the same time regardless of the

type of speed profile. The pickup and delivery node of each re-

quest is randomly assigned to one of the three predefined areas:

morning and evening commuting area, city center and highways.

Then, the speed profile of a link is assigned according to the type

(e.g., depot or request node) and location of the tail node and head

node. 

In our speed model, the planning horizon covers 14 working

hours (840 minutes, from 7 a.m. to 9 p.m.) and a minute is set to be

one unit of time, while, in Ropke et al. (2009) , the planning horizon

of length 600 minutes is considered. Each speed profile has four

non-overlapping time periods with constant speed, reflecting two
 i  
ongested periods and two periods with normal traffic conditions.

ive speed profiles are included (see Fig. 6 and Table 3 ): 

• Slow speed (SS): these links represent a busy central business

district (CBD) with a lot of traffic during the whole day. 
• Normal speed with morning peak (NSMP): these links represent

roads leading from a residential area to the CBD. These roads

are in most cases congested in the morning. 
• Normal speed with evening peak (NSEP): these links represent

roads leading from a CBD to a residential zone. The roads typi-

cally encounter evening congestion. 
• Fast speed with two peaks (FSTP): these links represent roads

near the highway with a morning and evening peak in both di-

rections. 
• High speed (HS): these links connect the request nodes with

the depot . 

As in Ropke et al. (2009) all requests needed to be served no

rofits were assigned to the requests. To come up with meaningful

ettings for the profits we did preliminary tests with 20, 40 and 80

nits of profit assigned to each pickup node. As shown in Table 4 ,

f the profit of the requests is 20, it will be too low. There are even
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Table 4 

Comparison of results for different profits settings. 

20 units profit for each request 40 units profit for each request 80 units profit for each request 

Instance Optimal Profits Traveling Optimal Profits Traveling Optimal Profits Traveling 

value (served) cost value (served) cost value (served) cost 

AA10 0 0 (0) 0 27.14 80 (2) 52.86 196.22 400 (5) 203.78 

AA15 0 0 (0) 0 37.77 120 (3) 82.23 392.37 880 (11) 487.63 

AA20 0 0 (0) 0 73.7 240 (6) 166.3 566.03 1200 (15) 633.97 

AA25 9.06 60 (3) 50.94 203.01 560 (14) 356.99 884.41 1440 (18) 555.59 

AA30 13.07 60 (3) 46.93 266.72 640 (16) 373.28 1020.86 1600 (20) 579.14 

BB10 0 0 (0) 0 39.26 120 (3) 80.74 247.65 720 (9) 472.35 

BB15 6.61 20 (1) 13.39 99.58 280 (7) 180.42 518.03 960 (12) 441.97 

BB20 6.61 20 (1) 13.39 138.05 600 (15) 461.95 738.05 1200 (15) 461.95 

BB25 6.25 40 (2) 33.75 147.88 520 (13) 372.12 787.64 1360 (17) 572.36 

BB30 4.26 20 (1) 15.74 274.45 840 (21) 565.55 1114.45 1680 (21) 565.55 

CC10 2.81 40 (2) 37.19 57.63 160 (4) 102.37 340.2 560 (7) 219.8 

CC15 5.69 40 (2) 34.31 98.29 280 (7) 181.71 469.59 960 (12) 490.41 

CC20 4.35 20 (1) 15.65 97.27 480 (12) 382.73 712.53 1280 (16) 567.47 

CC25 9.42 60 (3) 50.58 226.23 720 (18) 493.77 984.3 1600 (20) 615.7 

CC30 3.73 60 (3) 56.27 316.39 800 (20) 483.61 1167.47 1760 (22) 592.53 

DD10 11.8 60 (3) 48.2 85.88 160 (4) 74.12 315.34 720 (9) 404.66 

DD15 10.18 60 (3) 49.82 99.05 200 (5) 100.95 554.55 1040 (13) 485.45 

DD20 14.44 80 (4) 65.56 182.14 640 (16) 457.86 832.05 1360 (17) 527.95 

DD25 6.66 80 (4) 73.34 250.16 680 (17) 429.84 1025.75 1600 (20) 574.25 

DD30 16.9 80 (4) 63.1 343.65 840 (21) 496.35 1247.22 1840 (23) 592.78 

Table 5 

Comparison of the tailored labeling algorithm without and with dominance and feasibility check. 

