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a b s t r a c t

Background: In the DESIRE study (Discharge aftEr Surgery usIng aRtificial intElligence), we have previ-
ously developed and validated a machine learning concept in 1,677 gastrointestinal and oncology surgery
patients that can predict safe hospital discharge after the second postoperative day. Despite strong model
performance (area under the receiver operating characteristics curve of 0.88) in an academic surgical
population, it remains unknown whether these findings can be translated to other hospitals and surgical
populations. We therefore aimed to determine the generalizability of the previously developed machine
learning concept.
Methods: We externally validated the machine learning concept in gastrointestinal and oncology surgery
patients admitted to 3 nonacademic hospitals in The Netherlands between January 2017 and June 2021,
who remained admitted 2 days after surgery. Primary outcome was the ability to predict hospital in-
terventions after the second postoperative day, which were defined as unplanned reoperations, radio-
logical interventions, and/or intravenous antibiotics administration. Four forest models were locally
trained and evaluated with respect to area under the receiver operating characteristics curve, sensitivity,
specificity, positive predictive value, and negative predictive value.
Results: All models were trained on 1,693 epsiodes, of which 731 (29.9%) required a hospital inter-
vention and demonstrated strong performance (area under the receiver operating characteristics
curve only varied 4%). The best model achieved an area under the receiver operating characteristics
curve of 0.83 (95% confidence interval [0.81e0.85]), sensitivity of 77.9% (0.67e0.87), specificity of
79.2% (0.72e0.85), positive predictive value of 61.6% (0.54e0.69), and negative predictive value of
89.3% (0.85e0.93).
Conclusion: This study showed that a previously developed machine learning concept can predict safe
discharge in different surgical populations and hospital settings (academic versus nonacademic) by
training a model on local patient data. Given its high accuracy, integration of the machine learning
concept into the clinical workflow could expedite surgical discharge and aid hospitals in addressing
capacity challenges by reducing avoidable bed-days.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction

Because of the high demand for hospital services, efficient ca-
pacity management is critical for the continuous availability of
postoperative care beds, especially during pressing times.1 Also,
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unnecessary prolonged hospital stay can be harmful because pa-
tients are exposed to an increased risk of iatrogenic complications.2

Conversely, too early discharge can lead to delayed recognition and
treatment of complications. Both situations contribute to post-
operative morbidity and mortality with a negative impact on
quality of life.3,4 Thus, the decision for a timely and safe time of
discharge is key.5 Despite initiatives to expedite postoperative re-
covery such as the Enhanced Recovery After Surgery pathways and
the coordinated efforts of physicians, nurses, and policy makers,
there is still room for improvement.6,7

Clinical artificial intelligence (AI) or machine learning (ML)e
based prediction models are increasingly reported in medicine and
have the potential to improve patient care as well as the surgeon
workflow.8e10 Some examples include predicting in-hospital mor-
tality after aneurysm repair surgery, analyzing operative reports to
determine anastomotic leak after colorectal surgery, and automatic
surgical phase recognition from intraoperative imaging.11,12

Although developing such AI models can be challenging in itself,
the real challenge is to make it to the bedside and to use them at
large scale. To illustrate, 90% to 94% of the AI models in the intensive
care unit and radiology department remain in the development and
prototyping phase (ie, a phase where only retrospective data are
analyzed), respectively.9,13 Although these were nonsurgical
studies, these findings could also be extrapolated to surgery. Such
models may work perfectly in one hospital but may be poorly
generalizable in other clinical settings; therefore, an external vali-
dation is a crucial step toward safe clinical implementation.14,15

While some surgical AI models underwent external validation, it
is not yet standard practice, and thus there is little evidence if
such models would alter clinical practice or improve clinical
outcomes.16e19

In the DESIRE (Discharge aftEr Surgery usIng aRtificial intElli-
gence) study, we have previously developed and validated a ML
concept in 1,677 gastrointestinal and oncology surgery patients in a
tertiary referral hospital that can predict safe hospital discharge
after the second postoperative day.20 Despite strong model per-
formance (area under the receiver operating characteristics curve
[AUROC] of 0.88), it remains unknown whether these findings can
be translated to other hospitals and surgical populations. In this
study we therefore aimed to determine generalizability of the
previously developed ML concept, which is a crucial step before
clinical implementation, and, as such, we externally validated the
concept and assessed its performance in gastrointestinal and
oncology surgery patients in a nonacademic hospital.

