Joint Final Report of EORTC 26951 and RTOG 9402: Phase III Trials With Procarbazine, Lomustine, and Vincristine Chemotherapy for Anaplastic Oligodendrogial Tumors

Andrew B. Lassman, MD1,2,3; Khê Hoang-Xuan, MD4; Mei-Yin C. Polley, PhD5; Alba A. Brandes, MD6; J. Gregory Cairncross, MD7; Johan M. Kros, MD; Lynn S. Ashby, MD; Martin J.B. Taphoorn, MD10,11; Luis Souhami, MD12; Winand N.M. Dinjens, PhD13; Nadia N. Laack, MD13; Mathilde C.M. Kouwenhoven, MD14; Karen L. Fink, MD, PhD15; Pim J. French, MD16; David R. Macdonald, MD17; Denis Lacombe, MD18; Minhee Won, MA19; Thierry Gorlia, PhD18; Minesh P. Mehta, MD19; and Martin J. van den Bent, MD18

Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the basis of the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.

Anaplastic oligodendrogial tumors (AOTs) are chemotherapy-sensitive brain tumors. We report the final very long-term survival results from European Organization for the Research and Treatment of Cancer 26951 and Radiation Therapy Oncology Group 9402 phase III trials initiated in 1990s, which both studied radiotherapy with/without neo/adjuvant procarbazine, lomustine, and vincristine (PCV) for newly diagnosed anaplastic oligodendrogial tumors. The median follow-up duration in both was 18-19 years. For European Organization for the Research and Treatment of Cancer 26951, median, 14-year, and probable 20-year overall survival rates without versus with PCV were 2.6 years, 13.4%, and 10.1% versus 3.5 years, 25.1%, and 16.8% (N = 368 overall; hazard ratio [HR] 0.78; 95% CI, 0.63 to 0.98; P = .033), with 1p19q codeletion 9.3 years, 26.2%, and 13.6% versus 14.2 years, 51.0%, and 37.1% (n = 80; HR 0.60; 95% CI, 0.35 to 1.03; P = .063), respectively. For Radiation Therapy Oncology Group 9402, analogous results were 4.8 years, 16.5%, and 11.2% versus 3.5 years, 25.1%, and 16.8% (N = 289 overall; HR 0.79; 95% CI, 0.61 to 1.03; P = .08), with codeletion 7.3 years, 25.0%, and 14.9% versus 13.2 years, 46.1%, and 37% (n = 125; HR 0.61; 95% CI, 0.40 to 0.94; P = .02), respectively. With that, the studies show similar long-term survival even without tumor recurrence in a significant proportion of patients after first-line treatment with radiotherapy/PCV.

INTRODUCTION

European Organization for Research and Treatment of Cancer (EORTC) and Radiation Therapy Oncology Group (RTOG, now NRG Oncology) developed open-label randomized phase III trials (EORTC 26951 and RTOG 9402) in the 1990s testing the addition of procarbazine, lomustine, (CCNU) and vincristine (PCV) chemotherapy to radiotherapy (RT) for newly diagnosed anaplastic oligodendrogial tumors. Both studies reported initially that adding PCV improved progression-free survival (PFS) but not overall survival (OS).1,2 However, with longer follow-up, improved OS was also observed, particularly in patients with chromosome 1p/19q codeleted tumors.3,4 The importance of 1p/19q codeletion3,5 isocitrate dehydrogenase (IDH1 and 2 mutations,6 and O6-methylguanine-methyltransferase promoter methylation7 in tumor DNA was not established when these trials were launched. However, both trials centrally analyzed available tumor tissue retrospectively.3,4 Now, nearly 30 years since EORTC 26951 and RTOG 9402 were launched, we report extremely long-term follow-up of fully mature and final survival data from both trials and results in molecular subgroups in line with the current WHO Classification of Tumors of the Central Nervous System.8

METHODS

Entry criteria, trial design, stratification factors, and statistical methods were described previously and are detailed in the Data Supplement (online only). Briefly, RT was administered to a total dose of 59.4 Gy in 33 fractions of 1.8 Gy each in both studies. In EORTC 26951, patients received up to six cycles of adjuvant PCV after RT; in RTOG 9402, patients received up to four cycles of intensified PCV before RT.9 Molecular
analyses were performed centrally post hoc. PFS was defined as the time from random assignment to disease progression or death from any cause, whichever occurred first. Progression was defined locally using the Macdonald criteria. OS was defined as the time between random assignment and death due to any cause. Duration of follow-up was assessed with the inverse Kaplan-Meier method.