TDTL without dominance and feasibility check TDTL with dominance and feasibility check 

Instance Optimal Generated Generated Time (seconds) Optimal Generated Generated Dominated Infeasible Time (seconds) 

value labels (#) routes (#) value labels (#) routes (#) labels (#) labels (#) 

AA10 27.14 1680 19 0.47 27.14 196 15 121 0 0.23 

AA15 37.77 67,201 57 1.00 37.77 471 26 329 0 0.37 

AA20 73.7 1,295,435 658 12.04 73.7 1183 49 886 12 0.80 

AA25 – – – Out of memory 203.01 10,174 80 8113 974 1.59 

AA30 – – – Out of memory 266.72 18,719 77 15,012 2247 2.79 

BB10 39.26 3647 43 0.37 39.26 204 21 104 0 0.22 

BB15 99.58 387,803 5311 3.93 99.58 1729 52 1023 263 0.50 

BB20 138.05 14,067,769 420,587 30019.42 138.05 11,572 89 9445 1565 1.95 

BB25 – – – Out of memory 147.88 13,787 145 10,660 1886 2.25 

BB30 – – – Out of memory 274.45 40,335 152 31,755 7019 3.17 

CC10 57.63 4859 70 0.44 57.63 289 25 184 0 0.26 

CC15 98.29 119,687 1455 1.92 98.29 1799 43 1501 19 0.62 

CC20 97.27 5,763,951 14,981 47.21 97.27 5206 82 4337 215 1.25 

CC25 – – – 86,400 226.23 97,782 278 81,472 6626 11.95 

CC30 – – – Out of memory 316.39 347,803 490 284,760 42,498 78.94 

DD10 85.88 5567 55 0.61 85.88 222 20 129 0 0.25 

DD15 99.05 1,041,425 2272 5.05 99.05 1471 53 850 267 0.61 

DD20 – – – Out of memory 182.14 11,292 111 8473 1735 2.11 

DD25 – – – Out of memory 250.16 405,617 630 324,304 48,709 199.73 

DD30 – – – Out of memory 343.65 1,257,385 547 1,085,122 128,811 855.20 

r  

4  

i  

i  
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outes in which it is best to do nothing. If the profit per request is

0, on average 56% of the requests are served and the total profit

n the route is 52% higher than the traveling cost. When the profits

ncrease to 80, the provider would like to serve more request (on

verage 74%) and the generated profits are way (on average 141%)

igher than the traveling cost. To avoid bias on either profits or

raveling cost, in the remainder of the computational experiments,

e decided to assign a profit of 40 units to all pickup nodes, which

akes a request only profitable if the additional travel time to

erve the request (i.e., visiting both the pickup and delivery node)

s less than 40 time units. 

.1. Performance of the tailored labeling algorithm 

Table 5 gives the results of the experiments using the tailored

abeling algorithm without dominance and feasibility check and

he tailored labeling algorithm with dominance and feasibility
heck. In Table 5 , we observe that the tailored labeling algorithm

ithout dominance and feasibility check can only solve 11 in-

tances (out of 20 instances) to optimality within the given mem-

ry limit (16 gigabytes) or time limit (1 day). In contrast, the tai-

ored labeling algorithm with dominance and feasibility check is

ble to solve all of the instances within a reasonable running time

within 15 minutes). Moreover, due to the dominance and feasibil-

ty check much less labels and routes (columns 7 and 8) are gener-

ted compared to its counterpart (columns 3 and 4). Therefore, it

hows that the proposed dominance criterion and feasibility check

oth show their great potentials to get rid of the unpromising la-

els (columns 9 and 10) which are proven not to be the part of the

ptimal solution. On average 84% of the labels are dominated and

bout 11% is proven to lead to an infeasible extension. 