Methods

We conducted a retrospective cohort study to externally vali-
date the ML concept following the TRIPOD (transparent reporting
of a multivariable prediction model for individual prognosis or
diagnosis) guideline.21 The study protocol was approved by the
Ethics Committee of the Erasmus MC University Medical Center
(protocol no. MEC-2021-0625), and the need for informed consent
was waived.

Participants and outcome

Adult gastrointestinal and oncology surgery patients (�18
years), admitted to 3 different hospitals (Bethesda, Refaja, and
Scheper Hospitals) that are part of the Treant Care Group in The
Netherlands were selected based on surgical procedure de-
scriptions to match the development cohort.20 The Treant Care
Group provides secondary care to approximately 300,000 people in
the northeastern area of The Netherlands. Only patients admitted

more than 2 days after initial surgery and who were discharged
between January 2017 and June 2021 were included.

The primary outcome was the performance in terms of AUROC
and negative predictive value (NPV) to predict hospital in-
terventions (ie, care that is strictly provided by hospitals) after the
second postoperative day. Hospital interventions were defined as
reoperations, radiological interventions, and intravenous antibi-
otics. As a secondary outcome, we calculated the predicted number
of avoidable bed-days for 2017-2019 to determine potential clinical
impact. Avoidable bed-days were defined as the number of
admission days after the second postoperative day for patients for
whom safe discharge to a lower level of care (eg, to a postoperative
nursing home or home if home-care can be arranged) was
predicted.

Data collection

For each patient, a minimum list of 17 perioperative variables
needed to be collected, which were previously used to develop the
ML concept.20 Additionally, the corresponding admission diagnosis
was collected, totaling to 18 variables per patient (Table I). Data
were retrieved and linked from multiple medical information sys-
tems including Xcare, Metavision, and Zamicom. All variables were
unaggregated, except for medication history, for which the total
number of unique administered medications until the second
postoperative day was calculated.

Data preparation

All identifiable patient data were removed, and unique episodes
were created for each patient encounter. If a patient underwent
multiple surgeries within 1 episode, the surgery date closest to hos-
pital admission was marked as the initial surgery. All surgeries that
occurred within the same episode and more than 2 days after the
initial surgery were marked as reoperations. In addition, all intrave-
nous antibiotic administrations and radiological interventions (eg,
percutaneous abscess drainage, computed tomography scan-guided

Table I
Machine learning model input variables

Input variable description (unit) Variable derivation

Length of time in the operating room (OR)
(minutes)

OR exit time - OR entrance time

Surgical procedure description NA
Expected duration of surgery (minutes) NA
Number of unique administered medications Count of distinct medication

descriptions where date of
administration �2 days after
initial surgery

Length of stay until surgery (days) Surgery dateehospital
admission date

BMI on admission (kg/m2) Weight on admission (in kg)/
(length on admission (in m)2)

Department of admission after surgery NA
Age on admission (years) (Hospital admission dateedate

of birth)/365.25)
Location of origin NA
ASA score NA
Responsible specialty NA
Surgical urgency NA
Specialty of admission NA
Anesthesia type NA
Sex NA
Hospital location NA
Surgical indicator NA
Admission diagnosis NA

ASA, American Society of Anesthesiologists; BMI, body mass index; NA, not appli-
cable; OR, operating room.
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puncture) that occurred between the second postoperative day and
hospital discharge were marked as hospital interventions. The
outcometobepredictedwastheoccurrenceof1of the3 interventions
(reoperations, radiological interventions, and intravenous
antibiotics).

Statistical analysis and model training

A minimum sample size of 1,374 episodes was required to
validate the ML concept on local patient data.20 Patient character-
istics and clinical outcomes were reported as median and inter-
quartile range (IQR) for numerical variables and count and
percentage (%) for categorical variables. Correlation of continuous
variables was calculated by using Pearson’s correlation and was
classified as weak (<0.3), moderate (>0.3 and �0.6), and strong
(>0.6).