RESULTS

EORTC 26951
Between August 1996 and March 2002, 368 patients were enrolled. The database was locked for analysis on June 21, 2019 with 61 of the randomly assigned 368 patients (17%) still alive. For all patients, the median follow-up for PFS and OS is 19 years. The median follow-up of surviving patients free of progression is 17.7 years (range > 0-21.3 years). The median follow-up of surviving patients is 17.8 years with range (> 0-21.7 years). For EORTC 26951, codeleration of 1p/19q by fluorescent in situ hybridization (FISH) was observed in 25% (80 of 316), and IDH-1 or -2 mutation was detected by Sanger sequencing in 46% (83 of 182) of informative cases. Most (39 of 45, 87%) tumors classified as codelleted by FISH were IDH-mutant. One hundred fifteen (115) tumors were analyzed with genome-wide methylation analysis methods. Finally, 139 tumors were assayed by next-generation sequencing (using Ion Torrent). Table 1 and the Data Supplement, Table 1C summarizes the PFS and OS in the intent-to-treat population and the various molecularly defined subgroups from both studies. Both PFS and OS increased with the addition of PCV to RT, with longer PFS and OS (PFS: HR 0.46; 95% CI, 0.30 to 0.86; P = .001; OS: HR 0.78; 95% CI, 0.63 to 0.98; P = .033 (Figs 1A and 1B). In the 80 patients with 1p/19q codelerated tumors, 26 (33%) were still alive at the time of last follow-up. In this subgroup, the HR for PFS was 0.49; 95% CI, 0.29 to 0.83; P = .007 and for OS 0.60; 95% CI, 0.35 to 1.03; P = .063 (Figs 2A and 2B). In the 43 patients with IDH-mutant tumors but no 1p/19q codeleration, the HR for PFS was 0.57; 95% CI, 0.29 to 1.10; P = .091 and for OS 0.60; 95% CI, 0.31 to 1.17; P = .131 (Table 1, see also the Data Supplement). Detailed prognostic and predictive makers analyses are presented in the Data Supplement. Only methylguanine-methyltransferase promoter methylation as assessed with methylation arrays proved to be significantly predictive of benefit from PCV (HR 0.41; 95% CI, 0.25 to 0.67; P < .0001).