In Table 6 , we present the results of the experiments using the

athematical model introduced in Section 3.2 , solved by the op-

imization software Gurobi (version 5.6) with its default parame-
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Table 6 

Results of solving the mathematical model by using the Gurobi. 

Instances LB Best Time (seconds) Gap (%) Gap_opt (%) 

AA10 27.14 27.14 1.95 0 0 

AA15 37.77 37.77 4.66 0 0 

AA20 73.7 73.7 24.93 0 0 

AA25 203.01 203.01 46344.06 0 0 

AA30 216.34 543.47 86,400 151 50.92 

BB10 39.26 39.26 1.451 0 0 

BB15 99.58 99.58 121.03 0 0 

BB20 138.05 138.05 1669.74 0 0 

BB25 147.88 147.88 48616.51 0 0 

BB30 245.7 515.404 86,400 110 46.75 

CC10 57.63 57.63 3.29 0 0 

CC15 98.29 98.29 44.34 0 0 

CC20 97.27 97.27 7935.29 0 0 

CC25 209.08 1316.69 86,400 530 82.82 

CC30 237.02 1674.74 86,400 607 81.11 

DD10 85.88 85.88 1.43 0 0 

DD15 99.05 99.05 54.65 0 0 

DD20 182.14 182.14 4 959.4 8 0 0 

DD25 221.39 1419.81 86,400 541 82.38 

DD30 279.51 1733.62 86,400 520 80.18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Monodirectional algorithm vs. bidirectional algorithm. 

Processing time (seconds) 

Instance Optimal Requests Monodirectional Bidirectional 

value served 

AA30 266.72 16 2.37 2.12 

AA35 278.14 20 4.68 5.04 

AA40 341.74 22 7.94 5.82 

AA45 361.57 21 23.54 5.6 

AA50 430.41 23 22.40 9.53 

AA55 436.05 27 32.79 18.66 

AA60 505.02 26 87.11 24.71 

AA65 576.39 29 182.09 34.80 

AA70 606.68 29 180.01 39.14 

AA75 715.53 31 1038.67 257.60 

BB30 274.45 21 2.36 2.78 

BB35 337.55 22 1.30 1.03 

BB40 326.82 23 8.30 9.95 

BB45 378.90 23 34.88 27.94 

BB50 432.10 25 31.81 37.41 

BB55 530.84 27 40.14 59.02 

BB60 558.02 28 164.38 119.2 

BB65 547.84 25 353.15 332.13 

BB70 558.29 27 225.79 351.57 

BB75 613.35 27 775.58 511.37 

CC30 316.39 20 32.51 27.64 

CC35 386.26 24 133.15 104.18 

CC40 464.28 25 2934.28 942.27 

CC45 4 97.6 8 26 20641.34 3422.21 

CC50 519.60 26 45532.40 13913.43 

CC55 581.50 28 156770.32 28429.25 

CC60 624.95 30 ≥ 2 weeks 52801.65 

CC65 663.31 31 ≥ 2 weeks 699831.05 

DD30 343.65 21 396.23 80.42 

DD35 410.19 22 2815.31 338.16 

DD40 490.92 25 53402.91 4618.11 

DD45 540.17 27 67293.53 7667.97 

DD50 610.07 30 186697.41 21889.86 

DD55 639.75 29 ≥ 2 weeks 823755.21 
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g  
ter settings and a computation time limit of 1 day. For each in-

stance, we provide the lower bound (LB), best feasible solution

found (Best), the processing time given in seconds (Time) and the

gap ( Gap ) provided by Gurobi and the relative gap with respect

to the optimal solution ( Gap opt ). The relative gap is calculate by

Gap opt = 100 × Best−Opt 
Best in which Opt is the value of the optimal so-

lution for the instance derived by our tailored labeling algorithm.

As shown in Table 6 , the proposed mathematical model is able

to solve instances with up to 25 requests within the time limit.

However, for larger instances, it takes already more than one day

compared to the at maximum 15 minutes of our tailored labeling

algorithm. 

