Klotz communications 2021: Heart and Hormones

Therapeutic applications of thyroid hormone analogues

W.E. Visser

Department of Internal Medicine, Rotterdam Thyroid Centre, Erasmus Medical Centre, Rotterdam, Netherlands

ARTICLE INFO

Keywords:
Thyroid hormone analogues
Triac
MCT8
Resistance to thyroid hormone
TRβ

ABSTRACT

Cellular thyroid hormone homeostasis requires adequate function of: (1) thyroid hormone transporter proteins at the plasma membrane, (2) deiodinating enzymes and (3) nuclear thyroid hormone receptors (TRs). Defects in any of these processes give rise to distinct disease entities, collectively called thyroid hormone signaling disorders. Thyroid hormone analogues hold therapeutic potential in thyroid hormone signaling disorders by bypassing defective transporters or binding to mutant TRs. This review will focus on the application of analogues in thyroid hormone signaling disorders, particularly monocarboxylate transporter (MCT)8 deficiency, and resistance to thyroid hormone due to mutations in TRβ (RTHβ).

© 2020 Published by Elsevier Masson SAS.

1. Introduction

Thyroid hormone is crucial for normal development and metabolism of all tissues. Cellular thyroid hormone homeostasis requires adequate function of [1] thyroid hormone transporter proteins at the plasma membrane, [2] deiodinating enzymes and [3] nuclear thyroid hormone receptors (TRs). Defects in any of these processes give rise to distinct disease entities, collectively called thyroid hormone signaling disorders. Thyroid hormone analogues hold therapeutic potential in thyroid hormone signaling disorders by bypassing defective transporters or binding to mutant TRs. The use of thyroid hormone analogues has also been explored for other diseases. In the past, its role in TSH suppression as substitute or adjunct to levothyroxine therapy in thyroid cancer has been investigated [1]. In recent years, thyroid hormone analogues have been applied in more common diseases such as non-alcoholic steatohepatitis [2] or as lipid-lowering treatment [3]. This short review will focus on the application of analogues in thyroid hormone signaling disorders, particularly monocarboxylate transporter (MCT8) deficiency.

2. MCT8 deficiency

MCT8 is a specific thyroid hormone transporter that is crucial for transport of tri-iodothyronine (T3) and thyroxine (T4) in several tissues, including the brain [4–7]. Mutations in the gene encoding MCT8 (SLC16A2 on chromosome Xq13.2) cause MCT8 deficiency, also known as the Allan-Herndon-Dudley syndrome (AHDS), a debilitating disorder with an estimated prevalence of 1 in 70,000 male individuals [8]. MCT8 deficiency is characterized by profound intellectual and motor disability due to a hypothyroid state in the brain. Endocrine abnormalities associate marked elevation of serum T3 concentrations with low to low-normal (F)T4 concentrations and normal TSH concentrations. The increased T3 concentrations result in a thyrotoxic state in many organs, contributing to a deterioration of body weight for age over time, muscle wasting and tachycardia [8]. The low T4 concentrations measured in patients with MCT8 deficiency in the neonatal screening indicates the potential to diagnose MCT8 deficiency in newborns, perhaps with a modification of the current neonatal screening strategy.

The phenotype is due to defective thyroid hormone transport by mutant MCT8. MCT8-dependent tissues (e.g. brain) are in a hypothyroid state, while MCT8-independent tissues (e.g. liver, muscle, heart) normally sense the elevated serum T3 concentrations. The clinical features are the net result of hypothyroid and hyperthyroid tissues.

Apart from empirical symptomatic treatment, a number of therapeutic options have been explored. Thyroxine replacement therapy is not effective in normalizing FT4 levels and rather further worsens the increased serum T3 concentrations, probably due to immediate conversion of T4 to T3 [9]. A combination of the antithyroid drug PTU and thyroxine has been shown to normalize serum T3 and T4 concentrations and, consequently, alleviating some clinical features due to the thyrotoxicity. Those approaches are unlikely to improve neurodevelopment, as thyroxine is not expected to enter the brain given its MCT8-dependent uptake. Also, as PTU has an unfavorable safety profile, the risk-benefit ratio should be taken into account when counseling parents.

E-mail address: Ewe.visser@erasmusmc.nl

https://doi.org/10.1016/j.ando.2020.03.004
0003-4266/© 2020 Published by Elsevier Masson SAS.
Effective therapy should both normalize toxic thyroid hormone effects in peripheral tissues and improve the hypothyroid state in brain. Therefore, analogues that mimic T3 action but rely on other transporters than MCT8 for cellular entry are suited to reverse or prevent the neurological phenotype in such patients. Also, T3 analogues expectedly negatively regulate TSH concentrations, thereby reducing endogenous thyroid hormone concentrations.

Diiodothyropropionic acid (DIPTA) and triiodothyraoctic acid (Triac) are two different thyroid hormone analogues that have been investigated in MCT8 deficiency. After beneficial effects in Mct8 KO mice were noted, DIPTA has reportedly been applied in 4 patients [10,11]. Serum T3 and sex-hormone binding globulin (SHBG) concentrations improved in all patients, although no consistent effect on body weight was observed. The absence of beneficial effects on the neurological phenotype can be explained by different possibilities including the irreversibility of brain damage, age beyond therapeutic window or insufficient access to the brain with the used doses.