Four random forest models were trained to validate the ML
concept. Model parameters were drawn from the previous study
and were unmodified (settings: 100 trees, 5 variables per split, 50
interval bins, and 2 branches).20 Missing values were used as
splitting criteria in the models. The first model was trained using a
total of 17 variables (hereafter referred to as the full model), pre-
sented in Table I. The second model was trained on a reduced
number of variables (hereafter referred to as the reduced model);
strongly correlated variables were excluded and a reduced list of
clinically relevant variables was selected based on clinical expert
knowledge (ie, informative variables were selected).22 Additionally,
the reduced and the full models were evaluated by adding the
admission diagnosis as input variable.

Evaluation of model performance and impact analysis

The data set was randomly divided into 3 nonoverlapping data
sets: train (70%), validation (20%), and test data set (10%).23 Multiple
metrics were calculated on the test data set (ie, unseen data) for
each model following the guideline of Park et al24: AUROC curve,
misclassification rate, sensitivity (%), specificity (%), positive pre-
dictive value (PPV) (%), and negative predictive value NPV (%).
Youden’s J statistic was used to calculate the optimal statistical
classification threshold on the validation data set.25 A nomogram,
reflecting variables’ relative importance, was also constructed.

The best model (in terms of AUROC and NPV [%]) was used to
predict the total number of avoidable bed-days for 2017, 2018, and
2019. Potential misclassification was penalized by subtracting half
the predicted avoidable bed-days, multiplied by the hospital in-
terventions probability, from the predicted avoidable bed-days. For
each episode these days were calculated as follows:

predicted avoidable bed-days; ((length of stay after initial surgery
(in days)e2)*(1-hospital interventions probability (%)))epenalty;
(((length of stay after initial surgery (in days)e2)*0.5)*hospital in-
terventions probability (%)).

Statistical Analysis System (SAS) Viya version 3.5 was used for
statistical analysis. The SAS Visual Data Mining and Machine
Learning package of this software was used to externally validate
the ML concept.

Results

Patient characteristics for the train, validate, and test data set are
presented in Table II. After data preparation, a total of 2,035 patients
with 2,447 unique epsiodes were identified and randomly divided
over the different data sets. The train data set included 1,693
epsiodes (median [IQR] age, 69 [56e77] years; 888 [52.5%] men),
the validation set 505 episodes (age, 69 [57e77] years; 267 [52.9%]

men), and the test set 249 episodes (age, 69 [58e76] years; 140
[56.2%] men).

In 731 (29.9%) out of 2,447 episodes, a hospital intervention
occured beyond the second postoperative day of which 620 [84.8%]
consisted of at least the administration of intravenous antibiotics
(Table III). Episodes without a hospital intervention had a median
stay of 4 days (IQR; 3e6) after surgery, compared to 13 days for
episodes with a hospital intervention.

Variable reduction

The total number of 17 variables ± admission diagnosis was used
by the full models, and a reduced number was selected for the
reduced models. Expected duration of surgery was excluded due to
high correlation with length of time in the operating room (Pear-
son’s r ¼ 0.77); correlations are presented in the heatmap in
Figure 1. All other variables were weakly correlated (Pearson’s
r<0.3). Out of the remaining 16 variables,11 were selected based on
their clinical relevance; anesthesia type, location of origin,
responsible specialty, specialty of admission, and surgical indicator

Table II
Characteristics of the training, validation, and test data set

Patients, no. (%)

Characteristic Training Validation Test
No. of unique episodes 1,693 (69.2) 505 (20.6) 249 (10.2)
Sex
Men 888 (52.5) 267 (52.9) 140 (56.2)
Women 805 (47.5) 238 (47.1) 109 (43.8)

Age, years, median (IQR) 69 (56e77) 69 (57e77) 69 (58e76)
BMI, kg/m2, median (IQR) 23.6 (20.8e27.1) 23.9 (20.6e27.1) 23.7 (20.9e28.1)
ASA score, median (IQR) 2 (2e3) 2 (2e3) 2 (2e3)
Length of stay after

surgery, median (IQR)
5 (4e10) 5 (4e10) 5 (4e9)

Surgical urgency
Elective 880 (52) 241 (47.8) 113 (45.4)
Emergency 813 (48) 264 (52.2) 136 (54.6)