6.2. Results of the tailored labeling algorithm on all instances 

In Table 7 , we report the results of our tailored labelling algo-

rithm. We present the computation times for both the bidirectional

search (i.e., t m 

= 420 , the middle of the time horizon) and the

mono-directional search (i.e., t m 

= 840 , the end of the time hori-

zon). Since both algorithms lead to the optimal value, this value

is presented only once (column 2). The bidirectional search shows

greater potential power in terms of computation time. For some in-

stances (DD40 and DD50), the bidirectional search is even 10 times

faster than the monodirectional search. Moreover, the bidirectional

search is capable of finding the optimal value of more instances

than the monodirectional search within our set computation time

limit of 2 weeks. This is mainly because of the fact that the num-

ber of labels needed to be processed in the bidirectional search is

considerably less compared to the mono-directional search. How-

ever, merging the forward and backward labels also requires some

computational effort. It can be seen that for 6 easy instances

(AA35, BB30, BB40, BB50, BB55, BB70) the extra time necessary to

merge the labels outweighs the reduced time to generate labels in

the bidirectional search. As we prefer an approach which is also

able to solve difficult instances we focus in the remainder of this

paper at the bidirectional search. 

With the bidirectional search, 34 of the 40 instances could be

solved within our time limit of 2 weeks. We did not find optimal

solutions for the instances with more than 65 requests in the CC

group and more than 55 requests in the DD group. This means that

the algorithm was still generating labels after 2 weeks, and there-

fore also no upper bound is available. 

It is not a surprise that the computation time increases with the

number of requests. However, Table 7 also demonstrates that the
omputation time increases if the vehicle capacity (i.e., BB com-

ared with AA and DD compared with CC) or time window width

CC compared with AA and DD compared with BB) increases. This

s mainly caused as a larger vehicle capacity or time window width

ill lead to a larger solution space. 

In Table 8 we present a more detailed look at the solution of in-

tance AA30. The solution only serves 16 requests in the reported

equence. Since the time dependent travel time instead of the trav-

led distance is considered as part of the objective, the vehicle’s

eparture time becomes crucial. Therefore, delaying the departure

ime of the vehicle may lead to less traveling cost. We observe that

he vehicle departs from the origin depot at 208.23 and arrives to

he destination depot at 581.51. Other departure times will lead to

igher travel cost. 

In Table 9 , we also present the results on small instances if we

ouble the capacity of the vehicles. On one hand, vehicles with

ore capacity can serve more requests, which returns a better ob-

ective than its less capacitate counterparts. On the other hand,

or some groups, the instances with larger vehicle capacities need

uch more time to get the optimal solution (e.g., CC25 and DD25).

.3. Performance of the restricted dynamic programing heuristic 

We also have conducted computational experiments to analyze

he solution quality produced by the restricted dynamic program-

ng heuristic. In Table 7 , we have seen that the exact procedure

as enormous computation times. In Table 10 , we show the results

or the same instances but now with the restricted dynamic pro-

raming heuristic. The restricted dynamic programing heuristic al-

orithm has been run with different values for B . In these first tests
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Table 8 

Solution of AA30. 

Start time End time Travel cost Served request Generated profit 

208.23 581.51 373.28 1, 11, 3, 26, 22, 18, 28, 25, 19, 8, 5, 13, 15, 7, 4, 27 640 

Table 9 

Comparison of the different capacity settings. 

Original Ropke’s capacity Double Ropke’s capacity 

Instances Optimal Profits Requests Travel Time (seconds) Optimal Profits Requests Traveling cost Time (seconds) 