Triac was able to normalize the abnormal brain development in Mct8/Oatp1c1 double KO mice, the mouse model most accurately reflecting human MCT8 deficiency [12]. Abnormal Purkinje cell development in Mct8/Oatp1c1 double KO was improved with a low dose of Triac and fully restored with a high dose of Triac. Also, Triac was shown to enter fibroblasts of MCT8 deficient patients to a similar extent as cells from unaffected individuals [13].

Based on these preclinical studies, an international trial was started to investigate the effects of Triac in patients with MCT8 deficiency, the results of which have been reported recently [8]. In total, 46 patients (median age 7.1 years [range 0.8–66.8]) received Triac for 12 months and a subset of the patients were included in a long-term treatment-extension period. After 12 months of Triac treatment, serum T3 concentrations (primary end point) were largely reduced in all patients.

In patients who completed the 12-month treatment period, there was a significant mean increase in weight for age. In addition, systolic blood pressure and resting heart rate decreased and also the high number of premature atrial contractions was largely reduced. Different markers for thyroid hormone action in tissues (e.g. creatine kinase, creatine, SHBG) improved. Triac was well tolerated with only mild and transient symptoms of perspiration and irritability. Together, Triac was safe and effectively normalized the serum T3 concentrations in paediatric and adult patients with MCT8 deficiency with sustainable improvements in clinically relevant outcomes including body weight, heart rate and blood pressure. Being severely underweight and cardiovascular dysfunction are important clinical sequelae of chronic peripheral thyrotoxicosis, causing significant morbidity and mortality in MCT8 deficiency, amelioration of the thyrotoxicosis under Triac treatment benefits patients with MCT8 deficiency irrespective of their age.

Another phase 2 clinical trial will investigate the effects of Triac on neurodevelopment, with treatment being started at a very young age (NCT02396459). The future will reveal if Triac has the potential to modulate the neurodevelopment in MCT8 deficiency.

3. Resistance to thyroid hormone due to mutations in TRβ (RTHβ)

The main effects of thyroid hormone are exerted through binding of T3 to its nuclear receptor (thyroid hormone receptor, TR), which functions as a ligand-dependent transcription factor. The main T3 binding receptor isosforms are TRα1 and TRβ1 and 2, which differ in their tissue distribution [14]. Heterozygous mutations of TRβ are the most common genetic cause of RTHβ and have a prevalence of ~1:50,000 [15]. The endocrine hallmark of RTHβ are elevated serum (free) T4 and T3 concentrations accompanied by non-suppressed or elevated serum TSH concentrations. The clinical features of RTHβ comprise a combination of hypothyroid and thyrotoxic symptoms, resulting from the tissue-specific distribution of the TR isoforms. T3 action is reduced in TRβ-expressing tissues (e.g. pituitary and liver) [16,17]. In contrast, TRα-expressing tissues (e.g. heart and brain) normally sense the high serum thyroid hormone concentrations and may result in tachycardia, hyperactivity, anxiety and learning disabili ties [16,17]. There is a wide clinical spectrum in RTHβ, ranging from asymptomatic individuals with abnormal thyroid functions tests to patients with a severe motor and intellectual disability. Therefore, the need for treatment is assessed on an individual basis [15]. In the majority of patients who suffer from tachycardia and palpitations, symptomatic treatment with beta-blockers is sufficient to alleviate those symptoms.

In patients that do not respond to those treatment possibilities, an ideal treatment should selectively increase T3 action in TRβ-expressing tissues while maintaining euthyroidism in TRα-expressing tissues. Triac preferentially acts through the TRβ isoform [19–21]. Importantly, Triac exhibits a higher affinity than T3 for several TRβ mutants [19–21].

These in vitro observations are in line with case reports and case series in patients with RTHβ [for an overview, see [22]]. Dependent on the mutation, Triac has the potential to inhibit TSH production and secretion, resulting in a reduction in serum (F)T4 and (F)T3 concentrations. As a consequence, a (partial) alleviation of the thyrotoxic symptoms including tachycardia, excessive perspiration and behavioral problems can be expected. The putative negative effects of the relatively high doses Triac in the TRα-expressing tissues, including the bone, are difficult to evaluate based on the available literature.

Clinical trials and long-term follow-up studies are required to describe the positive and adverse effects of Triac at the tissue level in RTHβ in more detail. It would be of clinical relevance to document the effects of Triac in RTHβ patients using established treatment protocols and well-defined outcome measures.

4. Perspectives

Ever since the report of Triac in 1953 [23], the field has actively developed and tested other thyroid hormone analogues. The potential application of such analogues varies from selected rare thyroid hormone signaling disorders (e.g. RTHβ and MCT8 deficiency) to more common diseases (e.g. multiple sclerosis, hypercholesterolemia and NASH) [28,24–27]. Rational design of thyroid hormone analogues with appropriate preclinical studies should pave the way for clinical trials in populations with rare and common disorders.

Funding

This research was funded by the Netherlands Organisation for Health Research and Development (project number 113303005; to WEV), the Sherman Foundation (to WEV).

Disclosure of interest

The Erasmus Medical Centre (Rotterdam, Netherlands), which employs WEV, might receive royalties from Rare Thyroid Therapeutics (the manufacturer of Triac) in the future, dependent on any future commercialisation. The author declares he has no competing interest.
References