Surgery type
Breast 28 (1.7) 6 (1.2) -
Colon and rectum 626 (37) 171 (33.9) 80 (32.1)
Diagnostic laparoscopy 68 (4) 24 (4.8) 11 (4.4)
Hernia 64 (3.8) 28 (5.5) 13 (5.2)
Lymph node dissection 5 (0.3) 3 (0.6) -
Melanoma 2 (0.1) - -
Ostomy 160 (9.5) 40 (8) 19 (7.6)
Stomach 24 (1.4) 10 (2) 5 (2)
Thyroid gland 5 (0.3) 1 (0.2) 2 (0.8)
Other 560 (33.1) 178 (35.2) 89 (35.7)

ASA, American Society of Anesthesiologists; BMI, body mass index; IQR, interquartile
range.

Table III
Frequency of hospital interventions

Reoperations Intravenous
antibiotics

Radiological
interventions

Number of
episodes

Yes Yes Yes 64
No 55

No Yes 15
No 43

No Yes Yes 100
No 401

No Yes 53
No 1,716

Total 2,447

In 731 episodes (29.9%) at least 1 intervention; in 43 episodes, only 1 reoperation; in
53 episodes only 1 radiological intervention, and in 401 episodes only intravenous
antibiotics.
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were excluded. Finally, the reduced models were trained on 11
variables ± admission diagnosis.

Model performance

All 4 models demonstrated good discriminative performance
with at least an AUROC of 0.79 (95% CI [0.77e0.81]) and amaximum
difference of 4% between models (Figure 2). The reduced models (±
admission diagnosis) outperformed the full models (± admission
diagnosis) in terms of AUROC and NPV; the reduced models had an
AUROC of 0.83 (0.81e0.85) and 0.81 (0.79e0.83) compared to 0.81
(0.79e0.83) and 0.79 (0.77e0.81) for the full models. Furthermore,
the reduced models had a NPV of 89.3% (0.85e0.93) and 89.0%
(0.84e0.93) compared to 88.2% (0.83e0.92) and 85.9% (0.81e0.90)
for the full models (Table IV).

The reduced model that additionally used the admission diag-
nosis (n ¼ 12 variables) performed best. On the test data set this
model had an AUROC of 0.83 (0.81e0.85) and a misclassification
rate of 0.188. The optimal Youden’s J statistic was 0.57 at a proba-
bility threshold of 0.35. By using this threshold, the model had a
sensitivity of 77.9% (0.67e0.87), a specificity of 79.2% (0.72e0.85), a
PPV of 61.6% (0.54e0.69), and a NPV of 89.3% (0.85e0.93). Variable
importance is presented in Figure 3, which demonstrated that
surgical procedure description and admission diagnosis were
relatively the most important variables, whereas sex and hospital
location were relatively the least important variables.

Impact on avoidable bed-days

An impact analysis was performed to obtain an estimate of the
unnecessary prolonged stays (ie, the potential avoidable bed-days).
For this purpose, we used a hospital interventions probability
threshold of 15%dthat is, the probability of no hospital in-
terventions (¼1-hospital interventions probability [%]) must be
larger than 85%. Safe discharge was predicted in 92 out of 579
episodes in 2019 (ie, the probability did not exceed the 15%
threshold while they actually remained admitted). Application of
the previously described formula resulted in 238 avoidable bed-
days that could have been saved in the 3 hospital locations, while
only patients in 7 episodes (7.6% [7/92]) would need to be read-
mitted to the hospital from the nursing home. The avoidable bed-
days were 366 (based on safe discharge predicted in 147 out of
677 episodes) and 309 (based on safe discharge predicted in 132
out of 656 episodes) for 2017 and 2018, respectively.