value served cost value served 

AA10 27.14 80 2 52.86 0.23 27.14 80 2 52.86 0.30 

AA15 37.77 120 3 82.23 0.37 79.63 200 5 120.37 0.95 

AA20 73.7 240 6 166.3 0.80 146.41 440 11 293.59 2.57 

AA25 203.01 560 14 356.99 1.59 286.68 600 15 313.32 29.47 

BB10 39.26 120 3 80.74 0.22 46.49 200 5 153.51 0.48 

BB15 99.58 280 7 180.42 0.50 131.25 320 8 188.75 2.65 

BB20 138.05 600 15 461.95 1.95 192.46 600 15 407.54 11.78 

BB25 147.88 520 13 372.12 2.25 268.91 800 20 531.09 20.72 

CC10 57.63 160 4 102.37 0.26 96.56 240 6 143.44 0.62 

CC15 98.29 280 7 181.71 0.62 121.9 320 8 198.1 2.74 

CC20 97.27 480 12 382.73 1.25 147.50 520 13 372.49 5.33 

CC25 226.23 720 18 493.77 11.95 434.01 960 24 525.99 10808.19 

DD10 85.88 160 4 74.12 0.25 99.13 160 4 60.87 0.31 

DD15 99.05 200 5 100.95 0.61 108.55 200 5 91.45 1.37 

DD20 182.14 640 16 457.86 2.11 233.61 640 16 406.39 19.30 

DD25 250.16 680 17 429.84 199.73 452.94 960 24 507.06 82620.40 

Table 10 

Impact of different B values on instances in Table 7 . 

B = 10 0 0 B = 2500 B = 50 0 0 B = 10,0 0 0 

Instance Optimal Value Time 

(seconds) 

Gap Value Time 

(seconds) 

Gap Value Time 

(seconds) 

Gap Value Time 

(seconds) 