RTOG 9402
Between July 1994 and March 2002, 289 patients were randomly assigned. The database was locked for this analysis on May 21, 2018 with 61 patients still alive (21%) and 47 (16%) free of progression. The median follow-up of surviving patients free of progression is 17.4 years (range > 0-23.1 years). The median follow-up of surviving patients is 18.1 years (range > 0-23.1 years). For RTOG 9402, codeleration was observed in 48% (125 of 261; FISH), and IDH mutation was detected (immunohistochemistry or DNA sequencing) in 74% (156 of 210; 154 in IDH1 and two in IDH2) of informative cases. 1p/19q codeleration was observed mainly (90%) in IDH-mutant tumors. In the intent-to-treat analysis, the addition of PCV to RT improved PFS (HR = 0.67; 95% CI, 0.52 to 0.86) but not OS (HR 0.79; 95% CI, 0.61 to 1.03; Table 1 and Data Supplement, Table 1C; Figs 1C and 1D). Among patients with 1p/19q codelerated tumors (n = 125), receipt of PCV was associated with longer PFS and OS (PFS: HR 0.46; 95% CI, 0.30 to 0.70; P < .001; OS HR 0.61; 95% CI, 0.40 to 0.94; P = .02; Figs 2C and 2D). Among patients with non-codelerated IDH-mutant tumors (n = 66), PFS was significantly longer after PCV and RT than RT alone (HR 0.58; P = .046), with a trend toward longer OS with PCV HR 0.60; 95% CI, 0.34 to 1.03; P = .06 (Table 1, see also the Data Supplement). Detailed prognostic and predictive markers analyses are presented in the Data Supplement.
<table>
<thead>
<tr>
<th>Patients/Treatment</th>
<th>Number</th>
<th>Median, PFS (95% CI)</th>
<th>% at 10 Years (95% CI)</th>
<th>% at 14 Years (95% CI)</th>
<th>% at 20 Years (95% CI)</th>
<th>Median, OS (95% CI)</th>
<th>At 10 Years (95% CI)</th>
<th>% at 14 Years (95% CI)</th>
<th>% at 20 Years (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTOG 9402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>143</td>
<td>1.7 (1.3 to 2.4)</td>
<td>11.1 (6.0 to 16.3)</td>
<td>9.6 (4.7 to 14.5)</td>
<td>7.0 (2.3 to 11.7)</td>
<td>4.8 (3.3 to 7.2)</td>
<td>20.4 (13.7 to 27.1)</td>
<td>16.5 (10.2 to 22.7)</td>
<td>11.2 (5.5 to 17.0)</td>
</tr>
<tr>
<td>RT/PCV</td>
<td>146</td>
<td>2.5 (1.7 to 4.4)</td>
<td>30.8 (23.1 to 38.5)</td>
<td>25.7 (18.3 to 33.1)</td>
<td>21.5 (14.1 to 28.8)</td>
<td>4.8 (3.4 to 6.0)</td>
<td>37.3 (29.2 to 45.3)</td>
<td>29.1 (21.4 to 36.8)</td>
<td>24.6 (17.2 to 32.1)</td>
</tr>
<tr>
<td>EORTC 26951</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>183</td>
<td>1.1 (0.8 to 1.5)</td>
<td>13.3 (8.9 to 18.7)</td>
<td>10.4 (6.4 to 15.4)</td>
<td>7.7 (4.1 to 12.8)</td>
<td>2.6 (1.8 to 3.7)</td>
<td>21.0 (15.4 to 27.2)</td>
<td>13.4 (8.8 to 18.8)</td>
<td>10.1 (5.9 to 15.7)</td>
</tr>
<tr>
<td>RT/PCV</td>
<td>185</td>
<td>2.0 (1.5 to 3.4)</td>
<td>26.1 (19.9 to 32.6)</td>
<td>22.7 (16.7 to 29.1)</td>
<td>15.0 (9.7 to 21.4)</td>
<td>3.5 (2.4 to 5.2)</td>
<td>29.9 (23.4 to 36.6)</td>
<td>25.1 (18.9 to 31.8)</td>
<td>16.8 (11.2 to 23.4)</td>
</tr>
<tr>
<td>1p/19q codeleted tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTOG 9402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>67</td>
<td>2.9 (1.5 to 4.5)</td>
<td>17.9 (8.7 to 27.1)</td>
<td>14.8 (6.2 to 23.3)</td>
<td>7.9 (0.0 to 16.4)</td>
<td>7.3 (5.7 to 8.7)</td>
<td>31.5 (20.2 to 42.9)</td>
<td>25.0 (14.4 to 35.7)</td>
<td>14.9 (4.9 to 25.0)</td>
</tr>
<tr>
<td>RT/PCV</td>
<td>58</td>
<td>9.8 (4.5 to 16.2)</td>
<td>49.7 (36.4 to 63.1)</td>
<td>41.0 (27.6 to 54.5)</td>
<td>36.2 (22.7 to 49.6)</td>
<td>13.2 (8.4 to 20.9)</td>
<td>56.6 (43.4 to 69.8)</td>
<td>46.1 (32.5 to 59.7)</td>
<td>37.0 (23.5 to 50.6)</td>
</tr>
<tr>
<td>EORTC 26951</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>37</td>
<td>4.2 (2.3 to 8.5)</td>
<td>24.3 (12.1 to 38.8)</td>
<td>16.2 (6.6 to 29.6)</td>
<td>10.8 (2.7 to 25.5)</td>
<td>9.3 (6.3 to 11.7)</td>
<td>43.2 (27.2 to 58.3)</td>
<td>26.2 (13.3 to 41.1)</td>
<td>13.6 (3.5 to 30.4)</td>
</tr>
<tr>
<td>RT/PCV</td>
<td>43</td>
<td>13.1 (5.7 to 18.6)</td>
<td>56.7 (40.3 to 70.1)</td>
<td>48.4 (32.3 to 62.7)</td>
<td>31.3 (16.6 to 47.3)</td>
<td>14.2 (6.3 to NE)</td>
<td>56.5 (40.1 to 70.0)</td>
<td>51.0 (34.7 to 65.1)</td>
<td>37.1 (21.2 to 53.0)</td>
</tr>
<tr>
<td>IDHmt not 1p/19q codeleted tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTOG 9402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>29</td>
<td>1.9 (0.8 to 2.5)</td>
<td>6.9 (0.0 to 16.1)</td>
<td>6.9 (0.0 to 16.1)</td>
<td>6.9 (0.0 to 16.1)</td>
<td>3.3 (2.5 to 5.5)</td>
<td>10.3 (0.0 to 21.4)</td>
<td>10.3 (0.0 to 21.4)</td>
<td>10.3 (0.0 to 21.4)</td>
</tr>
<tr>
<td>RT/PCV</td>
<td>37</td>
<td>2.8 (1.3 to 4.6)</td>
<td>28.4 (13.6 to 43.2)</td>
<td>25.2 (10.9 to 39.6)</td>
<td>NE (NE to NE)</td>
<td>5.5 (2.6 to 11.2)</td>
<td>38.1 (22.0 to 54.2)</td>
<td>28.6 (13.3 to 43.8)</td>
<td>NE (NE to NE)</td>
</tr>
<tr>
<td>EORTC 26951</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>20</td>
<td>1.6 (0.5 to 3.6)</td>
<td>15.0 (3.7 to 33.5)</td>
<td>15.0 (3.7 to 33.5)</td>
<td>NE (NE to NE)</td>
<td>3.0 (2.4 to 5.3)</td>
<td>15.0 (3.7 to 33.5)</td>
<td>15.0 (3.7 to 33.5)</td>
<td>NE (NE to NE)</td>
</tr>
<tr>
<td>RT/PCV</td>
<td>23</td>
<td>4.2 (1.86 to 6.13)</td>
<td>26.1 (10.6 to 44.7)</td>
<td>19.6 (6.0 to 38.9)</td>
<td>13.0 (2.6 to 32.3)</td>
<td>8.4 (4.2 to 13.7)</td>
<td>43.5 (23.3 to 62.1)</td>
<td>22.1 (7.4 to 41.7)</td>
<td>11.0 (1.9 to 29.2)</td>
</tr>
</tbody>
</table>