Discussion

This study demonstrated that a previously developed and vali-
dated ML concept, able to predict safe hospital discharge after the
second postoperative day, can also be translated to nonacademic
hospitals’ surgical populations.20 We tested 4 models and found
that the reduced model that additionally used the admission
diagnosis (n ¼ 12 variables) performed best. Further, the results
have nicely shown that the ML concept may be used to save on

Figure 1. Variable concurvity. Pearson’s r was used to evaluate correlation between each combination of continuous variables.
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avoidable bed-days; 913 bed-days could have been avoided in this
particular surgical population between 2017 and 2019. We specif-
ically reported this period, just before the global COVID-19
pandemic put a strain on operating room capacity starting from
early 2020 (which probably could lead to an unrepresentative
number of surgical admissions).26

Whereas most studies remain in levels 3 and 4 (ie, development
and prototype phase) on the AI levels of clinical readiness scale, we
conducted a level 5 study (ie, external validation), which is an
important step to warrant safe clinical implementation.9,27e29

Despite the increasing interest in AI and ML, few models have
undergone external validation, ranging from7% in the ICU to 6% and
30% in radiology/imaging.9,13,30 The generalizability of such models
is the subject of debate because it is threatened by multiple fac-
tors.31 AI models are typically context-specific and susceptible to
variations in care practices (local, surgical), patient populations,
and information systems, which can affect model performance; it
has even been argued that entire generalizability may be a utopia.31

To rule out such potential differences, it has been suggested that a
new model should be trained on local patient data (which is also
known as “site-specific training”), as in our study.32 Since we
trained a model on local patient data and did not validate the exact
model (including its underlying variable distributions), variables
did not need to be mapped to a common ontology (ie, transforming
variable units and descriptions such as surgical procedure
description to a uniform data format that can be used by multiple
hospitals), which is time and resource consuming but often
required due to variations in local terminologies.33 Furthermore,

we only used routinely collected data, available until the second
postoperative day, which are often widely available in hospital in-
formation systems as standard of care data collection; the same
variables were available during development and external valida-
tion. This suggests that the ML concept could be seamlessly inte-
grated with other hospital information systems while
incorporating differences in site-specific care practices and pop-
ulations and thereby optimize surgical discharge from cure to care
facilities.

Although theML concept was developed in the largest academic
tertiary hospital of The Netherlands where the most complex
cancer surgeries are performed (eg, esophageal cancer, liver sur-
gery, sarcomas), this external validation took place in hospitals
providing secondary care and still achieved an AUROC of 0.83 (95%
CI [0.81e0.85]), which is comparable to 0.88 (0.83e0.93) previ-
ously.20 In addition, with respect to other metrics such as sensi-
tivity and specificity, external validation achieved similar results
with an even higher PPV of 61.6% (95% CI [0.54e0.69]) compared to
57.6% (95% CI [0.45e0.70]). However, the challenge in selecting the
appropriate prediction probability threshold, which is used to
calculate these metrics, is to weigh hospital needs (eg, improved
patient flow) with the number of readmissions (ie, potential harm)
considered clinically acceptable, as we have previously extensively
described.20 In addition, in this study, a reduced model out-
performed the full model (Table IV). An explanation could be that
redundant variables such as the “expected duration in operating
room” (which is highly correlated to “total length in operating
room”) contribute little independent information and may even
negatively affect model performance (ie, they can make the model
unnecessarily complex).22,34 Furthermore, admission diagnosis
improved model performance (AUROC improved 2% in the full as
well as the reduced models), which may be due to a better reflec-
tion of patients’ preoperative state.20

Over the last decades, efforts have been made to expedite
postoperative dischargedfor example, by the introduction of the
Enhanced Recovery After Surgery pathways.6,7 However, unnec-
essary prolonged stays after major surgery are still a common
problem and pose a challenge to capacity management due to the
restricted number of hospital beds.5 Over the years, several ML
models have been developed to predict adverse postoperative
outcomes such as sepsis, mortality, or unplanned read-
missions.35e38 Such models have high predictive value, are useful
during the preoperative consent procedure, and improve patients’
satisfaction.39e42 These models can also benefit the logistics of the
operating room and postoperative care planning.8 However, these
predictions are made before the actual surgery, do not involve in-
dividual perioperative factors, and, importantly, are not yet clini-
cally implemented; our study is a crucial step toward clinical
implementation. Furthermore, such models often arise from a
wealth of data and technical opportunities rather than that they are
developed to generate actionable clinical output, which makes it
difficult for clinicians to interpret.32 In contrast, our ML concept

Figure 2. Receiver operating characteristic (ROC) curves. Models’ discriminative per-
formance on the test data set for the 4 models (n ¼ 249 patients). The full models
(“Full”) used 17 variables ± admission diagnosis. The reduced models (“Reduced”) used
11 variables ± admission diagnosis. AD, admission diagnosis; AUROC, area under the
receiver operating characteristic curve.