Gap 

AA30 266.72 266.72 3.32 0.00 266.72 3.03 0.00 266.72 3.14 0.00 266.72 3.01 0.00 

AA35 278.14 278.14 4.43 0.00 278.14 4.17 0.00 278.14 4.10 0.00 278.14 4.31 0.00 

AA40 341.74 341.74 4.06 0.00 341.74 5.16 0.00 341.74 5.09 0.00 341.74 4.23 0.00 

AA45 361.58 361.58 6.65 0.00 361.58 7.40 0.00 361.58 7.68 0.00 361.58 7.89 0.00 

AA50 430.41 430.41 8.22 0.00 430.41 11.93 0.00 430.41 12.92 0.00 430.41 14.29 0.00 

AA55 436.05 433.21 11.33 0.65 436.05 15.29 0.00 436.05 18.42 0.00 436.05 23.25 0.00 

AA60 505.02 505.02 11.19 0.00 505.02 16.68 0.00 505.02 21.76 0.00 505.02 26.66 0.00 

AA65 576.39 576.39 14.87 0.00 576.39 21.78 0.00 576.39 27.04 0.00 576.39 27.25 0.00 

AA70 606.68 606.68 15.05 0.00 606.68 25.12 0.00 606.68 30.13 0.00 606.68 33.98 0.00 

AA75 715.53 714.65 32.07 0.12 714.65 57.36 0.12 715.53 111.54 0.00 715.53 162.37 0.00 

BB30 274.45 274.45 2.00 0.00 274.45 1.89 0.00 274.45 1.88 0.00 274.45 1.86 0.00 

BB35 337.55 337.55 1.03 0.00 337.55 1.21 0.00 337.55 1.05 0.00 337.55 1.17 0.00 

BB40 326.82 326.82 4.01 0.00 326.82 4.79 0.00 326.82 5.07 0.00 326.82 5.37 0.00 

BB45 378.90 378.90 8.61 0.00 378.90 12.89 0.00 378.90 17.43 0.00 378.90 19.14 0.00 

BB50 432.10 432.10 8.04 0.00 432.10 14.40 0.00 432.10 19.88 0.00 432.10 22.75 0.00 

BB55 530.84 530.84 12.40 0.00 530.84 20.19 0.00 530.84 26.80 0.00 530.84 33.32 0.00 

BB60 558.02 558.02 16.08 0.00 558.02 28.47 0.00 558.02 43.92 0.00 558.02 69.61 0.00 

BB65 547.84 547.84 16.41 0.00 547.84 31.09 0.00 547.84 61.08 0.00 547.84 104.54 0.00 

BB70 558.29 558.29 21.72 0.00 558.29 34.10 0.00 558.29 50.89 0.00 558.29 83.74 0.00 

BB75 613.35 613.35 23.32 0.00 613.35 45.66 0.00 613.35 65.52 0.00 613.35 106.88 0.00 

CC30 316.39 316.39 9.16 0.00 316.39 13.39 0.00 316.39 16.18 0.00 316.39 18.46 0.00 

CC35 386.26 386.26 17.39 0.00 386.26 31.84 0.00 386.26 38.27 0.00 386.26 53.09 0.00 

CC40 464.28 464.28 32.67 0.00 464.28 56.99 0.00 464.28 85.19 0.00 464.28 124.12 0.00 

CC45 4 97.6 8 4 97.6 8 52.17 0.00 4 97.6 8 108.30 0.00 4 97.6 8 190.84 0.00 4 97.6 8 303.98 0.00 

CC50 519.60 516.59 48.71 0.58 516.59 171.45 0.58 517.10 364.55 0.48 517.10 616.42 0.48 

CC55 581.50 564.03 98.13 3.00 572.88 306.60 1.48 572.88 746.83 1.48 581.50 1416.82 0.00 

CC60 624.95 593.46 114.55 5.04 606.11 327.94 3.01 624.95 911.43 0.00 624.95 1840.42 0.00 

CC65 663.31 636.12 169.39 4.10 653.51 470.64 1.48 655.84 1295.07 1.13 662.61 3879.84 0.11 

CC70 – 678.11 188.24 ≥ 0.55 680.30 585.96 ≥ 0.23 680.56 1589.12 ≥ 0.19 681.84 4858.95 ≥ 0.00 

CC75 – 6 86.6 8 250.89 ≥ 0.00 6 86.6 8 634.38 ≥ 0.00 6 86.6 8 1745.03 ≥ 0.00 6 86.6 8 7159.92 ≥ 0.00 

DD30 343.65 343.65 17.32 0.00 343.65 35.09 0.00 343.65 46.71 0.00 343.65 46.1 0.00 

DD35 410.19 410.19 37.57 0.00 405.07 92.01 1.25 410.19 168.55 0.00 410.19 275.19 0.00 

DD40 490.92 477.82 74.59 2.67 490.92 233.52 0.00 490.92 526.53 0.00 490.92 1026.12 0.00 

DD45 540.17 540.17 78.77 0.00 540.17 210.87 0.00 540.17 415.69 0.00 540.17 953.24 0.00 

DD50 610.07 589.67 104.49 3.34 599.02 264.49 1.81 610.07 725.41 0.00 610.07 1277.29 0.00 

DD55 639.75 617.52 159.5 3.47 626.86 550.42 2.01 629.70 1132.39 1.57 639.75 2754.41 0.00 

DD60 – 690.87 191.22 ≥ 3.16 695.74 742.63 ≥ 2.47 695.54 1785.51 ≥ 2.50 713.39 4054.79 ≥ 0.00 

DD65 – 754.65 246.71 ≥ 0.75 758.57 963.77 ≥ 0.23 760.32 2212.53 ≥ 0.00 760.32 5853.15 ≥ 0.00 

DD70 – 746.44 334.40 ≥ 2.31 751.56 1434.89 ≥ 1.64 753.58 3869.98 ≥ 1.38 764.10 9581.94 ≥ 0.00 

DD75 – 830.50 399.73 ≥ 0.63 831.49 1899.06 ≥ 0.51 835.76 4816.39 ≥ 0.00 835.76 15842.28 ≥ 0.00 

Average 515.18 510.34 71.26 ≥ 0.76 512.48 237.42 ≥ 0.42 513.72 580.44 ≥ 0.22 515.10 1567.30 ≥ 0.01 
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Table 11 

Impact of different E values on instances when B = 10,0 0 0. 