Abbreviations: EORTC, European Organization for the Research and Treatment of Cancer; IDH, isocitrate dehydrogenase; NE, not evaluable; OS, overall survival; PCV, procarbazine, lomustine, and vincristine; PFS, progression-free survival; RT, radiotherapy; RTOG, Radiation Therapy Oncology Group.
DISCUSSION
EORTC 26951 and RTOG 9402 were practice-changing phase III trials. Here, we report very long-term mature and final survival analyses nearly 30 years after the trials were conceived. Both trials showed that the addition of PCV chemotherapy to RT lengthens disease control and survival relative to RT alone as first-line therapy for anaplastic oligodendroglial tumors, particularly among 1p/19q codeleted cases. We confirm the 40% reduction in the risk of death in both trials from adding PCV to RT in patients with 1p19q codeleted tumors, with a median survival after random assignment of approximately 14 years and estimated PFS and OS probabilities at 20 years from random assignment of 30% and 35%, respectively. Therefore, durable disease control and long survival are possible after PCV-based chemoradiotherapy as first-line treatment for patients with anaplastic oligodendroglia. PCV chemoradiotherapy also improves survival for patients with IDH-mutant tumors without codeletion, although less robustly, which is consistent with results from RTOG 9802 for low-grade gliomas and with temozolomide in EORTC 26053-22054 (CATNON) for anaplastic gliomas.16-18 Our data show the long-term outcome in these patients with molecularly classified gliomas and reinforce the importance of PCV as a therapeutic chemotheraphy regimen for gliomas with IDH mutation and especially 1p/19q codeletion, despite the transition by many to temozolomide as the drug of choice because of lower toxicity and perceived equivalence of efficacy.19-25 The long-term survival observed also emphasizes the need to better understand the long-term adverse effects of treatment, such as cognitive function and ability to continue living independently many years.

FIG 1. OS and PFS in the intent-to-treat populations. (A) OS by treatment arm in EORTC 26951, intent-to-treat population. (B) PFS by treatment arm in EORTC 26951, intent-to-treat population. (C) OS by treatment arm in RTOG 9402, intent-to-treat population. (D) PFS by treatment arm in RTOG 9402, intent-to-treat population. EORTC, European Organization for the Research and Treatment of Cancer; OS, overall survival; PCV, procarbazine, lomustine, and vincristine; PFS, progression-free survival; RT, radiotherapy; RTOG, Radiation Therapy Oncology Group.
after treatment. The risk of late neurocognitive injury from early RT combined with efficacy of PCV prompted some investigators to defer RT altogether for codeleted cases (ClinicalTrials.gov identifier: NCT02444000 from which results are eagerly awaited). A concern, however, is that initial treatment with chemotherapy alone may be detrimental for survival.25-27 Finally, our ability to conduct and report extremely long-term survival results demonstrates the critical importance of governmentally funded networks in conducting clinical trials, particularly for indolent tumors with long follow-up required for full maturity, that are impossible for a commercial sponsor.