Table IV
Model performance results

Model Number Variables AUROC (95% CI) Sensitivity, % (95% CI) Specificity, % (95% CI) PPV, % (95% CI) NPV, % (95% CI) Optimal Threshold*

Reduced model þ AD 12 0.83 (0.81e0.85) 77.9% (0.67e0.87) 79.2% (0.72e0.85) 61.6% (0.54e0.69) 89.3% (0.85e0.93) 0.35
Reduced model - AD 11 0.81 (0.79e0.83) 80.5% (0.70e0.89) 69.9% (0.63e0.77) 54.4% (0.48e0.61) 89.0% (0.84e0.93) 0.30
Full model þ AD 18 0.81 (0.79e0.83) 79.2% (0.68e0.88) 69.4% (0.62e0.76) 53.5% (0.47e0.60) 88.2% (0.83e0.92) 0.30
Full model - AD 17 0.79 (0.77e0.81) 70.1% (0.59e0.80) 80.9% (0.74e0.86) 62.1% (0.54e0.70) 85.9% (0.81e0.90) 0.35

Model performance was assessed on the test data set (n ¼ 249). The full models used 17 variables ± admission diagnosis (AD). The reduced models used 11 variables ±
admission diagnosis (AD).
AD, admission diagnosis; AUROC, area under the receiver operating characteristics; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.

* The optimal classification threshold was calculated on the validation data set using the Youden’s J statistic.
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predicts a one-time discharge safety score instead of a particular
clinical condition or complication such as sepsis (ie, a patient can
either safely recover outside the hospital or not, which can be
presented in more detail for different risk groups). Of note, while
patients might not need care that is strictly provided by hospitals,
some may still require care that cannot be arranged at home (eg,
pain management) and, as such, may need to be discharged to a
postoperative nursing home before being discharged home.

Although the ML concept currently generates a one-time
discharge safety score after the second postoperative day, it may
be extended to other postoperative days using similar aims and
variables. This is particularly interesting since multiple ML studies
that analyzed longitudinal data (eg, prediction of hypotension or
intracranial hypertension) demonstrated that predictive perfor-
mance increases as time to outcome decreases (ie, it may be easier
to predict safe discharge later after surgery as more data become
available).43e45 Nevertheless, the clinical impact of such models
will decrease as postoperative days pass and the avoidable bed-
days decrease. Furthermore, the current concept can be extended
to other surgical populations such as cardiothoracic, transplant,
vascular, plastic, and reconstructive.

At this moment, the ML concept performed well in both the
development and validation populations. Because clinical utility,
usability, and health benefits still need to be determined, a clinical
study is warranted. Since AI model output cannot inform clinical
decision-making on its own but needs to be integrated in an end-
to-end solution to appropriately convey information to the clini-
cians (end-users), a next step is to integrate the current ML concept
with such a display and test the end-to-end solution in a clinical
implementation study. For example, Barda et al46 proposed a
framework to design user-centered displays to enhance commu-
nication and provide explanations of ML model output toward the
end-users.

Limitations

Some limitations of this study must be addressed. First, we
validated the ML concept instead of the exact model that was
previously developed. This is called site-specific training and re-
quires sufficiently large data sets to locally train a model, which
may not always be feasible in smaller hospitals. Nonetheless, by
adopting this approach we ensured that the ML concept adapts to

local care practices and patient populations, which are often highly
predictive and may therefore yield better outcomes for this
particular surgical population.31

Second, the predictor variables consisted of routinely collected
clinical data variables and were thus limited to those entered in the
electronic health record. Some of these variables rely on manual
input and are hence prone to human error. Thus, a future clinical
implementation study should be accompanied by efforts to
enhance and ensure data quality.

In conclusion, this study demonstrated that an earlier developed
ML concept can be used to predict safe discharge in different sur-
gical populations and hospital settings (academic versus nonaca-
demic) by training a model on local patient data. The consistently
strong performance suggests that the ML concept can be used to
guide capacity challenges by reducing the number of avoidable
bed-days. As a next step, a clinical implementation study is needed
to assess DESIRE’s clinical utility and usability.
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