E = 0.5 n E = 0.25 n E = 0.125 n 

Instance Value Time (seconds) Gap Value Time (seconds) Gap Value Time (seconds) Gap 

AA30 266.72 4.23 0.00 258.68 3.99 3.01 183.89 1.33 31.06 

AA35 278.14 5.01 0.00 278.14 4.73 0.00 268.40 2.14 3.50 

AA40 341.74 7.27 0.00 341.74 6.93 0.00 341.74 4.57 0.00 

AA45 361.58 8.88 0.00 361.58 8.49 0.00 358.74 8.22 0.79 

AA50 430.41 20.11 0.00 430.41 11.01 0.00 418.09 9.19 2.86 

AA55 436.05 33.49 0.00 436.05 26.04 0.00 424.6 13.15 2.63 

AA60 505.02 31.72 0.00 505.02 23.89 0.00 505.02 14.34 0.00 

AA65 576.39 30.23 0.00 576.39 24.45 0.00 568.4 22.18 1.39 

AA70 606.68 79.56 0.00 606.68 47.77 0.00 599.97 31.50 1.11 

AA75 715.53 294.76 0.00 715.53 210.50 0.00 713.67 144.16 0.26 

BB30 274.45 3.53 0.00 274.45 2.20 0.00 249.00 1.48 9.27 

BB35 337.55 2.62 0.00 316.85 5.02 6.13 316.85 1.89 6.13 

BB40 326.82 6.6 0.00 326.82 6.52 0.00 326.82 4.54 0.00 

BB45 378.90 25 0.00 378.9 14.61 0.00 378.9 11.62 0.00 

BB50 432.10 32.89 0.00 432.10 17.19 0.00 432.1 11.83 0.00 

BB55 530.84 50.25 0.00 530.84 31.97 0.00 530.84 18.36 0.00 

BB60 558.02 72.85 0.00 558.02 71.65 0.00 558.02 36.90 0.00 

BB65 547.84 129.72 0.00 547.84 120.02 0.00 547.84 56.83 0.00 

BB70 558.29 139.86 0.00 558.29 92.68 0.00 558.29 48.46 0.00 

BB75 613.35 190.45 0.00 613.35 158.15 0.00 613.35 49.19 0.00 

CC30 316.39 20.66 0.00 316.39 19.25 0.00 292.65 5.80 7.50 

CC35 386.26 54.93 0.00 386.26 45.49 0.00 375.17 12.00 2.87 

CC40 464.28 133.99 0.00 464.28 152.86 0.00 448 38.50 3.51 

CC45 4 97.6 8 4 97.6 8 0.00 4 97.6 8 352.53 0.00 479.19 191.45 3.72 

CC50 517.1 542.93 0.48 517.1 598.14 0.48 503.47 421.23 3.10 

CC55 581.5 1920.55 0.00 581.5 1421.72 0.00 579.34 2338.11 0.37 

CC60 624.95 1244.56 0.00 624.95 1579.68 0.00 624.95 2338.36 0.00 

CC65 662.61 4098.04 0.11 662.61 2629.06 0.11 662.61 2203.57 0.11 

CC70 681.84 4918.55 0.00 681.84 3110.90 0.00 681.84 2453.23 0.00 

CC75 6 86.6 8 4290.45 0.00 6 86.6 8 5518.81 0.00 6 86.6 8 3183.47 0.00 

DD30 343.65 68.19 0.00 343.65 63.74 0.00 330.79 17.25 3.74 

DD35 410.19 350.53 0.00 410.19 399.22 0.00 385.85 84.60 5.93 

DD40 490.92 1158.38 0.00 490.92 1133.28 0.00 4 83.4 8 1036.05 1.52 

DD45 540.17 889.37 0.00 540.17 962.77 0.00 532.17 827.67 1.48 

DD50 610.07 1919.31 0.00 610.07 1595.29 0.00 597.37 1352.25 2.08 

DD55 639.75 2861.15 0.00 639.75 2733.71 0.00 638.36 4879.35 0.22 

DD60 713.39 5432.74 0.00 713.39 4656.094 0.00 708.52 4264.71 0.68 

DD65 760.32 6456.7 0.00 760.32 5255.72 0.00 758.57 4545.88 0.23 

DD70 764.1 9593.25 0.00 764.1 8355.49 0.00 760.5 6054.51 0.47 

DD75 835.76 11762.83 0.00 835.76 10770.09 0.00 835.76 8465.89 0.00 

Average 515.10 1484.60 0.01 514.38 1306.04 0.15 506.50 1130.14 1.69 
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we set E = ∞ . For the instances of which the optimal solution is

not known, we compare the solution to the best found solution

(i.e., the solution found in case B = 10 , 0 0 0 ) to have a lower bound

on the gap. 