AFFILIATIONS

1Division of Neuro-Oncology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
2Herbert Irving Comprehensive Cancer Center, New York, NY
3NewYork-Presbyterian Hospital, New York, NY
4AP-HP, Sorbonne Université, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2, Paris, France
5NRG Oncology Statistics and Data Management Center, Philadelphia, PA
6Department of Medical Oncology, AUSL/IRCCS Institute of Neurological Sciences, Bologna, Italy
7Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
8Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
9Barrow Neurological Institute, Phoenix, AZ
10Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands

FIG 2. OS and PFS in the patients with 1p/19q codeleted tumors. (A) OS by treatment arm among 1p/19q codeleted cases in EORTC 26951, assessed with FISH. (B) PFS by treatment among 1p/19q codeleted cases in EORTC 26951 (FISH). (C) OS by treatment arm among 1p/19q codeleted cases in RTOG 9402. (D) PFS by treatment arm among 1p/19q codeleted cases in RTOG 9402. EORTC, European Organization for the Research and Treatment of Cancer; FISH, fluorescent in situ hybridization; OS, overall survival; PCV, procarbazine, lomustine, and vincristine; PFS, progression-free survival; RT, radiotherapy; RTOG, Radiation Therapy Oncology Group.
REFERENCES

13. Department of Neurology, Haaglanden Medical Center, the Hague, the Netherlands

14. Department of Radiation Oncology, McGill University, Montreal, Quebec, Canada

15. Mayo Clinic Accruals for Rochester Methodist Hospital, Rochester, MN

16. Department of Neurology, Amsterdam Universités Medical Centers, location VUmc, Amsterdam, the Netherlands

17. Baylor University Medical Center, Houston, TX

18. Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands

19. London Regional Cancer Program, Western University, London, Canada (RT)

20. EORTC, Brussels, Belgium

21. Miami Cancer Institute, Miami, FL

CORRESPONDING AUTHOR
Martin J. van den Bent, MD, The Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Hospital, Dr Molenwaterplein 40, Rotterdam 3015GD, the Netherlands; e-mail: m.vandenbent@erasusmc.nl.

DISCLAIMER
The content is solely the responsibility of the authors and does not necessarily represent the official views of the NCI/NIH.

PRIOR PRESENTATION
The EORTC 26951 and the RTOG 9402 studies were each presented in part at the 24th meeting of the Society for Neuro-Oncology, November 21-24, 2019, Phoenix, AZ.

SUPPORT
Supported by NRG Oncology Operations grant U10CA180868, NRG Oncology SDMC grant U10CA180822, NCORP grant UG1CA189867, and the NRG Specimen Bank grant U24CA196067 from the National Cancer Institute (NCI). Further supported by a donation from the Erasmus MC 2007-3932, by grants from Stichting StopHersentumoren.nl, the Netherlands Cancer Institute (KWF), by AstraZeneca EORTC Translational Research Grant No. TRF 01/02, by the Dutch Foundation for Scientific Research ZonMw (95110051 and 92003560) Programme Translational Research (PTO). A.B.L. was supported in part by The William Rhodes and Louise Tilzer-Rhodes Center for Glioblastoma at NewYork-Presbyterian Hospital, The Michael Weiner Glioblastoma Research Into Treatment Fund, and NCI/NIH grants F30CA013696 and UG1CA189960.

CLINICAL TRIAL INFORMATION
NCT00002569 (RTOG 9402): NCT00002840 (EORTC 26951)

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.21.02543.

AUTHOR CONTRIBUTIONS
Conception and design: Mei-Yin C. Polley, J. Gregory Cairncross, Lynn S. Ashby, David R. Macdonald, Thierry Gorlia, Minesh P. Mehta, Martin J. van den Bent

Administrative support: J. Gregory Cairncross, Minesh P. Mehta, Martin J. van den Bent

Provision of study materials or patients: J. Gregory Cairncross, Lynn S. Ashby, Martin J.B. Taphoorn, Luis Souhami, Nadia N. Laack, Karen L. Fink, David R. Macdonald, Minesh P. Mehta, Martin J. van den Bent