With a value of B = 10 0 0 the algorithm leads in on average

71.26 seconds to the optimal solution for 25 out of the 40 in-

stances. For 1 instance it is not sure whether or not the optimal

solution is reached. The average gap is at least 0.79%. With a value

of B = 2500 the average computation time increased to 237.42 sec-

onds. For one more instance the optimal solution is found, and

again there is 1 instance for which it is not sure whether or

not the optimal solution is reached. The average gap (at least

0.42%) is about half of the gap as in the case of B = 10 0 0 . With

a value of B = 50 0 0 the average gap is halved again to at least

0.22% and the number of instances for which the optimal solu-

tion is found increases considerably to 30. For 3 more instances

the solution found could be the optimal one. However, the av-

erage computation time is also increased to 580.44 seconds. In-

creasing the value of B to 10 , 0 0 0 ensures that 32 of the 34 in-

stances of which we know the optimal solution are solved to op-

timality. The average computation time in case B = 10 , 0 0 0 equals

1567.3 seconds. The two instances which were not solved to op-

timality have, respectively, a gap of 0.48% and 0.11%. This means

that, compared to the tailored labeling algorithm, the average

gap of the restricted dynamic programing heuristic algorithm over
 w  
he 34 instances of which the optimal solution is known is just

.02%. 

Note that all the instances for which the exact labeling algo-

ithm was not able to solve in 2 weeks (e.g., DD 75 in Table 7 ), can

e solved within 20 hours with this restricted dynamic programing

lgorithm. 

In Table 11 , we present the impact of different E values on the

erformances of the algorithm with B = 10 , 0 0 0 . We set the values

f E to 0.5 n , 0.25 n and 0.125 n and fractional values are rounded to

ts closed integer. 

The results indicate that the computation times decrease if

he value for E decreases, but not that much. As can be seen

n Table 11 , when the value of E is equal to 0.5 n , the solution

uality is the same as in case E = ∞ but the computation times

re reduced by 5%. When we restrict E further the solution qual-

ty is going down drastically without gaining too much computa-

ion time. In comparison, a combination of B = 10 0 0 and E = ∞ is

uch faster and has higher solution quality then the combination

f B = 10 , 0 0 0 and E = 0 . 125 n 

. Conclusion 

This paper presents the time-dependent capacitated profitable

our problem with time windows and precedence constraints,

hich combines features of both the traveling salesman problem
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ith pickup and delivery, and the traveling salesman problem with

rofits. Moreover, time-dependent traveling speeds are considered

o capture road congestion, which increases the complexity of the

roblem. 

We propose a tailored labeling algorithm to solve this problem

nriched by new and strong dominance rules to discard 95% of the

abels. Extensive computational results show that most instances

ith up to 75 requests can be solved to optimality within the given

ime limit of two weeks, but also show that some instances remain

nsolved. 

To reduce the computation time and memory usage, a re-

tricted dynamic programing heuristic algorithm is implemented.

he heuristic is able to find solutions for all instances with good

ualities (on average 0.01% gap) and less computational time (on

verage 1567 seconds). 

Obviously, the performance of our exact algorithm critically de-

ends on the tailored dominance criterion that we propose. It

hows great potential when there are relatively tight time win-

ows attached to all the nodes. Further strengthening dominance

s a promising direction for future research. 

In addition, solving extensions of the time-dependent capaci-

ated profitable tour problem with time windows and precedence

onstraints seems to be an attractive research direction. More

pecifically, the time-dependent variant of the pickup and delivery

roblem with time windows (TDPDPTW) and the time-dependent

eam orienteering problem (TDTOP) are very interesting as it aims

o optimize the routes of a fleet of vehicles, instead of a single ve-

icle only. When column generation is utilized to solve those two

roblems in an exact way, our proposed model can be used as the

ricing problem. 
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