Collection and assembly of data: Khe Hoang-Xuan, Mei-Yin C. Polley, Alba A. Brandes, J. Gregory Cairncross, Johan M. Kros, Lynn S. Ashby, Martin J.B. Taphoorn, Winand N.M. Dinjens, Mathilde C.M. Kouwenhoven, Karen L. Fink, Pim J. French, David R. Macdonald, Denis Lacombe, Minhee Won, Thierry Gorlia, Minesh P. Mehta, Martin J. van den Bent

Data analysis and interpretation: Andrew B. Lassman, Alba A. Brandes, J. Gregory Cairncross, Luis Souhami, Winand N.M. Dinjens, Nadia N. Laack, Mathilde C.M. Kouwenhoven, Minhee Won, Thierry Gorlia, Minesh P. Mehta, Martin J. van den Bent

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

MANUSCRIPT INFORMATION
Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.21.02543.

22. Lassman AB: Procarbazine, lomustine and vincristine or temozolomide: Which is the better regimen? CNS Oncol 4:341-346, 2015

Joint Final Report of EORTC 26951 and RTOG 9402: Phase III Trials With Procarbazine, Lomustine, and Vincristine (PCV) Chemotherapy for Anaplastic Oligodendrogial Tumors

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Andrew B. Lassman
Consulting or Advisory Role: Karyopharm Therapeutics, Sapience Therapeutics, Bayer, Orbis Therapeutics, BioClinica, Novocure, Elsevier, Vivacitas Oncology, Chimerix
Research Funding: AbbVie (Inst), Novartis (Inst), Genentech/Roche (Inst), Aeterna Zentaris (Inst), Kadmon (Inst), Beigene (Inst), VBI Vaccines (Inst), Pfizer (Inst), Millennium (Inst), Karyopharm Therapeutics (Inst), Bayer (Inst), QED Therapeutics (Inst), Orbus Therapeutics (Inst), BMS (Inst), Chimerix (Inst), NextSource (Inst), DelMar Pharmaceuticals (Inst), Corden (Inst), Kazia Therapeutics (Inst), Servier (Inst), Semus (Inst), Novocure (Inst)
Travel, Accommodations, Expenses: Karyopharm Therapeutics, QED Therapeutics, Novartis, Pfizer, VBI Vaccines, Chimerix, Orbus Therapeutics, Novocure

Khê Hoang-Xuan
Honoraria: BTG

J. Gregory Cairncross
Other Relationship: IQVIA

Lynn S. Ashby
Honoraria: Arbor Pharmaceuticals

Luis Souhami
Honoraria: Varian Medical Systems
Consulting or Advisory Role: AbbVie
Research Funding: Sanofi (Inst)
Travel, Accommodations, Expenses: Varian Medical Systems

Winand N.M. Dinjens
Consulting or Advisory Role: Bristol Myers Squibb, Roche, Bayer, AstraZeneca, Novartis, Lilly
Speakers’ Bureau: medtiks

Nadia N. Laack
Research Funding: Bristol Myers Squib (Inst)

Karen L. Fink
Research Funding: Northwest Biotherapeutics (Inst), Novocure (Inst), Orbus Therapeutics (Inst), Denovo Biopharma (Inst), Translational Genomics Research Institute (Inst), CNS Pharmaceuticals (Inst), Agios (Inst), Incyte (Inst)
Pim J. French
Employment: Bristol Myers Squibb (I), Janssen-Cilag (I)
Stock and Other Ownership Interests: Bristol Myers Squibb (I)
Honoraria: Aurikamed
Consulting or Advisory Role: Clarionhealthcare

David R. Macdonald
Research Funding: Celgene (Inst), SERVIER (Inst).

Minesh Mehta
Leadership: Oncosciences
Stock and Other Ownership Interests: Chimerix
Consulting or Advisory Role: Karyopharm Therapeutics, Mevion Medical Systems, ZappRx, Sapience Therapeutics, Xoft
Patents, Royalties, Other Intellectual Property: WARP patent 14/934,27, Topical Vasoconstritor Preparations and Methods for Protecting Cells During Cancer Chemotherapy and Radiotherapy
Uncompensated Relationships: Xcision Medical Systems
Uncompensated Relationships: ViewRay

Martin J. van den Bent
Employment: AstraZeneca (I)
Consulting or Advisory Role: Boehringer Ingelheim, Bayer, carthera, Genenta Science, Nerviano Medical Sciences, Boston Pharmaceuticals, chimerix, AstraZeneca
Research Funding: AbbVie (Inst)
No other potential conflicts of interest were reported.